Φυσική για Μηχανικούς

Σχετικά έγγραφα
Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

1 Η ΠΡΟΟΔΟΣ. Ενδεικτικές λύσεις κάποιων προβλημάτων. Τα νούμερα στις ασκήσεις είναι ΤΥΧΑΙΑ και ΟΧΙ αυτά της εξέτασης

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ 2019

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 :

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

[50m/s, 2m/s, 1%, -10kgm/s, 1000N]

Φυσική για Μηχανικούς


Φυσική για Μηχανικούς

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 :

Α. Για ποιο από τα δυο σώματα καταναλώσαμε περισσότερη ενέργεια;

ΑΣΚΗΣΕΙΣ επάνω στην ύλη της Προόδου 1 Δ. ΚΟΥΖΟΥΔΗΣ. Τμήμα Χημικών Μηχανικών, Χειμερινό Εξάμηνο 2015

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Χημείας Φυσική 1 1 Φεβρουαρίου 2017

E = 1 2 k. V (x) = Kx e αx, dv dx = K (1 αx) e αx, dv dx = 0 (1 αx) = 0 x = 1 α,

5. Δείξτε με λεκτικούς ισχυρισμούς ότι ο χρόνος κίνησης από τη θέση x = + A στην θέση

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI).

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

1. Κίνηση Υλικού Σημείου

% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου

απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση της

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6

ΕΡΓΑΣΙΑ 8 ΚΙΝΗΣΗ ΜΕ ΔΥΝΑΜΕΙΣ ΠΟΥ ΔΕΝ ΕΧΟΥΝ ΤΗΝ ΙΔΙΑ ΔΙΕΥΘΥΝΣΗ ΚΑΙ ΤΡΙΒΗ

Φυσική για Μηχανικούς

Φυσική Γ Λυκείου Θετικού Προσανατολισμού Σχ. έτος ο Διαγώνισμα Κρούσεις - Ταλαντώσεις Θέμα 1ο

ΦΥΣ. 131 Τελική Εξέταση: 13-Δεκεμβρίου-2006

Υπολογισμός της σταθεράς ελατηρίου

Μια κρούση και τα έργα της δύναμης του ελατηρίου

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

ΘΕΜΑ 1. Λύση. V = V x. H θ y O V 1 H/2. (α) Ακίνητος παρατηρητής (Ο) (1) 6 = = (3) 6 (4)

[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s]

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. 22 Μαΐου 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5)

Φυσική για Μηχανικούς

Κεφάλαιο 6. Έργο και κινητική ενέργεια

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ - ΠΑΝΕΛΛΗΝΙΕΣ 2016 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ. ΕΠΙΜΕΛΕΙΑ : Φ. ΧΑΛΑΝΤΖΟΥΚΑ ΦΥΣΙΚΟΣ M.Sc.

Το νήμα δεν ολισθαίνει στο αυλάκι της τροχαλίας και είναι συνεχώς τεντωμένο. Η αντίσταση του αέρα θεωρείται αμελητέα.

ΦΥΣ η Πρόοδος: 5-Νοεμβρίου-2006

ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση.

Κεφάλαιο 4 ο : Ταλαντώσεις

ΦΥΣ Τελική Εξέταση: 10-Δεκεµβρίου Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

ΦΥΣ Τελική Εξέταση: 10-Δεκεµβρίου Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

Κεφάλαιο 13. Περιοδική Κίνηση

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 3 Αυγούστου 2014 Απλή Αρµονική Ταλάντωση - Κρούσεις. Ενδεικτικές Λύσεις. Θέµα Α

Ύλη πάνω στις ταλαντώσεις :

5. Το διάγραμμα του σχήματος παριστάνει την ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση σε συνάρτηση με τον χρόνο.

Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις

ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Κινητική ενέργεια λόγω περιστροφής. Έργο και ισχύς σταθερής ροπής)

ΤΕΣΤ 16. Να επιλέξετε τη σωστή απάντηση. Να δικαιολογήσετε την επιλογή σας. Να επιλέξετε τη σωστή απάντηση. Να δικαιολογήσετε την επιλογή σας.

Ενδεικτικές απαντήσεις στα θέματα της φυσικής προσανατολισμού με το νέο σύστημα. Ημερομηνία εξέτασης 23 Μαΐου 2016

1 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 16-Οκτωβρίου-2010

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6

ΦΥΣ. 131 Τελική εξέταση: 10-Δεκεμβρίου-2005

ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Θέμα Α. 1. β 2. α 3. γ 4. β 5. Λ,Λ,Λ,Λ,Λ.

Κεφάλαιο 14 Ταλαντώσεις. Copyright 2009 Pearson Education, Inc.

W = 6.34 kn (2) F = u 2 f = u2 i + 2a(x f x i ) a = u2 f u2 i 2x f. F = d U(x) (5)

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα

ΑΣΚΗΣΕΙΣ ΣΕ ΤΑΛΑΝΤΩΣΕΙΣ

ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ ΦΥΣΙΚΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2016

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: Ενδεικτικές Λύσεις ευτέρα 3 Σεπτέµβρη 2018 Θέµα Α

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις. Ενδεικτικές Λύσεις - Οµάδα Β.

Εξαναγκασµένες φθίνουσες ταλαντώσεις

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

Φυσική για Μηχανικούς

Σχολική Χρονιά Πανελλήνιες Πανελλήνιες Εξετάσεις - 23 Μάη Φυσική Θετικού Προσανατολισµού Ενδεικτικές Λύσεις.

1 ΦΕΠ 012 Φυσική και Εφαρμογές

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση

Φυσική για Μηχανικούς

ΦΥΣ η Πρόοδος: 14-Οκτωβρίου-2017

ΦΥΣ η Πρόοδος: 14-Οκτωβρίου-2017

, όπου υδ η ταχύτητα διάδοσης των κυμάτων και r1, r2 οι αποστάσεις του σημείου Σ από τις δύο πηγές. Επομένως:

ΣΥΝΟΨΗ 3 ου Μαθήματος

1 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 15-Οκτωβρίου-2011

ΦΥΣ η Πρόοδος: 18-Νοεµβρίου-2017

ΦΥΣ η Πρόοδος: 18-Νοεµβρίου-2017

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις. Ενδεικτικές Λύσεις - Οµάδα Α.

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 23/9/2015 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΓΙΩΡΓΟΣ ΒΑΛΑΤΣΟΣ ΦΥΣΙΚΟΣ Msc

Φυσική για Μηχανικούς

ΦΥΣ Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας).

Transcript:

Φυσική για Μηχανικούς Ενέργεια Συστήματος Εικόνα: Στη φυσική, η ενέργεια είναι μια ιδιότητα των αντικειμένων που μπορεί να μεταφερθεί σε άλλα αντικείμενα ή να μετατραπεί σε διάφορες μορφές, αλλά δεν μπορεί να δημιουργηθεί ή να καταστραφεί. Η "ικανότητα ενός συστήματος να παράγει έργο" είναι μια κοινή περιγραφή, αλλά είναι δύσκολο να δοθεί ένας ενιαίος συνολικός ορισμός της ενέργειας, εξαιτίας των πολλών μορφών της.

Φυσική για Μηχανικούς Ενέργεια Συστήματος Εικόνα: Στη φυσική, η ενέργεια είναι μια ιδιότητα των αντικειμένων που μπορεί να μεταφερθεί σε άλλα αντικείμενα ή να μετατραπεί σε διάφορες μορφές, αλλά δεν μπορεί να δημιουργηθεί ή να καταστραφεί. Η "ικανότητα ενός συστήματος να παράγει έργο" είναι μια κοινή περιγραφή, αλλά είναι δύσκολο να δοθεί ένας ενιαίος συνολικός ορισμός της ενέργειας, εξαιτίας των πολλών μορφών της.

Διατήρηση της Ενέργειας Παράδειγμα: Ένα σώμα μάζας 6 kg σε αρχική ηρεμία κινείται προς τα δεξιά επάνω σε μια οριζόντια επιφάνεια λόγω σταθερής οριζόντιας δύναμης 12 Ν. Α) Βρείτε την ταχύτητα του σώματος όταν αυτό μετατοπιστεί κατά 3 m, εάν η επιφάνεια επαφής έχει συντελεστή τριβής ολίσθησης 0.15 Β) Αν η δύναμη ασκείται υπό γωνία θ, ποια θα είναι αυτή η γωνία ώστε η ταχύτητα του σώματος μετά από 3 m να είναι η μέγιστη;

Διατήρηση της Ενέργειας Παράδειγμα - Λύση: Ένα σώμα μάζας 6 kg σε αρχική ηρεμία κινείται προς τα δεξιά επάνω σε μια οριζόντια επιφάνεια λόγω σταθερής οριζόντιας δύναμης 12 Ν. Α) Βρείτε την ταχύτητα του σώματος όταν αυτό μετατοπιστεί κατά 3 m, εάν η επιφάνεια επαφής έχει συντελεστή τριβής ολίσθησης 0.15

Διατήρηση της Ενέργειας Παράδειγμα - Λύση: Ένα σώμα μάζας 6 kg σε αρχική ηρεμία κινείται προς τα δεξιά επάνω σε μια οριζόντια επιφάνεια λόγω σταθερής οριζόντιας δύναμης 12 Ν. Β) Αν η δύναμη ασκείται υπό γωνία θ, ποια θα είναι αυτή η γωνία ώστε η ταχύτητα του σώματος μετά από 3 m να είναι η μέγιστη;

Διατήρηση της Ενέργειας Παράδειγμα - Λύση: Ένα σώμα μάζας 6 kg σε αρχική ηρεμία κινείται προς τα δεξιά επάνω σε μια οριζόντια επιφάνεια λόγω σταθερής οριζόντιας δύναμης 12 Ν. Β) Αν η δύναμη ασκείται υπό γωνία θ, ποια θα είναι αυτή η γωνία ώστε η ταχύτητα του σώματος μετά από 3 m να είναι η μέγιστη;

Διατήρηση της Ενέργειας Αν μια μη-συντηρητική δύναμη δρα σε ένα απομονωμένο σύστημα, τότε ΔK + ΔU + ΔE int = 0 ΔE mech = ΔE int Για ένα μη-απομονωμένο σύστημα, W other forces = W = ΔK + ΔU + ΔE int

Διατήρηση της Ενέργειας Παράδειγμα: Δυο σώματα είναι συνδεδεμένα με αβαρές και ανελαστικό σχοινί που περνά από τροχαλία χωρίς τριβές. Το σώμα μάζας m 1 βρίσκεται σε οριζόντια επιφάνεια με τριβές και συνδέεται με ελατήριο σταθεράς k. Το σύστημα θεωρείται αρχικά σε ηρεμία. Αν το σώμα μάζας m 2 πέφτει κατά απόσταση h πριν έρθει σε ηρεμία, υπολογίστε το συντελεστή τριβής ολίσθησης ανάμεσα στο σώμα μάζας m 1 και της επιφάνειας.

Διατήρηση της Ενέργειας Παράδειγμα Λύση: σώμα μάζας m 1 σε οριζόντια επιφάνεια με τριβές και συνδέεται με ελατήριο, το σύστημα θεωρείται αρχικά σε ηρεμία, σώμα μάζας m 2 πέφτει κατά απόσταση h πριν έρθει σε ηρεμία, υπολογίστε το συντελεστή τριβής ολίσθησης ανάμεσα στο σώμα μάζας m 1 και της επιφάνειας.

Διατήρηση της Ενέργειας Παράδειγμα: Αναγνωρίστε τη διάταξη του προηγούμενου συστήματος που ανταποκρίνεται σε κάθε γράφημα ενέργειας

Διατήρηση της Ενέργειας Γνωρίζουμε ότι έργο == μεταφορά ενέργειας Ερώτημα: Πόσο γρήγορα μεταφέρεται η ενέργεια? Αν θέλετε να αγοράσετε έναν κινητήρα για να κινεί ένα ασανσέρ μάζας 1500 kg για 5 ορόφους, έχει μεγάλη σημασία αν ο κινητήρας το κάνει σε 30 s ή σε 30 min! Το «πόσο γρήγορα» υποδηλώνει ένα ρυθμό Ρυθμό μεταφοράς ενέργειας == ισχύς P (Power) P = de dt Μονάδα μέτρησης: 1 Watt = 1 J/s

Διατήρηση της Ενέργειας Εναλλακτικά, η ισχύς μπορεί να ιδωθεί ως ο ρυθμός παραγωγής έργου Μέση ισχύς P avg = W Δt Στιγμιαία ισχύς P = lim Δt 0 P avg = dw dt = F d r dt = F v

Διατήρηση της Ενέργειας Παράδειγμα: Ένας ανελκυστήρας έχει μάζα 1600 kg και μεταφέρει επιβάτες με συνολική μάζα 200 kg. Μια σταθερή δύναμη τριβής 4000 N αντιστέκεται στην κίνηση του ανελκυστήρα προς τα πάνω. Α) Πόση ισχύ πρέπει να παραδώσει ο κινητήρας του ασανσέρ για να σηκώσει το ασανσέρ και τους επιβάτες του με σταθερή ταχύτητα u = 3 m/s? B) Πόση ισχύ πρέπει να παραδώσει ο κινητήρας τη στιγμή που ο ανελκυστήρας έχει ταχύτητα u, αν επιταχύνει τον ανελκυστήρα με σταθερή επιτάχυνση a = 1 m/s 2 προς τα πάνω?

Διατήρηση της Ενέργειας Παράδειγμα Λύση: Ένας ανελκυστήρας έχει μάζα 1600 kg και μεταφέρει επιβάτες με συνολική μάζα 200 kg. Μια σταθερή δύναμη τριβής 4000 N αντιστέκεται στην κίνηση του ανελκυστήρα προς τα πάνω. Α) Πόση ισχύ πρέπει να παραδώσει ο κινητήρας του ασανσέρ για να σηκώσει το ασανσέρ και τους επιβάτες του με σταθερή ταχύτητα u = 3 m/s?

Διατήρηση της Ενέργειας Παράδειγμα Λύση: Ένας ανελκυστήρας έχει μάζα 1600 kg και μεταφέρει επιβάτες με συνολική μάζα 200 kg. Μια σταθερή δύναμη τριβής 4000 N αντιστέκεται στην κίνηση του ανελκυστήρα προς τα πάνω. B) Πόση ισχύ πρέπει να παραδώσει ο κινητήρας τη στιγμή που έχει ταχύτητα u, αν επιταχύνει τον ανελκυστήρα με σταθερή επιτάχυνση α = 1 m/s 2 προς τα πάνω?

Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά κύματα που απομακρύνονται από το σημείο που πέφτουν οι σταγόνες.

Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά κύματα που απομακρύνονται από το σημείο που πέφτουν οι σταγόνες.

Απλή Αρμονική Ταλάντωση Περιοδική κίνηση: ονομάζεται η κίνηση ενός σώματος που επιστρέφει σε μια αρχική θέση ανά τακτά σταθερά χρονικά διαστήματα Πολλά παραδείγματα από την καθημερινότητα Δείκτες ρολογιού Ανατολή-Δύση Ηλίου Διαλέξεις Φυσικής Τροχιά δορυφόρου γύρω από τη Γη Μαθηματικός ορισμός: f t = f t + T, Τ > 0, t > 0

Απλή Αρμονική Ταλάντωση Απλή αρμονική κίνηση: περιοδική κίνηση που συμβαίνει συχνά σε μηχανικά συστήματα, όταν η δύναμη είναι ανάλογη της θέσης του σώματος, σε σχέση με μια θέση ισορροπίας Ορισμός: Όταν η δύναμη που ασκείται σε ένα σώμα έχει πάντα κατεύθυνση προς τη θέση ισορροπίας του σώματος, η κίνηση λέγεται Απλή Αρμονική Κίνηση Γνωρίζετε ήδη μια τέτοια κίνηση (ποια;)

Απλή Αρμονική Ταλάντωση

Απλή Αρμονική Ταλάντωση Σώμα σε κίνηση F x = ma x kx = ma x a x = k m x Η επιτάχυνση είναι ανάλογη της θέσης Η κατεύθυνσή της είναι αντίθετη της μετατόπισης από τη θέση ισορροπίας Απλή Αρμονική Κίνηση

Απλή Αρμονική Ταλάντωση Εξισώσεις απλής αρμονικής ταλάντωσης a x = k m x d2 x dt 2 = k m x Αν θέσουμε ω 2 = k m, τότε έχουμε d 2 x dt 2 = ω2 x Λύση διαφορικής εξίσωσης Φάση Πλάτος ταλάντωσης x t = A cos(ωt + φ) Φάση μετατόπισης ή σταθερά φάσης Συχνότητα ταλάντωσης

Απλή Αρμονική Ταλάντωση Συχνότητα ταλάντωσης ω = k m Ονομάζεται γωνιακή συχνότητα Μετριέται σε rad/s Ορίζει πόσο συχνά ταλαντώνεται το σώμα Σταθερά φάσης φ Ορίζει την τιμή του συνημιτόνου τη στιγμή t = 0 t = 0 x 0 = Acos 0 + φ = Αcos(φ) Η τιμή t 0 = φ ορίζει τη χρονική μετατόπιση σε ω δευτερόλεπτα του x t από τη θέση t = 0 x t = A cos(ωt + φ) = A cos(ω t + φ ω ) = A cos(ω t + t 0 )

Απλή Αρμονική Ταλάντωση Περίοδος T = 2π ω = 2π m k Συχνότητα (σε Hertz) f = 1 T = ω 2π = 1 2π k m Σχέση με γωνιακή συχνότητα ω = 2πf = 2π Τ

Απλή Αρμονική Ταλάντωση Ταχύτητα & επιτάχυνση απλής αρμονικής κίνησης u = dx dt = ωa sin ωt + φ Μέγιστες τιμές a = d2 x dt 2 = ω2 A cos(ωt + φ) u max = ωa = k m A a max = ω 2 A = k m A

Απλή Αρμονική Ταλάντωση Πώς βρίσκουμε τις σταθερές A, φ, της ταλάντωσης; Συχνότητα: εξαρτάται από k, m Πλάτος, φάση: αρχικές συνθήκες! (t = 0) Παράδειγμα 1: x 0 = A cos φ = A, u 0 = ωa sin φ = 0 Δίνουν φ = 0 x(t) = Acos ωt Παράδειγμα 2: x 0 = A cos φ = 0, u 0 = ωa sin φ = u i Δίνουν φ = π 2 x(t) = u i ω cos ωt π 2

Απλή Αρμονική Ταλάντωση Θέση, ταχύτητα, επιτάχυνση για (a) t = 0, x 0 = A, u 0 = 0 και (b) t = 0, x 0 = 0, u 0 = u i

Τέλος Διάλεξης