EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

Σχετικά έγγραφα
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING


Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #


STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

2 SFI

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

p din,j = p tot,j p stat = ρ 2 v2 j,

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

v w = v = pr w v = v cos(v,w) = v w

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

Ó³ Ÿ , º 3(187).. 431Ä438. Š. ˆ. ±μ,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. μ² ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

MODEL RESEARCH BASED ON LIQUID/SOLID TWO PHANSE FLOWS IN METALLURGY STIRRED TUBULAR REACTOR

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.

ˆ ˆŸ ˆ ˆŸ ˆ ˆŒ ˆˆ Ÿ Œˆ 10 B

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

P Î,.. Š ²³Ò±μ, Œ.. Œ ϱ,.. ʳ ˆ ˆ ˆ ˆŸ ˆŠ Š Š ˆ Ÿ -200

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ

Delta Inconel 718 δ» ¼

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

NUMERICAL SIMULATION OF WELDING RESIDUAL STRESSES IN A MULTI PASS BUTT WELDED JOINT OF AUSTENITIC STAINLESS STEEL USING VARIABLE LENGTH HEAT SOURCE

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

S i L L I OUT. i IN =i S. i C. i D + V V OUT

ƒê,.. ± É,.. Ëμ μ. ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ. ² μ Ê ² ² ±É Î É μ

Ó³ Ÿ , º 7(205) Ä1540 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. ŠÊ Íμ,.. Ê ±μ,.. ² μ 1. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ

EXPERIMENTAL RESEARCH ON MELTING SURFACE BEHAVIOR IN MOLD UNDER COMPOUND MAGNETIC FIELD

Blowup of regular solutions for radial relativistic Euler equations with damping

P ƒ Ê Î 1, 2,.. ƒê μ 1, 3,. ÉÓ±μ 2, O.M.ˆ μ 1,.. Œ É μë μ 1,.. μ μ 1,. ƒ. Ê±μ ± 1,.. ³ 1,.. ±Ê Éμ 1. ˆ ˆ ˆ ˆ Š ˆ Si- ˆ SiC- Š Š ˆ

½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾

Ó³ Ÿ , º 7(205) Ä1268 ˆ ˆŠ ˆ ˆŠ Š ˆ. ƒ ˆˆ μì Ê ³... Ê ±μ, Œμ ± Í μ ²Ó Ò ² μ É ²Ó ± Ö Ò Ê É É Œˆ ˆ, Œμ ± É ƒ ³³ - μ ª Œμ ±, Œμ ±

P ˆ.. ƒê ²μ 1,.. Œ ² ±μ 1,..Šμ Í,.. ʳ,.. μ μ 2. ˆ ˆŸ Š Š ˆ ƒ ˆŒ œ ƒ Œ ƒ ƒ Š-Š ˆ 10- Œ ˆ. ( ), Œμ ± Œμ ± 1 μ Ò É Ì μ²μ ±μ³ μ ÉÒ ±Êʳ ÒÌ μ μ

ƒ Š ˆ ˆ ˆˆ. ƒ. Ê ÖÏμ a,.. Š Ê,.. Šμ²μ ÊÉμ a, ƒ..œ ÍÒ a,. ƒ. Œμ²μ± μ a,.. ± a a Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

Ó³ Ÿ , º 4Ä5(174Ä175).. 682Ä688 ˆ ˆŠ ˆ ˆŠ Š ˆ

Ανώτερα Μαθηματικά ΙI

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA HIGH STRENGTH LOW ALLOY STEEL

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02

ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P ²ÒÏ,.. μ μ Š ˆ ˆ Ÿ ˆ

P Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É. ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U.

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É

Ó³ Ÿ , º 7(205) Ä1486 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ³ μ 1, ƒ. μ μë,. μ,. ŠÊ² ±μ,. Œ ² μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES

SYNTHESIS KINETICS OF (Y, Gd) 2 O 3 Eu 3+ NANO POWDERS DURING PROCESS OF PREPARATION

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä É ³μ μ μé ³ ±μ²² μ Í LHCb ˆ É ÉÊÉ Ë ± Ò μ± Ì Ô Í μ ²Ó μ μ ² μ É ²Ó ±μ μ Í É ŠÊ Î Éμ ± É ÉÊÉ, μé μ, μ Ö

Ó³ Ÿ , º 4Ä5(174Ä175).. 629Ä634 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ,.. μ, Š.. ±μ. Î ± É ÉÊÉ ³..., Œμ ±

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Š Šˆ ATLAS: ˆ ˆŸ ˆ Šˆ, Œ ˆ Œ ˆ.. ƒê ±μ,. ƒ ² Ï ², ƒ.. Š ± ²,. Œ. Ò,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. Ê ±μ Î,.. ±μ,. Œ. μ

P ˆŸ ˆ Œ Œ ˆ Šˆ. Š ˆ œ ˆ -2Œ

{:=, :, goto, if, else} ß ß LB {beg, end, l 1, l 2,..., }.

49 Ö 6 Đ Vol.49 No ACTA METALLURGICA SINICA Jun pp

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: SPLINES. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

Ó³ Ÿ , º 7(163).. 737Ä741 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. ² Ì μ,.. Œ ± μ,.. Œ ÉÕÏ ±,.. Œμ μ μ,. Œ. Ò, Œ.. ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ

Προσομοίωση Δημιουργία τυχαίων αριθμών

MICROSEGREGATION OF SOLUTE ELEMENTS IN SOLIDIFYING MUSHY ZONE OF STEEL AND ITS EFFECT ON LONGITUDINAL SURFACE CRACKS OF CONTINUOUS CASTING STRAND

Transcript:

49» 2 «Vol.49 No.2 2013 Ý 2 181 186 Ï ACTA METALLURGICA SINICA Feb. 2013 pp.181 186 Åà ÎCO 2 Þ ÛÑ Á Æ ³± ( ÊÀ¹ ÀÀÀ, Ê 130022) ÒÝ Å± ¾, Ô±¼ CO 2 Â, Đ Â Ó Ù É, ¼Â Å, ű˻»Â Æ Ð É «¼ Ò º ¹ ÒÝ Â Ñ º. Õ, ÒÝ CO 2»»Â, Ë Û ÜÖ Ô º,» Å» ÒÛ» ß. Ñ Ð É Ý, ɲ ÝÏĐ, É 35 L/min É ; Ñ «Ý, ɲ ÝÏĐ Æ, Æ», «22.5 Æ É. ¼ 4 kw É, 0.75 m/min Ò ÆÄ. À,»Â, ÒÝ, º ¹ ÈÌÓ TG456.7 Å Ú A Å 0412 1961(2013)02 0181 06 EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING CHEN Gao, GAO Ziying College of Science, Changchun University of Science and Technology, Changchun 130022 Correspondent: CHEN Gao, associate professor, Tel: (0431)85582291, E-mail: chengao@cust.edu.cn Manuscript received 2012 10 08, in revised form 2012 11 12 ABSTRACT The porosity in the welded seam can be generated easily during the CO 2 lasernonpenetration deep welding of low carbon steel, which affects the quality of welding. This research uses the mild steel as the object for the high quality requirements of welding. The advanced high power CO 2 laser generator was used for the welding experiment. The method of cutting cross section of weld seam was used to analyze the porosity number and observe the morphology and location of porosity in the weld. The effects of such process parameters as shielding gas flow, laser beam inclination, laser power and welding speed on porosity generating were discussed. The research results show that the generating of porosity is due to the unstable collapse of the keyhole in the process of CO 2 laser nonpenetration welding of low carbon steel. The porosity would be formed when the speed of bubble escaping form the weld pool is lower than the speed of melting metal solidifying. The results also show that with the increase of shielding gas flow, the porosity number presents a curve of increase firstly and then decrease. The lowest porosity number can be obtained at a 35 L/min of gas flow. With the increase of laser beam inclination angle, the porosity number shows a trend of decrease after increase. Under the condition of deeper penetration welding, the relatively lower porosity number can be obtained at the inclination angle of 22.5. When the laser power is 4 kw, the porosity number is lowest. At the condition of lower welding speed, the bubble can escape easily for the longer existence period of melting weld pool. * Ëij : 2012 10 08, Ë ³ : 2012 11 12 ±, Ð, 1971 Þ, Í : DOI: 10.3724/SP.J.1037.2012.00574

182 49» Thus lower porosity number and porosity number can be achieved. The porosity can be inhibited effectively at a welding speed of 0.75 m/min. KEY WORDS porosity, deep penetration welding, mild steel, processing parameter ÓÞ ØÜ ÙÖÇ Þ» ÜÓ Ü,» Õ. À³ÓÞ Ù Æ Ã ÙÈ, Ò Ð Ã Ø Û Æ²ß Õ [1 7], ÓÞ Ð Ã Î ÌÅÓ. È ÓÞ Î ¼Ã, ÆÈ ¼ÅÐ Ã, à ¾. Èà à ²µ, ÊÆ Ù Ò». Ʋ [8 11] Ö, Рû º Ù Ò», Ʋ Ñ ÆÌ» Ö ß ÃÐ Û Ð. Î Ð Ã ÁÓ Ì Æ². Á Ú Ã µí ÕÀ ßÉ [12] Ó ÝÛ [13] Ð. Ù ÃÕÚËÅ ¼¹ ÂĐ [14], Ð Ã [15,16], Û Ð Ã ß [17 19] Ó Ã º [20] Ð. Ý, ÅÞÌû.» ÓÞ Æ², Ʋû º Ó Þ ¼Å Ð ¼Ã Ò», ß Á, Î ÓÞ Ð ¼Ã, à ²µ, Å Ã Ê, Ð ¼Ã ÓÞ Ã Õ ¾º. 1 Ð ÉÇ ÀÉµÍ Õ 20 g ÓÞ, Æ Â ( Ê, %) : C 0.20,Si0.15 0.30,Mn0.50 0.90, P 0.035, S 0.035, Fe ÝÊ. à ÊÊÁ 80 mm 30 mm 12 mm. 1 ÕÅ Ð Ã ÀÉ Å. Ð, α û, α Ð ß» ½Ü, à ½ ÕÅ. 1  ÈÄ Fig.1 Schematic illustration of laser welding test Ð Õ DC050 CO 2 Ð, ÏÆÐ Ã. Õ Ü» ½Ü» Ù Ð Ã ÀÉ. Ã Õ µ, Õ He Æ Ar Ç, He Ar=1 2. ½ ÕȲ : Ø ²ÈÇà ½ Æ, Õ 3% ½, Õ Ã± ½ Ú, ² ÕÜ ½Ã Ô ±Óà ; Ø ²È Ã Ê Ô Æ, Õ 5%, Õ Ã± ½ Ú, ² ÕÜ ½Ã Ê Ô ±ÓÃ Ê Ô.» ÕØ ² Ú 5 mm à ÛÐ 0.25 mm 20 µê Ô Æ ¾¼, Ú ÜÐÜ 0.05 mm Ê. 2 Ð Ë«2.1 Ü ÖÕÆÜÒ Â Ð ½ P=4.5 kw, à V=1.75 m/min, Ð α=22.5, Ê f=+2 mm, Ê ÊÆà ¼ Ò» 2 ÕÅ. Æ, ÊÎ 15 L/min ÅÞ 20 L/min, Ê Ó. ÊÎ 20 L/min ÅÞ 25 L/min, ʱ¹ÅÞ. Ò Ê 25 L/min, Ê Â. Ê ÅÞ 35 L/min, Ê. ¼ Ò Ê ÅÞ ³Æ Þ Ç. Ê 30 L/min, ¼ Ù Ç. 2.2 ĐÝ Æ Õ P=4.5 kw, V=1.75 m/min, f=+2 mm, Ê L=20 L/min, Ð ÊÆà ¼ Ò» 3 ÕÅ. Æ, Ð 32 28 24 20 6.7 16 6.6 12 6.5 15 20 25 30 35 Gas flow, L/min 2 Ð É Å» Ѻ Fig.2 Effects of gas flow on the porosity number and penetration depth 7.1 7.0 6.9 6.8

2 «: Á ¹ ÑÜ CO 2 ºÁ й 183 Î 0 ÅÞ 7.5, ÊÅÞ, ÎÐ 7.5 ¼, Ð Î 7.5 ÅÞ 37.5, Ê Ç, 30. Ò Ð Î 0 Å 37.5, à ¼ ÅÞ Ç, Ð 15 ¼, Ò Ð Û Å ±¹ Ó. ¼, 22.5 Ê. 2.3 ØÆÜÒ Â V=1.75 m/min, α=22.5, f=+2 mm, L= 20 L/min, à ½ ÊÆà ¼ Ò» 4 ÕÅ. Æ, Ð ½ Î 3 kw 4 kw, ʱ¹. Ð ½ Û ÅÞ, ÊÚ Â Å. Ò Ð ½, à ¼ ÅÞ. 2.4 ØÆÜÒ Â P=4.5 kw, α=22.5, f=+2 mm, L= 20 L/min, à ÊÆà ¼ Ò» 5 ÕÅ. Æ, à Π0.75 m/min ÅÞ 2.75 m/min, Ã Ê ³ ÅÞ Ç, à 1.75 m/min, Ê 40 7.8 35 7.6 30 7.4 25 7.2 7.0 20 6.8 15 6.6 10 20 18 16 14 12 10 5 6.2-5 0 5 10 15 20 25 30 35 40 Laser beam inclination, deg 3 «Å» Ѻ Fig.3 Effects of laser beam inclination on the porosity number and penetration depth 6.4 5.4 8 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Laser power, kw 4 ¼ Å» Ѻ Fig.4 Effects of laser power on the porosity number and penetration depth 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6. Üà ¼, Ã Ü 1.75 m/min Ó, à à ¼ Ò», à 1.75 m/min, ¼ ±¹ Ó. 3 Ë«Ù 3.1 Ä Ï Êß ÜÒ Ô Ð ¼Ã, ² ½ Ò Ð, µí Å. ÛÂ Ì µíæ Å ², ¼¹, Ú µí. ßÆ ¾ ÔÆÅß ÛÆ ÄÅ ßÚ Ì., µí Æ ß, Ò ß, ±ÈÜ ß Ý¾Ú. 6 20 g Ð ¼Ã Ã Õ ½ Ô., Ã Õ Ã ß Ã È, «¾, ÐÙ Ý, Ö Ã, ß²«Ý, Õ Åß ºÎ. 6 Đ ÓÆ Æ Ã Î Ð Ó Õ. µ, ³ÙÈ. ßÐ Ð, Î Å, ¼¹ ßÄÁ Å µù. Ò ¼, µ, Ü Æµ. ß Û ÙÒ, Õ Ý Ü 14 12 10 8 6 4.4 0.5 1.0 1.5 2.0 2.5 3.0 Welding speed, m/min 5  ޻ Ѻ Fig.5 Effects of welding speed on the porosity number and penetration depth 6  Գ ¼ Ó Fig.6 Vertical section of a welded seam 5.4 5.2 5.0 4.8 4.6

184 49» Ù ½Ý Õ. Ì Ã P abl +P g = P h +P σ (1) Ã, P abl ÃÄÅ, P g Ê ÄÅ, P h ÄÅ, P σ ÔÆÅ. Å Ð Ì 7 ÕÅ. Ð ½ Ò «Å Å, ß ½ Gauss ±, Ù Ò «Û Å ½ ² Ü Æ, Á Ì ÜÊ Æ ÄÅ. ÄÅÆ ÔÆÅ Ù½Ý «Ì. ÔÆÅß ÄÅ Ì Á Ì ÓÓ Æ. Ð ¼Ã, Ó, Ý µ¾ Ó, [21,22]. Ü Ú, Ì. ÓÞ Ð ¼Ã, ÝÛ ¼À¼. ¼¹Ã Æ. 8 ÆÌ 20 g CO 2 Ð ¼ÅÃ Ã Ê ÔÓ. Æ, ÈÐ ± à Õ, Æ ¾Ù Ï, ÀÌ Ï. Æ ¼À ܼÀ. 3.2 ÔÍ He Æ Ar Ç µ Ð Ã. Ê 15 20 L/min, Ü Æ¼À Õ ² Ý ¾Ú, Ê ; Ò ÊÅÞ 25 L/min, ÊÅÞ. Ð È ÊÅÞ, à ¼ÀÕÎ ÄÅÅÞ, ÕÁÆƳ, ÆØ Å Ó, ÇÔº ; Ê ²Å 30 L/min, ¼., Ì Ö ±Ö ÇÌÐ. ÊÅÞ µ ÈÁ Å, Üßл Ô µè Æ Û ÜÊ, Î ¼À. ÊÅ Î Á, ÁÆ Þ Ý,. ÅÞÌ, Á Ý, Ö±ÅÞÌ ¼À ÅÅ Õ, Á Ü ÖμÀ Æ. Ð α Î 0 7.5, ¼ ¹, ÈØÜÐ 7.5, Å ÞºÎ, à µ, Ú Đ 7 ÃÄ ËÄ Fig.7 Schematic diagram of pressure balance at the keyhole wall (P abl recoil pressure, P g excess steam pressure, P h fluid pressure, P σ surface tension) 8 Â É ÓÒ Fig.8 Morphologies of cross section of a weld seam (a) and a porosity (b)

2 «: Á ¹ ÑÜ CO 2 ºÁ й 185 ¼ Ö, ØĐÎ Ü Ù Ú «ÕĐ, ÅÞÌØ Ý ; ØÜÐ 15 ¼, Ô, Ý, ¼À ßÁ Đ Ç,» Ü Å. Ò Ð ²ÅÞ, Ê, Ú ÎÈ, ÌÐ 37.5, ų Ï. ÌÐ ÈÒ» Ô Á Å, ÎÙÕÅÞ, ½ Ò, ¼, Þ Ý,., ŠƼ ÎÙÃÜ Æ, ¼Àß ½ Ý, ØÜ Ç ½, ± Æ Þ¾. à Ý, Ð ½, ÜÊ, µï, ¼À ³ ÐÈ. Ð ½ Ó (3 kw), ¼, ¼ ¼À ÆÍ Ñ Æ Æ, µ ², ¼À Ú ÐÈ, ³, μÀ Æ, λ à Â,. Ò Ð ½ ÅÞ 3.5 Æ 4 kw, ¼, ÜÊ Å Á¼À ³, ÙÃÜ Î¼À Æ. Ð ½ ÅÞ 5 kw, ØܼÀ Ô ², È ÐÛ ÄÅ,, Õ ÔÆÅ, Ç ÐÓ., Ð ½ ÅÞÎÁ È ÅÞ, ¼ ÅÞ, Ö Þ. à һ ÜÊ, Πһà µí ¼ ƼÀ Ð. Ò Ã Î 0.75 m/min Å Þ 1.75 m/min, ÜÊ Ó, µï Ê, Ã, ¼ÀÏ Ð, μÀ Æ Ð, Á Ó Æ,», ØÜ Ã Ó, Ð ÜÊ Õ ÕĐ, ¼À Ã, ÁÃ Þ Ý, à ÅÞ, Ý, ݵ¾ ; à Π1.75 m/min ÅÞ 2.25 m/min, Ö±, ÜÈØÜÃ, Çà ½Ù, Á Æ, Å Î Á Ý, ; ØÜà ² ¼ÀÏ Ð, Þ, Èà ÅÞ¼ Î, ÃÜ Æ. Ð ½ Æà ¾ ², ÙÃÜ ¼À ßÚ, Ü ³Ì. Ò Ã Î 2.25 m/min ÅÞ 2.75 m/min, ², ÃÜ Æ,, à РÜÊ ÕÜ, Á ÇÉ Ç ½ ÅƱ, ¼À Ã,, Á¼ÀÆ Ý, Ð Ê, Ù Ç. 4 Ù (1) ÓÞ CO 2 Ð ¼Å ¼Ã, ÌĐÜÃ Ý µõ». (2) Ê 35 L/min, Á Å, ÁÆ Ý Å, Ì ½; ¼ÀÅÅ ÕÖ±, Þ Ì Ã ¼À, Ì Ã». (3) Ð 37.5, Á Å, ØĐ Ü Ý, Á Đ Ç» Ü. Ð, ÅÞÌ Ð, ÃÜ Æ, Ê. ¼, 22.5 Ê. (4) Ð ½ 4 kw, ¼ Ƽ ¾ Á, ¼ ¼À Æ Æ, Øܼ À Ú Ð, μÀ Æ, Ê. (5) à Ó, µï ÊÈ, ¼ÀÏ Ð, ÃÜ Æ, ÊÈ. à 2.25 m/min, ²½ Æ Ã ÙÃÜ Æ,, à ¼. ÐÅ [1] Mikhail S, Antti S, Vladislav S, Alexander F. Opt Laser Technol, 2012; 44: 2064 [2] Reisgen U, Schleser M, Mokrov O, Ahmed E. Opt Laser Technol, 2012; 44: 255 [3] Ruggiero A, Tricarico L, Olabi A G, Benyounis K Y. Opt Laser Technol, 2011; 43: 82 [4] Yilbas B, Arif A, Abdul A. Opt Laser Technol, 2010; 42: 760 [5] Chang B H, Bai S J, Du D, Zhang H, Zhou Y. J Mater Process Technol, 2010; 210: 885 [6] Mei L F, Chen G Y, Jin X Z, Zhang Y, Wu Q. Opt Lasers Eng, 2009; 47: 1117 [7] Emel T, Eddy D, Alfred D, Erdinc K. Mater Des, 2009; 30: 1193 [8] Zhang X D, Chen W Z, Eiji A, Fukuhisa M. Trans Chin Weld Inst, 2002; 23(6): 51 ( Þ, º, Í, ³.  Á, 2002; 23(6): 51) [9] Zhao L, Zhang X D, Chen W Z, Bao G. Trans Chin Weld Inst, 2004; 25(1): 29 ( Ï, Þ, º,.  Á, 2004; 25(1): 29) [10] Zhang X H, Zhang X D, Chen W Z, Lei H D. Laser Technol, 2007; 31: 419 ( Í, Þ, º, Þ., 2007; 31: 419) [11] Zhao L, Zhang X D, Chen W Z, Wang J. Appl Laser, 2004;

186 49» 24: 21 ( Ï, Þ, º,. Ô, 2004; 24: 21) [12] Wahba M, Kawahitoc Y, Kondohc K, Katayamac S. Mater Sci Eng, 2011; A529: 143 [13] Seto N, Katayama S, Matsunawa A. Q J Jpn Weld Soc, 2001; 19: 600 [14] Zhou J, Tsai H L. Int J Heat Mass Transfer, 2007; 50: 2217 [15] Haboudoua A, Peyrea P, Vannesb A B, Peixc G. Mater Sci Eng, 2003; A363: 40 [16] Hayashi T, Matsubayashi K, Katayama S, Nobuyuki A, Matsunawa A, Omori A. Q J Jpn Weld Soc, 2002; 20: 228 [17] Kawaguchi I, Tsukamoto S, Arakane G, Honda H. Q J Jpn Weld Soc, 2005; 23: 259 [18] Matsunawa A. Sci Technol Weld Join, 2001; 6: 351 [19] Kuo T Y, Jeng S L. J Phys, 2005; 38D: 722 [20] Alessandro A, Alessandro F, Leonardo O, Giampaolo C. Opt Laser Technol, 2012; 44: 1485 [21] Seto N, Katayama S, Matsunawa A. Weld Int, 2002; 16: 451 [22] Matsunawa A, Mizutani M, Katayama S, Seto N. Weld Int, 2003; 17: 431 (² : )