Μορφές αποδείξεων. Μαθηματικά Πληροφορικής 2ο Μάθημα. Μορφές αποδείξεων (συνέχεια) Εξαντλητική μέθοδος

Σχετικά έγγραφα
Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ

Μορφές αποδείξεων. Μαθηματικά Πληροφορικής 2ο Μάθημα. Μορφές αποδείξεων (συνέχεια)

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ

2 Αποδείξεις. 2.1 Εξαντλητική µέθοδος. Εκδοση 2005/03/22. Υπάρχουν πολλών ειδών αποδείξεις. Εδώ ϑα δούµε τις πιο κοινές:

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

2.1 Διαιρετότητα, ισοϋπόλοιποι αριθμοί. q Z, a = b q + r.

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

u v 4 w G 2 G 1 u v w x y z 4

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο

Αριθμοθεωρητικοί Αλγόριθμοι

d k 10 k + d k 1 10 k d d = k i=0 d i 10 i.

Θεωρία Υπολογισμού και Πολυπλοκότητα

Υπολογιστικά & Διακριτά Μαθηματικά

Π(n) : 1 + a + + a n = an+1 1 a 1. a 1. + a k+1 = ak+2 1

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

ΚΕΦΑΛΑΙΟ 3 ΤΟ ΔΙΩΝΥΜΙΚΟ ΘΕΩΡΗΜΑ

Υπολογιστικά & Διακριτά Μαθηματικά

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Δυναμικός προγραμματισμός για δέντρα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Κατ οίκον Εργασία 1 Σκελετοί Λύσεων

Φ(s(n)) = s (Φ(n)). (i) Φ(1) = a.

f(t) = (1 t)a + tb. f(n) =

Πανεπιστήμιο Πειραιά Τμήμα Ψηφιακών Συστημάτων. Κρυπτογραφία. Θεωρία αριθμών Αλγεβρικές δομές. Χρήστος Ξενάκης

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα

Υπολογιστικά & Διακριτά Μαθηματικά

* * * ( ) mod p = (a p 1. 2 ) mod p.

Στοιχεία Θεωρίας Αριθμών & Εφαρμογές στην Κρυπτογραφία

Επαγωγή και αναδρομή για άκυκλα συνεκτικά γραφήματα

Π(n) : 1 + a + + a n = αν+1 1

Επαγωγή και αναδρομή για συνεκτικά γραφήματα

KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...

Παράδειγμα δομικής επαγωγής Ορισμός δομικής επαγωγής Συμβολοσειρές Γλώσσες Δυαδικά δένδρα Μαθηματικά Πληροφορικής 3ο Μάθημα Τμήμα Πληροφορικής και Τηλ

2.2 ιαίρεση Πολυωνύμων

Μαθηματικά Πληροφορικής

Θεωρία Γραφημάτων 6η Διάλεξη

Κρυπτογραφία. Κωνσταντίνου Ελισάβετ

Κατ οίκον Εργασία 1 Σκελετοί Λύσεων

Ο μαθητής που έχει μελετήσει το κεφάλαιο της θεωρίας αριθμών θα πρέπει να είναι σε θέση:

ΕΥΡΕΣΗ ΜΕΓΙΣΤΟΥ ΚΟΙΝΟΥ ΔΙΑΙΡΕΤΗ

Εφαρμοσμένη Κρυπτογραφία Ι

TO ΥΠΟΠΡΟΓΡΑΜΜΑ ΣΥΝΑΡΤΗΣΗ

τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.

Μαθηματική Επαγωγή. Τεχνικές Απόδειξης. Αποδείξεις Ύπαρξης. Μαθηματική Επαγωγή

Μαθηματικά Πληροφορικής

Θεωρία Γραφημάτων 5η Διάλεξη

Κατανεμημένα Συστήματα Ι

a = a a Z n. a = a mod n.

, για κάθε n N. και P είναι αριθμήσιμα.

Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων

ΕΝΑΣ ΔΙΚΡΙΤΗΡΙΟΣ ΑΛΓΟΡΙΘΜΟΣ SIMPLEX

HY118-Διακριτά Μαθηματικά

Υποθέσεις - - Θεωρήματα Υποθέσεις - Θεωρήματα Στα μαθηματικά και στις άλλες επιστήμες κάνουμε συχνά υποθέσεις. Οταν δείξουμε ότι μια υπόθεση είναι αλη

z 1 E(G) 2(k 1) = 2k 3. x z 2 H 1 H 2

Κατανεμημένα Συστήματα Ι

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας

1 Arq thc Majhmatik c Epagwg c

Εφαρμοσμένη Κρυπτογραφία Ι

Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Μαθηματικά Πληροφορικής Πιθανοτικά Εργαλεία. Υποπροσθετικότητα. Η Πιθανοτική Μέθοδος (The Probabilistic Method)

Κρυπτογραφία. Έλεγχος πρώτων αριθών-παραγοντοποίηση. Διαφάνειες: Άρης Παγουρτζής Πέτρος Ποτίκας

Εισαγωγικές Έννοιες. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Θεωρία Γραφημάτων 5η Διάλεξη

Αρχή του Περιστερώνα. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις Επαναληψης

4.2 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ

Αλγόριθμοι και Πολυπλοκότητα

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Διακριτά Μαθηματικά. Γιάννης Εμίρης. Τμήμα Πληροφορικής & Τηλεπικοινωνιών ΕΚΠΑ. Νοέμβριος

ιµελής Σχέση ιατεταγµένο ζεύγος (α, β): ύο αντικείµενα (όχι κατ ανάγκη διαφορετικά) σε καθορισµένη σειρά. Γενίκευση: διατεταγµένη τριάδα (α, β, γ), δι

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Σχέσεις. ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Σχεδίαση και Ανάλυση Αλγορίθμων

Θεωρια Αριθµων Προβληµατα

Σειρά Προβλημάτων 1 Λύσεις

Διάλεξη 3: D Σχήμα 3.2: Ενδεικτική αναπαράσταση δίσκου D που ορίζει ο στην εμβάπτιση Γ. Σχήμα 3.3: Σχηματική επεξήγηση περιπτώσεων που απορ

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3

E(G) 2(k 1) = 2k 3.

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι

Αλγεβρικές Δομές και Αριθμοθεωρία

Εφαρμοσμένη Κρυπτογραφία Ι


Πρόβληµα 2 (12 µονάδες)

P = (J, B) T = (I, A) P = (J, B) G = (V, E) i 1 i i + 1

Διάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε

β) 3 n < n!, n > 6 i i! = (n + 1)! 1, n 1 i=1

(Γραμμικές) Αναδρομικές Σχέσεις

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Υπολογιστικά & Διακριτά Μαθηματικά

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Υπολογιστικό Πρόβληµα

Φροντιστήριο #4 Λυμένες Ασκήσεις Μαθηματική Επαγωγή 13/3/2018

2 n N: 0, 1,..., n A n + 1 A

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί

2 ) d i = 2e 28, i=1. a b c

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2017

Διάλεξη 13: D Σχήμα 13.2: Ενδεικτική αναπαράσταση δίσκου D που ορίζει ο στην εμβάπτιση Γ. Σχήμα 13.3: Σχηματική επεξήγηση περιπτώσεων πο

Transcript:

Μορφές αποδείξεων Μαθηματικά Πληροφορικής ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμένο αριθμό περιπτώσεων, τις εξετάζουμε όλες. Μαθηματική επαγωγή. Εστω μια πρόταση P (n) που ισχύει για n =. Αν η P (n) συνεπάγεται την P (n + ), τότε η πρόταση ισχύει για όλους τους φυσικούς. Δομική επαγωγή. Επαγωγή όχι στους φυσικούς αριθμούς αλλά σε μια δομή που ορίζεται επαγωγικά. Μορφές αποδείξεων (συνέχεια) Εξαντλητική μέθοδος Κατασκευαστική απόδειξη ύπαρξης. Δείχνουμε την ύπαρξη ενός στοιχείου δίνοντας ένα αλγόριθμο που το παράγει. Στην ιδία κατηγορία ανήκει και η απόδειξη με αντιπαράδειγμα. Μη κατασκευαστική απόδειξη ύπαρξης. Τέτοιες αποδείξεις χρησιμοποιούν μεταξύ άλλων την αρχή του περιστερεώνα και τις γενικεύσεις του την πιθανοτική μέθοδο που βασίζεται στο ότι ένα στοιχείο υπάρχει όταν έχει μη μηδενική πιθανότητα ύπαρξης. την διαγωνιοποίηση του Cantor. Σε αυτό το είδος απόδειξης θεωρούμε όλες τις δυνατές περιπτώσεις και τις ελέγχουμε όλες. Αν ο αριθμός των περιπτώσεων είναι πεπερασμένος (και σχετικά μικρός) τότε αυτή είναι συνήθως η πιο κατάλληλη μέθοδος. Σήμερα που έχουμε στη διάθεση μας ισχυρούς υπολογιστές, αυτή η μέθοδος μπορεί να χρησιμοποιηθεί σε αρκετά προβλήματα. Ας δούμε μερικά παραδείγματα τέτοιων αποδείξεων.

Σκύλος-κατσίκα-χορτάρι Σκάκι Ενας βοσκός έχει έναν άγριο σκύλο, μια κατσίκα και ένα δεμάτι χορτάρι και θέλει να χρησιμοποιήσει μια βάρκα για να διασχίσει ένα ποτάμι. Η βάρκα είναι μικρή και χωράει μόνο το βοσκό και ένα από τα 3 πράγματα ή ζώα που θέλει να μεταφέρει απέναντι. Ο σκύλος θα φάει την κατσίκα και η κατσίκα το χορτάρι αν μείνουν χωρίς το βοσκό στην ίδια όχθη. Υπάρχει λυση; Ναι. Μπορούμε να τη βρούμε αν δοκιμάσουμε όλους τους συνδυασμούς. Στα προβλήματα Ματ σε 3 κινήσεις μπορούμε να δοκιμάσουμε όλες τις περιπτώσεις. ( 40 5.) Είναι εφικτά σήμερα τα προβλήματα της μορφής Ματ σε 7 κινήσεις ; Δίνεται η αρχική σκακιέρα. Ματ σε 37 κινήσεις. Αυτό το πρόβλημα είναι πεπερασμένο, αλλά όχι υπολογιστικά εφικτό. Ορια της εξαντλητικής μεθόδου Μα, οι υπολογιστές δεν γίνονται ολοένα ταχύτεροι; Εστω πως έχουμε n περιπτώσεις. Οι «σύγχρονοι» υπολογιστές εκτελούν περίπου 30 εντολές / δευτερόλεπτο. Μία ώρα έχει 3600 < δευτερόλεπτα, άρα 4 εντολές / ώρα. Ο ρυθμός αύξησης είναι τεράστιος. Για n = 48, θα χρειαζόμασταν 3 μέρες. Για n = 00, 00 = 30 70, άρα χρειαζόμαστε 70 δευτερόλεπτα, δηλαδή > 58 ώρες. Ενας χρόνος έχει 8760 3 ώρες. Άρα χρειαζόμαστε 58 3 = 45 χρόνια. Αυτό είναι παραπάνω από 30 τρισεκατομμύρια χρόνια... Ποτέ δεν θα γίνουν αρκετά γρήγοροι για να ελέγξουν 00 περιπτώσεις σε λογικό χρόνο. Αν η ταχύτητα διπλασιαστεί σε ( 30 ) = 3 εντολές/δευτ., πηγαίνεις από το n = 30 στο n + = 3. (Αγνοώντας το κόστος για προσπέλαση στη μνήμη και το δίσκο). Και πρέπει να περιμένεις περίπου 8 μήνες (σύμφωνα με Moore s law) για να συμβεί αυτό. Σε 8 χρόνια από σήμερα, ίσως μπορέσουμε να απαριθμήσουμε 4+ = 54 περιπτώσεις σε μία ώρα.

Μα, οι υπολογιστές δεν γίνονται ολοένα ταχύτεροι; Οι νόμοι της φυσικής υποδεικνύουν ότι η ταχύτητα των ηλεκτρονικών υπολογιστών δεν θα αυξάνεται για πάντα. Ακόμα και με μαζικό παραλληλισμό, με τεράστιο speedup π.χ., 000 0, οι βελτιώσεις θα είναι ελάχιστες. Σε κάθε ομάδα 6 ατόμων υπάρχουν 3 που γνωρίζονται ανά δυο ή υπάρχουν 3 που είναι άγνωστοι ανά δυο. Για n λίγο παραπάνω από 00, δεν υπάρχει καμία ελπίδα. 50 0 80 που είναι ο αριθμός των σωματιδίων στο σύμπαν εντός της εμβέλειας παρατήρησης μας. 3 4 Εκτός εάν;... 6 5 Απόδειξη: Δοκίμασε όλες τις περιπτώσεις. Σε κάθε ομάδα 6 ατόμων υπάρχουν 3 που γνωρίζονται ανά δυο ή υπάρχουν 3 που είναι άγνωστοι ανά δυο. Σε κάθε ομάδα 6 ατόμων υπάρχουν 3 που γνωρίζονται ανά δυο ή υπάρχουν 3 που είναι άγνωστοι ανά δυο. 3 3 4 4 6 5 Το παραπάνω δεν ισχύει για κάθε ομάδα 5 ατόμων. Αντιπαράδειγμα: Οι πέντε κάθονται σε ένα κυκλικό τραπέζι και ο καθένας γνωρίζει μόνο τους διπλανούς του. 6 5 Το παραπάνω δεν ισχύει για κάθε ομάδα 5 ατόμων. Αντιπαράδειγμα: Οι πέντε κάθονται σε ένα κυκλικό τραπέζι και ο καθένας γνωρίζει μόνο τους διπλανούς του.

Σε κάθε ομάδα 6 ατόμων υπάρχουν 3 που γνωρίζονται ανά δυο ή υπάρχουν 3 που είναι άγνωστοι ανά δυο. 3 Μπορούμε να γενικεύσουμε την πρόταση Σε καθε σύνολο 8 ατόμων υπάρχουν 4 που γνωρίζονται ανά δυο ή υπάρχουν 4 που είναι άγνωστοι ανά δυο. 6 5 4 Απόδειξη. Δοκίμασε όλες τις περιπτώσεις. Ομως τώρα οι περιπτώσεις είναι πάρα πολλές. Το παραπάνω δεν ισχύει για ομάδες των 5 ατόμων. Αντιπαράδειγμα: Οι πέντε κάθονται σε ένα κυκλικό τραπέζι και ο καθένας γνωρίζει μόνο τους διπλανούς του. Μαθηματική επαγωγή Σε κάθε σύνολο 49 ατόμων υπάρχουν 5 που γνωρίζονται ανά δυο ή υπάρχουν 5 που είναι άγνωστοι ανά δυο. Απόδειξη. Η εξαντλητική μέθοδος δεν μπορεί να χρησιμοποιηθεί γιατί σήμερα είναι υπολογιστικά ανέφικτη. Εστω P (n) μια υπόθεση που αφορά τους φυσικούς αριθμούς. Για να αποδείξουμε την υπόθεση με επαγωγή Δείχνουμε ότι ισχύει για n = : P () Δείχνουμε για κάθε n: αν ισχύει για n τότε θα ισχύει για n + : P (n) P (n + )

Παράδειγμα - H k Παράδειγμα - H k Ο αρμονικός αριθμός H k ορίζεται σαν Τι μεγέθους είναι ο H k ; H k = + + 3 + k Να δειχτεί ότι για κάθε φυσικό n: H n + n. Απόδειξη. Βάση της επαγωγής: Για n = έχουμε H = H = 3/ και + n = και επομένως το λήμμα ισχύει: 3/. Επαγωγική υπόθεση: Υποθέτουμε ότι το λήμμα ισχύει για κάποιο φυσικό αριθμό n: H n + n. Επαγωγικό βήμα: Θα δείξουμε ότι ισχύει για n +, δηλαδή ότι H n+ + (n + ). Παράδειγμα - H k Μαθηματική επαγωγή - γενικεύσεις Απόδειξη (συνέχ.) Εχουμε H n+ = + + + n+ = ( + + + n ) + ( n + + + n+ ) = H n + ( n + + + n+ ) ( + n) + ( n + + n ) = ( + n) + n = ( + n) + = + (n + ). n Κάποιες κοινές παραλλαγές της επαγωγής Η βάση δεν είναι πάντα για n =. Π.χ., για θεωρήματα της μορφής «Για κάθε φυσικό αριθμό n 4:...» η βάση είναι n = 4. Η επαγωγική υπόθεση είναι ότι η πρόταση ισχύει για όλους τους μικρότερους αριθμούς: P (),..., P (n) P (n + ) Αυτή είναι η λεγόμενη Ισχυρή Επαγωγή.

Οι αριθμοί Fibonacci Οι αριθμοί Fibonacci ορίζονται ως εξής: και για κάθε n : F 0 =, F =, F n = F n + F n. Να δειχτεί ότι για κάθε ακέραιο n 0, F n φ n, όπου φ = + 5 =.68... είναι η χρυσή τομή. Για κάθε θετικό ακέραιο n: φn F n φ n. Συνδυαστική ερμηνεία των αριθμών Fibonacci Ορίζουμε J n ως τον αριθμό των τρόπων να γράψουμε το n ως άθροισμα άκολουθιών που αποτελούνται από και. Π.χ., J 4 = 5 γιατί + + + = + + = + + = + + = +. Ομοίως J =, J =, J 3 = 3 κοκ. Ορίζουμε J 0 :=, και παίρνουμε (πώς;) για κάθε n : J n = J n + J n Άρα J n = F n, για κάθε n. Ισοδύναμα, J n είναι ο αριθμός των τρόπων να ανέβεις μια σκάλα με n σκαλοπάτια αν κάθε φορά ανεβαίνεις ένα ή δύο σκαλιά... Οι αριθμοί Fibonacci Να δειχτεί ότι για κάθε ακέραιους n, m, οι αριθμοί Fibonacci ικανοποιούν τη σχέση F n+m = F n F m + F n F m. Το θεώρημα μας επιτρέπει να υπολογίσουμε ένα αριθμό Fibonacci χωρίς να υπολογίσουμε όλους τους προηγούμενους. F k+ = F k+ F k + F k F k = (F k + F k )F k + F k F k = F k + F kf k F k = F k F k + F k F k = F k + F k Παράδειγμα: (Επαγωγικές) στη Στοιχειώδη Αριθμοθεωρία Ορισμός Ενας θετικός ακέραιος p >, καλείται πρώτος αν δεν μπορεί να γραφτεί ως γινόμενο δύο ακεραίων a, b με < a, b < p. Κάθε θετικός ακέραιος n μπορεί να γραφτεί ως γινόμενο πρώτων αριθμών. F 3 = F 5 + F 5 F 4 F 5 = F 7 + F 7 F 6 F 4 = F 7 + F 6 F 7 =..., F 6 =...

Μέγιστος Κοινός Διαιρέτης Αλγόριθμος για το Μέγιστο Κοινό Διαιρέτη Για a, b Z, λέμε ότι ο a διαιρεί τον b (συμβολίζεται με a b), αν υπάρχει k Z, τέτοιο ώστε b = ka. Ορισμός Για a, b Z, ο μέγιστος κοινός διαιρέτης των a και b (συμβολίζεται με gcd(a, b)), ορίζεται ως ο μεγαλύτερος ακέραιος d τ.ω. d a και d b. Εξ ορισμού, όλοι οι ακέραιοι διαιρούν το 0. Άρα gcd(0, b) = b. Ορίζουμε gcd(0, 0) := 0. gcd(a, b) = Αλγόριθμος του Ευκλείδη { a αν b = 0 gcd(b, a mod b) αν b > 0. : function Euclid(a, b) Υποθέτουμε ότι a b : if b = 0 then 3: return a gcd(a, 0) = a 4: else 5: δ Euclid(b, a mod b) gcd(a, b) = gcd(b, a mod b) 6: return δ 7: end if 8: end function Ορθότητα του Αλγορίθμου του Ευκλείδη Πολυπλοκότητα του Αλγορίθμου του Ευκλείδη Θα αποδείξουμε με τη σειρά τις εξής προτάσεις. (Bézout) Εστω a, b Z, όχι και οι δύο μηδέν. Τότε gcd(a, b) = min{ax + by x, y Z, ax + by > 0}. Αν d a και d b, τότε d gcd(a, b). Για ακέραιους a 0 και b > 0, gcd(a, b) = gcd(b, a mod b). Πόσα βήματα κάνει ο αλγόριθμος για να υπολογίσει τον μέγιστο κοινό διαιρέτη δυο αριθμών; Εξαρτάται από τους αριθμούς. Θέλουμε μια εκτίμηση για τη χειρότερη περίπτωση. Το του Lamé (δεν θα το αποδείξουμε) λέει ότι ο αριθμός των διαιρέσεων, ή ισοδύναμα οι φορές που υπολογίζουμε το a mod b, είναι λιγότερες από k όταν a > b και b < F k. Εδώ θα δείξουμε ένα πιο απλό αποτέλεσμα.

Πολυπλοκότητα του Αλγορίθμου του Ευκλείδη Παρατηρούμε ότι ο αριθμός των διαιρέσεων ισούται με τον αριθμό r των αναδρομικών κλήσεων που εκτελεί ο αλγόριθμος. Συνεπώς ο αριθμός βημάτων του αλγορίθμου είναι O(r). Για κάθε θετικούς ακέραιους a, b με a και a b, ο αριθμός των διαιρέσεων του αλγόριθμου του Ευκλείδη δεν ξεπερνά το log a. Θεμελιώδες της Αριθμοθεωρίας Αν a bc και gcd(a, b) =, τότε a c. Αν p πρώτος και p bc, τότε p b ή p c. Αν p πρώτος και p a a... a n, τότε ο p διαιρεί κάποιο a i. Κάθε θετικός ακέραιος n μπορεί να γραφτεί με μοναδικό τρόπο ως γινόμενο πρώτων αριθμών: n = p p... p j, (p p... p j ). Ισχυροποίηση της πρότασης Θεωρία Ramsey Κάποιες φορές για να αποδείξουμε μια πρόταση με μαθηματική επαγωγή, παραδόξως μας συμφέρει να την ισχυροποιήσουμε. Παράδειγμα: + + 3 + + n. Απόδειξη. Ας χρησιμοποιήσουμε επαγωγή και ας υποθέσουμε ότι η πρόταση ισχύει για κάποιο n. Προσθέτουμε και στα δυο μέλη το. Αλλά, τώρα το δεξί μέλος είναι + που δεν είναι (n+) (n+) μικρότερο του. Η προσέγγιση αυτή αποτυγχάνει. Είναι εύκολο όμως να δείξουμε την πιο ισχυρή πρόταση + + 3 + + n n. Frank P. Ramsey (903-930)

Γραφήματα Θεωρία Ramsey Γράφημα G με σύνολο κορυφών V και σύνολο ακμών E είναι ένα ζεύγος (V, E) όπου E {{u, v} u, v V } δηλαδή μια ακμή είναι ένα μη διατεταγμένο ζεύγος κορυφών. Γραφήματα Γραφήματα Δένδρα Δένδρα Επίπεδα Επίπεδα γραφήματα γραφήματα Κύκλοι Κύκλοι Euler Euler Ειδικές Ειδικές κατηγορίες κατηγορίες γραφημάτων γραφημάτων Ειδικές κατηγορίες γραφημάτων Ορισμός (Πλήρες / Κενό) Συμπλήρωμα Ḡ =(V Ḡ =(V, E,) E του ) του G =(V G =(V, E):, E): E E = {{u, = {{u, v} v} {u, {u, v} v} E, ue, u v}. v}. G = (V, E) καλείται πλήρες (κλίκα) αν E = {{u, v} u, v V } και κενό (ανεξάρτητο σύνολο) αν E =. Ορισμός (Πλήρες (Πλήρες / Κενό) / Κενό) 3 3 4 4 4 4 5 5 5 5 (a) (a) (b) (b) Σχήμα Σχήμα : Τα : Τα γραφήματα K 5 Kκαι 5 και K 5 K Απόδειξη Θεωρήματος 5 Ramsey (Ramsey) 3 3 Για κάθε θετικούς ακέραιους k, m υπάρχει φυσικός R(k, m) τέτοιος ώστε κάθε γράφημα με R(k, m) ή περισσότερες κορυφές περιέχει k-κλίκα ή m-ανεξάρτητο σύνολο. Η επαγωγική απόδειξη απαιτεί λίγη προσοχή στις αρχικές συνθήκες. Για κάθε θετικούς ακέραιους k, m, R(k, ) = k και R(, m) = m. Θα αποδείξουμε το του Ramsey με ισχυρή επαγωγή στο άθροισμα k + m. ΒΑΣΗ: Για k + m = 4, ισχύει από την. Ομοίως και για k + m = 5, αφού τότε ο ένας από τους k, m ισούται με. (Ramsey) Για κάθε φυσικό k, υπάρχει φυσικός R(k) τέτοιος ώστε κάθε γράφημα με R(k) ή περισσότερους κορυφές περιέχει ένα πλήρες υπογράφημα με k κορυφές ή ένα κενό υπογράφημα με k κορυφές. Η πρόταση για κάποιο k δεν φαίνεται να συνεπάγεται την πρόταση για κάποιο k +. Αν όμως γενικεύσουμε το θεώρημα, τότε μπορούμε να το αποδείξουμε με επαγωγή. (Ramsey) Για κάθε θετικούς ακέραιους k, m υπάρχει φυσικός R(k, m) τέτοιος ώστε κάθε γράφημα με R(k, m) ή περισσότερες κορυφές περιέχει ένα πλήρες υπογράφημα με k κορυφές ή ένα κενό υπογράφημα με m κορυφές. Απόδειξη Θεωρήματος Ramsey ΒΑΣΗ: Για k + m = 4 και k + m = 5, ισχύει από την. ΕΠΑΓΩΓΙΚΗ ΥΠΟΘΕΣΗ: Ισχύει για k, m με k + m 5. ΕΠΑΓΩΓΙΚΟ ΒΗΜΑ: Θα δείξουμε για αριθμούς k, m με k + m 6. (Άρα χβτγ k, m 3). Η επαγωγική υπόθεση διασφαλίζει την ύπαρξη των R(k, m) και R(k, m ) (αφού k + m 5, και k, m ). Θα δείξουμε ότι υπάρχει το R(k, m) και μάλιστα R(k, m) R(k, m) + R(k, m ).