Μαθηματικά Πληροφορικής Πιθανοτικά Εργαλεία. Υποπροσθετικότητα. Η Πιθανοτική Μέθοδος (The Probabilistic Method)
|
|
- Ῥουβήν Βασιλικός
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Μαθηματικά Πληροφορικής Πιθανοτικά Εργαλεία Δύο βασικά εργαλεία από τη Θεωρία Πιθανοτήτων. 1 Υποπροσθετικότητα (Union Bound). 2 Γραμμικότητα Αναμενόμενης Τιμής (Linearity of Expectation). Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Η Πιθανοτική Μέθοδος (The Probabilistic Method) Μη κατασκευαστική μέθοδος απόδειξης εφαρμόζεται σε προβλήματα που δεν έχουν φαινομενικά καμία σχέση με πιθανότητες. Υποπροσθετικότητα Ενα βασικό εργαλείο στην πιθανοτική μέθοδο και όχι μόνο. Αν θέλουμε να αποδείξουμε ότι ένα αντικείμενο A υπάρχει, ορίζουμε ένα χώρο πιθανότητας πάνω σε μια κατάλληλη συλλογή αντικειμένων και δείχνουμε ότι P(A) > 0. Παράδειγμα: αν δείξουμε πως η πιθανότητα να υπάρξει νικητής σε μια κλήρωση του Τζόκερ είναι μη μηδενική, έχουμε αποδείξει πως υπάρχει ένα τυχερό δελτίο. Πολλές φορές η μη κατασκευαστική απόδειξη μπορεί να μετατραπεί σε κατασκευαστική με το σχεδιασμό κατάλληλου τυχαιοκρατικού (randomized) αλγορίθμου. Για οποιαδήποτε γεγονότα A, B P(A B) = P(A) + P(B) P(A B) P(A) + P(B). Για οποιαδήποτε συλλογή A γεγονότων ισχύει η υποπροσθετική ιδιότητα P( P(A). A A A) A A Μας δίνει ικανοποιητικά άνω φράγματα σε περιπτώσεις όπου ο ακριβής υπολογισμός είναι περίπλοκος.
2 Η Πιθανοτική Μέθοδος στη Θεωρία Ramsey Η Πιθανοτική Μέθοδος στη Θεωρία Ramsey R(t) ορίζεται ως ο αριθμός εκείνος για τον οποίο κάθε γράφημα G = (V, E) με V R(t) περιέχει ως εναγόμενο υπογράφημα το K t ή το K t. R(t) ορίζεται ως ο αριθμός εκείνος για τον οποίο κάθε γράφημα G = (V, E) με V R(t) περιέχει ως εναγόμενο υπογράφημα το K t ή το K t. Εχουμε δείξει στην τάξη ότι ο R(t) ορίζεται για κάθε t 1, και μάλιστα R(t) 2 2t 1. Ισχύει επίσης R(t) = O(4 t / t). Εχουμε δείξει στην τάξη ότι ο R(t) ορίζεται για κάθε t 1, και μάλιστα R(t) 2 2t 1. Ισχύει επίσης R(t) = O(4 t / t). Πόσο μικρό μπορεί να είναι το R(t); Εύκολα προκύπτει ότι R(t) > (t 1) 2. Πόσο μικρό μπορεί να είναι το R(t); Εύκολα προκύπτει ότι R(t) > (t 1) 2. Θεώρημα (Erdős, 1947) Αν ( ) n 2 1 (t 2) < 1, t τότε R(t) > n. Ειδικότερα, για όλα τα t 3, R(t) > 2 t/2. Ακολουθεί η απόδειξη του θεωρήματος. Για S V, G[S] συμβολίζει το υπογράφημα του G που ενάγεται από το S. Κατασκεύασε τυχαίο G = (V, E), V = n, επιλέγοντας κάθε ακμή ανεξάρτητα με πιθανότητα 1/2. Για S V, S = t, όρισε το γεγονός A S : «G[S] είναι ισόμορφο με το K t ή το K t». Το A S συμβαίνει όταν και οι ( t 2) τυχαίες επιλογές φέρουν το ίδιο αποτέλεσμα. Άρα P(A S ) = 2 2 (t 2). P( A S ) ( ) n P(A S ) = 2 1 (t 2) <1. t S S Επομένως P( S A S)>0. Άρα υπάρχει γράφημα G με n κορυφές που δεν περιέχει ως εναγόμενο υπογράφημα το K t ή το K t. Συμπεραίνουμε ότι R(t) > n.
3 Για το δεύτερο σκέλος του θεωρήματος: ( ) ( ) n n 2 1+t/2 2 1 (t 2) = t t 2 t2 /2 < nt 2 1+t/2 t! 2 t2 /2. Για t 3, θέτοντας n = 2 t/2 ισχύει ότι n t 2 1+t/2 t! 2 t2 /2 < 1. Μια τυχαία μεταβλητή είναι μια ποσότητα που μετράμε σε σχέση με ένα τυχαίο πείραμα. Ορισμός Μια τυχαία μεταβλητή είναι μια συνάρτηση R : V που αποδίδει τιμές από το V σε κάθε στοιχείο του δειγματικού χώρου. Επομένως, για t 3, R(t) > 2 t/2. Συχνά V = R. Η τιμή της R δεν αντιπροσωπεύει πιθανότητα. Μπορούμε όμως να αναθέσουμε πιθανότητες στις διάφορες τιμές της R με βάση τις πιθανότητες των αντίστοιχων δειγμάτων του. Η χαρακτηριστική τυχαία μεταβλητή του δείγματος δ. R(x) = { 1 x, x = δ 0 x, x δ Τα γεγονότα που σχετίζονται με μια τυχαία μεταβλητή αφορούν τις τιμές που αυτή παίρνει. P(R = 1) P(R > 0) Η χαρακτηριστική τυχαία μεταβλητή του δείγματος δ. R(x) = { 1 x, x = δ 0 x, x δ Τα γεγονότα που σχετίζονται με μια τυχαία μεταβλητή αφορούν τις τιμές που αυτή παίρνει. P(R = 1) = P(x = δ ) P(R > 0)
4 Η χαρακτηριστική τυχαία μεταβλητή του δείγματος δ. R(x) = { 1 x, x = δ 0 x, x δ Τα γεγονότα που σχετίζονται με μια τυχαία μεταβλητή αφορούν τις τιμές που αυτή παίρνει. P(R = 1) = P(x = δ ) P(R > 0) = P(x = δ ) Ρίχνουμε ένα τέλειο νόμισμα 10 φορές και μας ενδιαφέρει ο αριθμός των κεφαλών που θα έρθουν. Ορίζουμε την τυχαία μεταβλητή R να είναι ο αριθμός των κεφαλών σε κάθε δείγμα. Ρίχνουμε ένα τέλειο νόμισμα 10 φορές και μας ενδιαφέρει ο αριθμός των κεφαλών που θα έρθουν. Ορίζουμε την τυχαία μεταβλητή R να είναι ο αριθμός των κεφαλών σε κάθε δείγμα. Ο δειγματικός χώρος περιέχει τις ακολουθίες μήκους 10 που αποτελούνται από Κ και Γ. Π.χ., R(ΓΚΚΓΚΓΓΚΓΓ) = 4. Ρίχνουμε ένα τέλειο νόμισμα 10 φορές και μας ενδιαφέρει ο αριθμός των κεφαλών που θα έρθουν. Ορίζουμε την τυχαία μεταβλητή R να είναι ο αριθμός των κεφαλών σε κάθε δείγμα. Ο δειγματικός χώρος περιέχει τις ακολουθίες μήκους 10 που αποτελούνται από Κ και Γ. Π.χ., R(ΓΚΚΓΚΓΓΚΓΓ) = 4. ( ) 10 P(R = 4) = /
5 Ρίχνουμε ένα τέλειο νόμισμα 10 φορές και μας ενδιαφέρει ο αριθμός των κεφαλών που θα έρθουν. Ορίζουμε την τυχαία μεταβλητή R να είναι ο αριθμός των κεφαλών σε κάθε δείγμα. Ο δειγματικός χώρος περιέχει τις ακολουθίες μήκους 10 που αποτελούνται από Κ και Γ. Π.χ., R(ΓΚΚΓΚΓΓΚΓΓ) = 4. ( ) 10 P(R = 4) = / Αναμενόμενη Τιμή Τυχαίας Μεταβλητής Ορισμός Η αναμενόμενη (ή μέση) τιμή μιας τυχαίας μεταβλητής X : R ορίζεται ως Ισχύει E(X ) = δ E(X ) = δ P(δ)X (δ). P(δ)X (δ) = v R P(X = v)v. 10 ( ) 10 P(R 4) = /2 10. i i=4 Αναμενόμενη Τιμή Τυχαίας Μεταβλητής Ορισμός Η αναμενόμενη (ή μέση) τιμή μιας τυχαίας μεταβλητής X : R ορίζεται ως E(X ) = δ P(δ)X (δ). Παράδειγμα: Mean Time to Failure Ενα πρόγραμμα κρασάρει στο τέλος της κάθε ώρας με πιθανότητα p, αν υποθέσουμε πως δεν έχει κρασάρει ακόμη. Εστω C η τυχαία μεταβλητή που δηλώνει τον αριθμό των ωρών που το πρόγραμμα θα τρέξει μέχρι να κρασάρει. Ισχύει E(X ) = δ P(δ)X (δ) = v R P(X = v)v. Ρίχνουμε ένα ζάρι. Ορίζουμε την τυχαία μεταβλητή X να είναι ίση με τον αριθμό που μας δίνει η ρίψη του ζαριού. E(X ) = 7/2.
6 Παράδειγμα: Mean Time to Failure Παράδειγμα: Mean Time to Failure Ενα πρόγραμμα κρασάρει στο τέλος της κάθε ώρας με πιθανότητα p, αν υποθέσουμε πως δεν έχει κρασάρει ακόμη. Εστω C η τυχαία μεταβλητή που δηλώνει τον αριθμό των ωρών που το πρόγραμμα θα τρέξει μέχρι να κρασάρει. P(C = i) = (1 p) i 1 p. Ενα πρόγραμμα κρασάρει στο τέλος της κάθε ώρας με πιθανότητα p, αν υποθέσουμε πως δεν έχει κρασάρει ακόμη. Εστω C η τυχαία μεταβλητή που δηλώνει τον αριθμό των ωρών που το πρόγραμμα θα τρέξει μέχρι να κρασάρει. P(C = i) = (1 p) i 1 p. E(C) = 1 ip(c = i) =... = p (1 (1 p)) 2 = 1/p. i N Παράδειγμα: Mean Time to Failure Άλλα παραδείγματα γεωμετρικής κατανομής Ενα πρόγραμμα κρασάρει στο τέλος της κάθε ώρας με πιθανότητα p, αν υποθέσουμε πως δεν έχει κρασάρει ακόμη. Εστω C η τυχαία μεταβλητή που δηλώνει τον αριθμό των ωρών που το πρόγραμμα θα τρέξει μέχρι να κρασάρει. P(C = i) = (1 p) i 1 p. E(C) = 1 ip(c = i) =... = p (1 (1 p)) 2 = 1/p. i N Η C ακολουθεί τη λεγόμενη γεωμετρική κατανομή. Ρίχνουμε σε ένα στόχο με κλειστά μάτια. Η πιθανότητα να πετύχουμε το στόχο είναι p. Ποιο είναι το αναμενόμενο πλήθος βολών μέχρι να πετύχουμε το στόχο; Ρίχνουμε ένα νόμισμα το οποίο έρχεται κορώνα με πιθανότητα p. Ποιο είναι το αναμενόμενο πλήθος ρίψεων μέχρι να πετύχουμε κορώνα; Οταν ένα ζευγάρι κάνει ένα παιδί βγαίνει κορίτσι με πιθανότητα p. Ποιο είναι το αναμενόμενο πλήθος παιδιών μέχρι να γεννηθεί κορίτσι;
7 Άλλα παραδείγματα γεωμετρικής κατανομής Γραμμικότητα Αναμενόμενης Τιμής Θεώρημα Ρίχνουμε σε ένα στόχο με κλειστά μάτια. Η πιθανότητα να πετύχουμε το στόχο είναι p. Ποιο είναι το αναμενόμενο πλήθος βολών μέχρι να πετύχουμε το στόχο; Για οποιεσδήποτε τυχαίες μεταβλητές X 1, X 2,..., X n E(X 1 + X X n ) = E(X 1 ) + E(X 2 ) E(X n ). Ρίχνουμε ένα νόμισμα το οποίο έρχεται κορώνα με πιθανότητα p. Ποιο είναι το αναμενόμενο πλήθος ρίψεων μέχρι να πετύχουμε κορώνα; Οταν ένα ζευγάρι κάνει ένα παιδί βγαίνει κορίτσι με πιθανότητα p. Ποιο είναι το αναμενόμενο πλήθος παιδιών μέχρι να γεννηθεί κορίτσι; Σε όλες τις παραπάνω περιπτώσεις η απάντηση είναι 1/p. Γραμμικότητα Αναμενόμενης Τιμής Παράδειγμα:Γραμμικότητα Αναμενόμενης Τιμής Θεώρημα Για οποιεσδήποτε τυχαίες μεταβλητές X 1, X 2,..., X n E(X 1 + X X n ) = E(X 1 ) + E(X 2 ) E(X n ). Απόδειξη. Θέτουμε X = X 1 + X X n. E(X ) = P(δ)X (δ) δ = P(δ) (X 1 (δ) X n (δ)) δ = P(δ)X 1 (δ) P(δ)X n (δ) δ δ Θεώρημα Για οποιεσδήποτε τυχαίες μεταβλητές X 1, X 2,..., X n E(X 1 + X X n ) = E(X 1 ) + E(X 2 ) E(X n ). Ρίχνουμε δύο ζάρια. Ορίζουμε την τυχαία μεταβλητή X να είναι ίση με το άθροισμα των αριθμών που μας δίνουν οι ρίψεις των δύο ζαριών. E(X ) = 7. = E(X 1 ) E(X n ).
8 Παράδειγμα: Το πρόβλημα της συλλογής κουπονιών Παράδειγμα: Το πρόβλημα της συλλογής κουπονιών Εστω X i, i 1, ο αριθμός των δοκιμών που θα εκτελέσουμε ώστε ο αριθμός των ειδών που έχουμε συλλέξει να αυξηθεί από i 1 σε i. Μας ενδιαφέρει το άθροισμα X 1 + X X n. Παράδειγμα: Το πρόβλημα της συλλογής κουπονιών Εστω X i, i 1, ο αριθμός των δοκιμών που θα εκτελέσουμε ώστε ο αριθμός των ειδών που έχουμε συλλέξει να αυξηθεί από i 1 σε i. Μας ενδιαφέρει το άθροισμα X 1 + X X n. Παράδειγμα: Το πρόβλημα της συλλογής κουπονιών Εστω X i, i 1, ο αριθμός των δοκιμών που θα εκτελέσουμε ώστε ο αριθμός των ειδών που έχουμε συλλέξει να αυξηθεί από i 1 σε i. Μας ενδιαφέρει το άθροισμα X 1 + X X n. Η κάθε μία από τις X i ακολουθεί τη γεωμετρική κατανομή. Οταν έχουμε δει i 1 είδη, η πιθανότητα σε μία δοκιμή να δούμε ένα καινούργιο είναι (n (i 1))/n. Επομένως E(X i ) = n/(n (i 1)). Η κάθε μία από τις X i ακολουθεί τη γεωμετρική κατανομή. Οταν έχουμε δει i 1 είδη, η πιθανότητα σε μία δοκιμή να δούμε ένα καινούργιο είναι (n (i 1))/n. Επομένως E(X i ) = n/(n (i 1)). E(X 1 +X X n ) = n/n+n/(n 1)+...+n/1 = nh n = Θ(n ln n).
9 Το πρόβλημα της συλλογής κουπονιών (συνέχεια) Ισοδύναμο πρόβλημα: έχουμε n διακεκριμένα δοχεία και ρίχνουμε μία μπάλα σε ένα δοχείο που επιλέγουμε τυχαία. Πόσες ρίψεις πρέπει να γίνουν μέχρι κάθε δοχείο να περιέχει τουλάχιστον μία μπάλα; Το αναμενόμενο πλήθος ρίψεων είναι πάλι nh n = Θ(n ln n).
Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε να προβλέψουμε ή να παρατηρήσουμε την
Μαθηματικά Πληροφορικής 8ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Εισαγωγή Η Θεωρία Πιθανοτήτων παίζει μεγάλο ρόλο στη μοντελοποίηση και μελέτη συστημάτων των οποίων δεν μπορούμε
Τυχαίοι γράφοι Η διάμετρος του G(n, 2 ln n/n) Ioannis Giotis
Τυχαίοι γράφοι Η διάμετρος του G(n, 2 ln n/n) Ioannis Giotis Θεώρημα για σφαίρες Θα δείξουμε ότι το γράφημα G(n, 2 ln n n 1 ) έχει μικρή διάμετρο Θα ξεκινήσουμε με ένα θεώρημα για το μέγεθος μιας σφαίρας
P (A B) = P (AB) P (B) P (A B) = P (A) P (A B) = P (A) P (B)
Πιθανότητες και Αρχές Στατιστικής (4η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 39 Περιεχόμενα
Θεωρία Πιθανοτήτων και Στατιστική
Θεωρία Πιθανοτήτων και Στατιστική 2 ο Εξάμηνο Ασκήσεις Πράξης 1 Θεωρία Συνόλων - Δειγματικός Χώρος Άσκηση 1: Να βρεθούν και να γραφούν με συμβολισμούς της Θεωρίας Συνόλων οι δειγματοχώροι των τυχαίων πειραμάτων:
Γιατί πιθανότητες; Γιατί πιθανότητες; Θεωρία πιθανοτήτων. Θεωρία Πιθανοτήτων. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017.
HY118-Διακριτά Μαθηματικά Τρίτη, 02/05/2017 Θεωρία πιθανοτήτων Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 04-May-17 1 1 04-May-17 2 2 Γιατί πιθανότητες; Γιατί πιθανότητες; Στον προτασιακό και κατηγορηματικό
Τυχαία μεταβλητή (τ.μ.)
Τυχαία μεταβλητή (τ.μ.) Τυχαία μεταβλητή (τ.μ.) είναι μια συνάρτηση X ( ) με πεδίο ορισμού το δειγματικό χώρο Ω του πειράματος και πεδίο τιμών ένα υποσύνολο πραγματικών αριθμών που συμβολίζουμε συνήθως
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 7: Ανεξάρτητα ενδεχόμενα Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q
Πιθανότητες και Αρχές Στατιστικής (7η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 39 Περιεχόμενα
pdf: X = 0, 1 - p = q E(X) = 1 p + 0 (1 p) = p V ar(x) = E[(X µ) 2 ] = (1 p) 2 p + (0 p) 2 (1 p) = p (1 p) [1 p + p] = p (1 p) = p q
7ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 7ο Μάθημα Πιθανότητες
Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ
Μαθηματικά Πληροφορικής 4ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης.
ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π
ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Π ι θ α ν ό τ η τ ε ς Ι Πειραιάς 2008 Πιθανότητες Ι-Μ. Κούτρας 2 Κατανομές χρόνου αναμονής (... μέχρι να συμβεί ηπρώτη επιτυχία) 3 Ας θεωρήσουμε μία ακολουθία
ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι Φεβρουάριος 2018 Σειρά Α Θέματα 3 ως 7 και αναλυτικές (ή σύντομες) απαντήσεις
ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Ι Φεβρουάριος 8 Σειρά Α Θέματα ως 7 και αναλυτικές (ή σύντομες) απαντήσεις ΘΕΜΑ : Το δοχείο Δ περιέχει 6 άσπρες και 4 μαύρες μπάλες ενώ το δοχείο Δ περιέχει 5 άσπρες και μαύρες μπάλες.
Στοχαστικές Στρατηγικές
Στοχαστικές Στρατηγικές 3 η ενότητα: Εισαγωγή στα στοχαστικά προβλήματα διαδρομής Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 2018-2019 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο
ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ
15/1/009 ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 10 o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος:
ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ
ΗΥ-217-ΠΙΘΑΝΟΤΗΤΕΣ-ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2016 ΔΙΔΑΣΚΩΝ: ΠΑΝΑΓΙΩΤΗΣ ΤΣΑΚΑΛΙΔΗΣ ΦΡΟΝΤΙΣΤΗΡΙΑ 6-7: ΔΙΑΚΡΙΤΕΣ ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ Τυχαία Μεταβλητή (Τ.Μ.): Συνάρτηση πραγματικών τιμών
ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ. Έννοια Ορισμοί Τρόπος υπολογισμού Kατανομή πιθανότητας Ασκήσεις
ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Έννοια Ορισμοί Τρόπος υπολογισμού Kατανομή πιθανότητας Ασκήσεις Έννοια τυχαίας μεταβλητής Κατά τον υπολογισμό πιθανοτήτων, συχνά συμβαίνει τα ενδεχόμενα που μας ενδιαφέρουν να μετρούν
Περιεχόμενα 5ης Διάλεξης 1 Ανισότητα Markov 2 Διασπορά 3 Συνδιασπορά 4 Ανισότητα Chebyshev 5 Παραδείγματα Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 5
5ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2016-2017 Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής 5ο Μάθημα Πιθανότητες
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
Πιθανότητες και Αρχές Στατιστικής (5η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος
Πιθανότητες και Αρχές Στατιστικής (5η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 30 Περιεχόμενα
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 06-07 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
Μέρος ΙΙ. Τυχαίες Μεταβλητές
Μέρος ΙΙ. Τυχαίες Μεταβλητές Ορισμοί Συναρτήσεις κατανομής πιθανότητας και πυκνότητας πιθανότητας Διακριτές τυχαίες μεταβλητές Ειδικές κατανομές διακριτών τυχαίων μεταβλητών Συνεχείς τυχαίες μεταβλητές
ΜΑΘΗΜΑΤΙΚΑ. 1 ο ΔΙΑΓΩΝΙΣΜΑ. ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f x. Ι. Το πεδίο ορισμού της f είναι:., 1 υ -1, B. 1, Γ. -1,., 1.
Γ ΛΥΚΕΙΟΥ-ΓΕΝΙΚΗ ΠΑΙΔΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑ ο Δίνεται η συνάρτηση f Ι. Το πεδίο ορισμού της f είναι:., υ -, B., Γ. -,.,., ΙΙ. Το όριο f lm 0 είναι ίσο με: Α. 0 Β. Γ. Δ. Ε. Τίποτε από τα προηγούμενα
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ. Κεφάλαιο 7. Τυχαίες Μεταβλητές και Διακριτές Κατανομές Πιθανοτήτων
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α A Να αποδείξετε ότι η συνάρτηση f () είναι παραγωγίσιμη στο R με f () Α Αν είναι οι τιμές μιας μεταβλητής Χ ενός δείγματος παρατηρήσεων μεγέθους ν ( ) να ορίσετε την
d(v) = 3 S. q(g \ S) S
Διάλεξη 9: 9.11.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Παναγιωτίδης Αλέξανδρος Θεώρημα 9.1 Εστω γράφημα G = (V, E), υπάρχει τέλειο ταίριασμα στο G αν και μόνο αν για κάθε S υποσύνολο
ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ
ΤΕΙ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ Η/Υ ΣΤΑΤΙΣΤΙΚΗ ΠΙΘΑΝΟΤΗΤΕΣ 5o ΜΑΘΗΜΑ Ι ΑΣΚΩΝ ΒΑΣΙΛΕΙΑ ΗΣ ΓΕΩΡΓΙΟΣ Email: gvasil@math.auth.gr Ιστοσελίδα Μαθήματος: users.auth.gr/gvasil
Διάλεξη 5: Τυχαία Μεταβλητή Κατανομές Πιθανότητας
Διάλεξη 5: ΑΣΚΗΣΕΙΣ 1. Έστω η ποιότητα ενός προϊόντος που παίρνουμε από ένα σύνολο προϊόντων με απλή τυχαία δειγματοληψία. Ανάλογα με το αν το προϊόν είναι ελαττωματικό, καλο ή άριστο, η παίρνει τις τιμές,
ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος. Ενδεχόμενα {,,..., }.
ΠΙΘΑΝΟΤΗΤΕΣ Δειγματικός Χώρος Το σύνολο των δυνατών αποτελεσμάτων λέγεται δειγματικός χώρος (sample space) και συμβολίζεται συνήθως με το γράμμα Αν δηλαδή ω,,, ω2 ωκ είναι τα δυνατά αποτελέσματα ενός πειράματος
Εισαγωγή Ορισμός Frequency moments
The space complexity of approximating the frequency moments Κωστόπουλος Δημήτριος Μπλα Advanced Data Structures June 2007 Εισαγωγή Ορισμός Frequency moments Έστω ακολουθία Α = {a 1,a 2,...,a m ) με κάθε
ΘΕΜΑ 3 Το ύψος κύματος (σε μέτρα) σε μία συγκεκριμένη θαλάσσια περιοχή είναι τυχαία μεταβλητή X με συνάρτηση πυκνότητας πιθανότητας
ΣΧΟΛΗ ΝΑΥΤΙΚΩΝ ΔΟΚΙΜΩΝ TOMEAΣ ΜΑΘΗΜΑΤΙΚΩΝ ΕΞΕΤΑΣΕΙΣ ΕΠΙΛΟΓΗΣ ΓΙΑ ΕΚΠΑΙΔΕΥΣΗ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΙΘΑΝΟΤΗΤΕΣ - ΣΤΑΤΙΣΤΙΚΗ 26 Σεπτεμβρίου 2014 Ομάδα Θεμάτων Α ΘΕΜΑ 1 Ρίχνουμε ένα αμερόληπτο νόμισμα (δύο δυνατά
Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών
Στατιστική Ι Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ 12) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: 23 Απριλίου 2012
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΕΡΓΑΣΙΑ 6 η Ημερομηνία Αποστολής στο Φοιτητή: Απριλίου 0 Ημερομηνία παράδοσης της Εργασίας: 8 Μαΐου 0 Πριν από τη
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
u v 4 w G 2 G 1 u v w x y z 4
Διάλεξη :.0.06 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος. Εισαγωγικοί ορισμοί Ορισμός. Γράφημα G καλείται ένα ζεύγος G = (V, E) όπου V είναι το σύνολο των κορυφών (ή κόμβων) και E
Τμήμα Λογιστικής και Χρηματοοικονομικής. Θεωρία Πιθανοτήτων. Δρ. Αγγελίδης Π. Βασίλειος
Τμήμα Λογιστικής και Χρηματοοικονομικής 1 Θεωρία Πιθανοτήτων Δρ. Αγγελίδης Π. Βασίλειος 2 Περιεχόμενα Έννοια πιθανότητας Ορισμοί πιθανότητας Τρόπος υπολογισμού Πράξεις πιθανοτήτων Χρησιμότητα τους 3 Πείραμα
3. Κατανομές πιθανότητας
3. Κατανομές πιθανότητας Τυχαία Μεταβλητή Τυχαία μεταβλητή (τ.μ.) (X) είναι μια συνάρτηση που σε κάθε σημείο (ω) ενός δειγματικού χώρου (Ω) αντιστοιχεί έναν πραγματικό αριθμό. Ω ω X (ω ) R Διακριτή τ.μ.
Κεφάλαιο 3 Κατανομές. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς
Κεφάλαιο Κατανομές Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς - - Χρησιμοποιώντας την Στατιστική Έστω οι διαφορετικές διατάξεις ενός αγοριού (B) και ενός κοριτσιού (G) σε τέσσερις
Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο
Α Ν Ω Τ Α Τ Ο Σ Υ Μ Β Ο Υ Λ Ι Ο Ε Π Ι Λ Ο Γ Η Σ Π Ρ Ο Σ Ω Π Ι Κ Ο Υ Ε Ρ Ω Τ Η Μ Α Τ Ο Λ Ο Γ Ι Ο «Περιγραφική & Επαγωγική Στατιστική» 1. Πάνω από το 3 ο τεταρτημόριο ενός δείγματος βρίσκεται το: α) 15%
Στατιστική Ι-Πιθανότητες Ι
Στατιστική Ι-Πιθανότητες Ι Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 15 Οκτωβρίου 2015 Περιγραφή 1 Ενωση και Τομή Ενδεχομένων Περιγραφή 1 Ενωση και
Α) Να γράψετε με τη βοήθεια των πράξεων των συνόλων το ενδεχόμενο που παριστάνει το σκιασμένο εμβαδόν σε καθένα από τα παρακάτω διαγράμματα Venn.
Άσκηση 1 Α) Να γράψετε με τη βοήθεια των πράξεων των συνόλων το ενδεχόμενο που παριστάνει το σκιασμένο εμβαδόν σε καθένα από τα παρακάτω διαγράμματα Venn. B) Αν ( ), ( ), ( ), να εκφράσετε τις πιθανότητες
Πίνακες Διασποράς. Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h. Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση
Πίνακες Διασποράς Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση κλειδί k T 0 1 2 3 4 5 6 7 U : χώρος πιθανών κλειδιών Τ : πίνακας μεγέθους
Τυχαία Μεταβλητή (Random variable-variable aléatoire)
Τυχαία Μεταβλητή (Random varable-varable aléatore) Σε πολλούς τύπους πειραμάτων τα αποτελέσματα είναι από τη φύση τους πραγματικοί αριθμοί. Παραδείγματα τέτοιων πειραμάτων αποτελούν οι μετρήσεις των υψών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 08-09 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές
ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ στη Ναυτιλία και τις Μεταφορές ΠΜΣ στη «Ναυτιλία» Τμήμα Β art time Χαράλαμπος Ευαγγελάρας hevangel@unipi.gr Η έννοια της Πιθανότητας Ο όρος πιθανότητα είναι συνδέεται άμεσα με τη μελέτη
Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ
Μαθηματικά Πληροφορικής 2ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης.
ε. Το μέλος δεν έχει επιλέξει κανένα από τα δύο προγράμματα. Το μέλος έχει επιλέξει αυστηρά ένα μόνο από τα δύο προγράμματα.
1. Τα μέλη ενός Γυμναστηρίου έχουν τη δυνατότητα να επιλέξουν προγράμματα αεροβικής ή γυμναστικής με βάρη. Θεωρούμε τα ενδεχόμενα: Α = Ένα μέλος έχει επιλέξει πρόγραμμα αεροβικής. Β = Ένα μέλος έχει επιλέξει
Μορφές αποδείξεων. Μαθηματικά Πληροφορικής 2ο Μάθημα. Μορφές αποδείξεων (συνέχεια) Εξαντλητική μέθοδος
Μορφές αποδείξεων Μαθηματικά Πληροφορικής ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης.
Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ
Π Ι Θ Α Ν Ο Τ Η Τ Ε Σ Α ΛΥΚΕΙΟΥ 1. Ο Γυμναστής ενός λυκείου προκειμένου να στελεχώσει την ομάδα μπάσκετ του λυκείου ψάχνει στην τύχη μεταξύ των μαθητών να βρει τρεις κοντούς (Κ) και τρεις ψηλούς (Ψ). Να
3.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ
ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 89. Ύλη: Πιθανότητες Το σύνολο R-Εξισώσεις Σ Λ 2. Για τα ενδεχόμενα Α και Β ισχύει η ισότητα: A ( ) ( ') ( ' )
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 89 Ον/μο:.. Α Λυκείου Ύλη: Πιθανότητες Το σύνολο R-Εξισώσεις 6-0- Θέμα ο : Α.. Να δώσετε τον ορισμό της εξίσωσης ου βαθμού (μον.) Α.. Αν, ρίζες της εξίσωσης 0, να αποδείξετε ότι
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 6: Πιθανότητες Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
3 ΠΙΘΑΝΟΤΗΤΕΣ. ο δειγματικός χώρος του πειράματος θα είναι το σύνολο: Ω = ω, ω,..., ω }.
3 ΠΙΘΑΝΟΤΗΤΕΣ 3.1 ΔΕΙΓΜΑΤΙΚΟΣ ΧΡΟΣ - ΕΝΔΕΧΟΜΕΝΑ Πείραμα Τύχης Ένα πείραμα του οποίου δεν μπορούμε εκ των προτέρων να προβλέψουμε το αποτέλεσμα, μολονότι επαναλαμβάνεται φαινομενικά τουλάχιστον κάτω από
ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ
ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΕΝΝΟΙΑ ΠΙΘΑΝΟΤΗΤΑΣ Μαθηματική περιγραφή συστημάτων με αβεβαιότητα Παραδείγματα από την οργάνωση παραγωγής Διάρκεια παραγωγής προϊόντων
ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ- 1 o ΔΙΑΓΩΝΙΣΜΑ
ΘΕΜΑ 1 ο Δίνεται η συνάρτηση f 1 ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ- 1 o ΔΙΑΓΩΝΙΣΜΑ Ι. Το πεδίο ορισμού της f είναι:, 1 υ -1, B. 1, Γ. -1,., 1. 1, f 1 ΙΙ. Το όριο lm είναι ίσο με: 0 Α. 0 Β. 1 Γ. -1 Δ. 1/ Ε. Τίποτε
X = = 81 9 = 9
Πιθανότητες και Αρχές Στατιστικής (11η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2018-2019 Σωτήρης Νικολετσέας, καθηγητής 1 / 35 Σύνοψη
Τυχαιοκρατικοί Αλγόριθμοι
Πιθανότητες και Αλγόριθμοι Ανάλυση μέσης περίπτωσης Μελέτα τη συμπεριφορά ενός αλγορίθμου σε μια «μέση» είσοδο (ως προς κάποια κατανομή) Τυχαιοκρατικός αλγόριθμος Λαμβάνει τυχαίες αποφάσεις καθώς επεξεργάζεται
Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων
Περίληψη ϐασικών εννοιών στην ϑεωρία πιθανοτήτων 6 Απριλίου 2009 1 Συνδυαστική Η ϐασική αρχή µέτρησης µας λέει ότι αν σε ένα πείραµα που γίνεται σε δύο ϕάσεις και στο οποίο υπάρχουν n δυνατά αποτελέσµατα
ΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ
ΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ Οµάδα η. Αν Ω={ω,ω,,ω 6 } είναι ο δ.χ ενός πειράµατος τύχης να βρείτε τις πιθανότητες Ρ(ω ),,Ρ(ω 6 ) αν είναι γνωστό ότι αυτές αποτελούν διαδοχικούς όρους αριθµητικής προόδου µε
Δειγματοληψία. Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος n ij των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ ij συμβολίζουμε την μέση τιμή:
Δειγματοληψία Πρέπει να γνωρίζουμε πως πήραμε το δείγμα Το πλήθος των παρατηρήσεων σε κάθε κελί είναι τ.μ. με μ συμβολίζουμε την μέση τιμή: Επομένως στην δειγματοληψία πινάκων συνάφειας αναφερόμαστε στον
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» - 6/2/2014 Διάρκεια Εξέτασης: 2 ώρες και 50 λεπτά Ομάδα Α 1. (2.5 μονάδες) Ο κ. Ζούπας παρέλαβε μία μυστηριώδη τσάντα από το ταχυδρομείο. Όταν
ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1.Έστω ο δειγματικός χώρος Ω = { 1,,, K,10} με ισοπίθανα απλά ενδεχόμενα. Να 4 βρείτε την πιθανότητα ώστε η συνάρτηση f ( x ) = x 4x + λ να
ΕΠΑΝΑΛΗΨΗ ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ 11/01/2018
ΕΠΑΝΑΛΗΨΗ ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ 11/01/2018 Διδάσκουσα: Β. Πιπερίγκου Σε μια ενδονοσοκομειακή έρευνα, καταγράφηκε ο χρόνος ύπνου, μετά τη χορήγηση ενός συγκεκριμένου αναισθητικού, σε 33 ασθενείς και πήραμε
Ανάκτηση Πληροφορίας
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #06 Πιθανοτικό Μοντέλο 1 Άδεια χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη
ΕΚΔΟΣΕΙΣ ΚΕΛΑΦΑ 59 Θέμα 1 ο (ΜΑΪΟΣ 004, ΜΑΪΟΣ 008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Έχουμε f (x+h) - f (x) = c - c = 0 και για h 0 είναι f (x + h) - f (x) 0 m
Σ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium Iii
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium Iii Η Κανονική Κατανομή Λέμε ότι μία τυχαία μεταβλητή X, ακολουθεί την Κανονική Κατανομή με παραμέτρους και και συμβολίζουμε X N, αν έχει συνάρτηση πυκνότητας
1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ
ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με
ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0
ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα
200, δηλαδή : 1 p Y (y) = 0, αλλού
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Πιθανότητες - Χειµερινό Εξάµηνο 05 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 6 ιακριτές Τυχαίες Μεταβλητές Επιµέλεια : Σοφία Σαββάκη Ασκηση. Η εταιρεία
1.1 Πείραμα Τύχης - δειγματικός χώρος
1. ΠΙΘΑΝΟΤΗΤΕΣ 1.1 Πείραμα Τύχης - δειγματικός χώρος Κάθε πείραμα στο οποίο η γνώση των συνθηκών κάτω από τις οποίες εκτελείται καθορίζει πλήρως το αποτέλεσμα λέγεται αιτιοκρατικό πείραμα. Τέτοια πειράματα
ρ. Ευστρατία Μούρτου
ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΩΝ ΣΧΟΛΗ ΕΠΑΓΓΕΛΜΑΤΩΝ ΥΓΕΙΑΣ ΚΑΙ ΠΡΟΝΟΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΕΞΑΜΗΝΟ : Ε ΑΚΑ ΗΜΑΪΚΟ ΕΤΟΣ : - ΜΑΘΗΜΑ «ΒΙΟΣΤΑΤΙΣΤΙΚΗ» ΚΕΦ. ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ρ. Ευστρατία Μούρτου
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης;
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α Ερώτηση θεωρίας α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης; =. β) Για δύο συμπληρωματικά ενδεχόμενα Α και Α να αποδείξετε
X i = Y = X 1 + X X N.
Κεφάλαιο 6 Διακριτές τυχαίες μεταβλητές Σε σύνθετα προβλήματα των πιθανοτήτων, όπως π.χ. σε προβλήματα ανάλυσης πολύπλοκων δικτύων ή στη στατιστική ανάλυση μεγάλων δεδομένων, η λεπτομερής, στοιχείο-προς-στοιχείο
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα
Τμήμα Τεχνολόγων Γεωπόνων-Κατεύθυνση Αγροτικής Οικονομίας Εφαρμοσμένη Στατιστική Μάθημα 4 ο :Τυχαίες μεταβλητές Διδάσκουσα: Κοντογιάννη Αριστούλα Ορισμός τυχαίας μεταβλητής Τυχαία μεταβλητή λέγεται η συνάρτηση
Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί
Αριθμήσιμα σύνολα Μαθηματικά Πληροφορικής 5ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Ορισμός Πόσα στοιχεία έχει το σύνολο {a, b, r, q, x}; Οσα και το σύνολο {,,, 4, 5} που είναι
Περιεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2017 ιδάσκων : Π. Τσακαλίδης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-7: Πιθανότητες - Χειµερινό Εξάµηνο 07 ιδάσκων : Π. Τσακαλίδης Φροντιστήριο 4 ιακριτές Τυχαίες Μεταβλητές ( Ι ) Επιµέλεια : Στιβακτάκης Ραδάµανθυς Ασκηση.
E(X(t)) = 1 k + k sin(2π) + k cos(2π) = 1 k + k 0 + k 1 = 1
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ Τμήμα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Τομέας Τηλεπικοινωνιών ΤΗΛ 2: ΠΙΘΑΝΟΤΗΤΕΣ ΚΑΙ ΤΥΧΑΙΑ ΣΗΜΑΤΑ 4ο Εξάμηνο 2009-200 4η ΕΡΓΑΣΙΑ ΑΣΚΗΣΗ Εστω τυχαία διαδικασία X(t) =
Περιεχόμενα 2ης Διάλεξης 1 Σύνοψη προηγούμενου μαθήματος 2 Αξιωματικός ορισμός και απαρίθμηση 3 Διατάξεις - Συνδυασμοί 4 Παραδείγματα υπολογισμού πιθα
Πιθανότητες και Αρχές Στατιστικής (2η Διάλεξη) Σωτήρης Νικολετσέας, καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαϊκό Ετος 2017-2018 Σωτήρης Νικολετσέας, καθηγητής 1 / 54 Περιεχόμενα
ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Ανασκόπηση βασικών εννοιών Στατιστικής και Πιθανοτήτων Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ E-mail: angeliki.papana@gmail.com, agpapana@auth.gr Webpage: http://users.auth.gr/agpapana
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 7: Θεωρία Πιθανοτήτων (Πείραμα Τύχης) Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής
Μάθημα 3 ο a. Τυχαία Μεταβλητή-Έννοιες και Ορισμοί
Μάθημα 3 ο a Τυχαία Μεταβλητή-Έννοιες και Ορισμοί Στο μάθημα αυτό θα ορίσουμε την έννοια της τυχαίας μεταβλητής και θα αναφερθούμε σε σχετικές βασικές έννοιες και συμβολισμούς. Ross, σσ 135-151 Μπερτσεκάς-Τσιτσικλής,
Δειγματικές Κατανομές
Δειγματικές Κατανομές Στατιστική συνάρτηση ή στατιστική Δειγματική κατανομή - Εκτιμητής Τα άγνωστα στοιχεία του πληθυσμού λέγονται παράμετροι. Τα συμπεράσματα για μια παράμετρο εξάγονται με τη βοήθεια
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών
ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ I Παντελής Δημήτριος Τμήμα Μηχανολόγων Μηχανικών ΤΥΧΑΙΕΣ ΜΕΤΑΒΛΗΤΕΣ Σε κάθε αποτέλεσμα του πειράματος αντιστοιχεί μία αριθμητική τιμή Μαθηματικός ορισμός: Τυχαία μεταβλητή X είναι
1 ο Κεφάλαιο : Πιθανότητες. 1. Δειγματικοί χώροι 2. Διαγράμματα Venn. Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. 3. Κλασικός ορισμός. 4.
ο Κεφάλαιο : Πιθανότητες. Δειγματικοί χώροι. Διαγράμματα Venn Φυσική γλώσσα και ΚΑΤΗΓΟΡΙΕΣ ΑΣΚΗΣΕΩΝ. Κλασικός ορισμός πιθανότητας 4. Κανόνες λογισμού πιθανοτήτων η Κατηγορία : Δειγματικοί χώροι ) Ρίχνουμε
Πινάκες συνάφειας. Βαρύτητα συμπτωμάτων. Φύλο Χαμηλή Υψηλή. Άνδρες. Γυναίκες
Πινάκες συνάφειας εξερεύνηση σχέσεων μεταξύ τυχαίων μεταβλητών. Είναι λογικό λοιπόν, στην ανάλυση των κατηγορικών δεδομένων να μας ενδιαφέρει η σχέση μεταξύ δύο ή περισσότερων κατηγορικών μεταβλητών. Έστω
ΒΑΣΙΚΕΣ ΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ (Συνέχεια)
(Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 23 Νοεµβρίου 2009 Γεωµετρική κατανοµή Ορισµός Εστω X ο αριθµός των δοκιµών µέχρι την πρώτη επιτυχία σε µια ακολουθία ανεξαρτήτων δοκιµών Bernoulli µε πιθανότητα επιτυχίας
Κεφάλαιο 2 Πιθανότητες. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς
Κεφάλαιο 2 Πιθανότητες Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 2-2 2 Πιθανότητες Χρησιμοποιώντας την Στατιστική Βασικοί ορισμοί: Ενδεχόμενα, Δειγματικός χώρος και Πιθανότητες
ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ
ΚΕΦΑΛΑΙΟ 11 ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ - ΠΡΟΣΟΜΟΙΩΣΗ ΤΥΧΑΙΟΙ ΑΡΙΘΜΟΙ Θα εισαγάγουμε την έννοια του τυχαίου αριθμού με ένα παράδειγμα. Παράδειγμα: Θεωρούμε μια τυχαία μεταβλητή με συνάρτηση πιθανότητας η οποία σε
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-217: Πιθανότητες-Χειµερινό Εξάµηνο ιδάσκων : Π. Τσακαλίδης
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-27: Πιθανότητες-Χειµερινό Εξάµηνο 205- ιδάσκων : Π. Τσακαλίδης Λύσεις Τέταρτης Σειράς Ασκήσεων Ασκηση. (αʹ) Σύµφωνα µε το αξίωµα της κανονικοποίησης,
ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ
ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 0 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑ Α Α. Αν η συνάρτηση f είναι
ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια)
ΠΙΘΑΝΟΤΗΤΑ ΚΑΙ ΒΑΣΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΗΣ (Συνέχεια) Χαράλαµπος Α. Χαραλαµπίδης 26 Οκτωβρίου 2009 Η διερεύνηση, σε γενικές γραµµές, της δεσµευµένης πιθανότητας και η σύγκρισή της µε την απόλυτη πιθανότητα αποκαλύπτει
2. Η πιθανότητα της αριθμήσιμης ένωσης ξένων μεταξύ τους ενδεχομένων είναι το άθροισμα των πιθανοτήτων των ενδεχομένων.
Ένα μέτρο πιθανότητας πάνω στο δειγματικός χώρο Ω, είναι μία συνάρτηση P ( ) που αντιστοιχεί σε υποσύνολα του Ω, έναν αριθμό στο [ 0, ], με τις εξής ιδιότητες: P ( Ω ) 2 Η πιθανότητα της αριθμήσιμης ένωσης
EukleÐdeiec emfuteôseic: ˆnw frˆgmata
EukleÐdeiec emfuteôseic: ˆnw frˆgmata Εστω f : X Y μια εμφύτευση του μετρικού χώρου (X, ρ) στο χώρο με νόρμα (Y, ). Η παραμόρφωση της f ορίζεται ως εξής: f(x) f(y) ρ(x, y) dist(f) = sup sup x y ρ(x, y)
ΠΙΘΑΝΟΤΗΤΕΣ, ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΘΕΜΑΤΑ ΠΙΘΑΝΟΤΗΤΩΝ ΓΕΩΛΟΓΙΚΟΥ
ΠΙΘΑΝΟΤΗΤΕΣ, ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΣΤΟΙΧΕΙΑ ΑΡΙΘΜΗΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΙΑ ΣΕΤ ΑΣΚΗΣΕΩΝ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ Στο Σετ αυτό περιλαμβάνονται θέματα Πιθανοτήτων που έχουν δοθεί σε εξετάσεις παρελθόντων ετών στα Τμήματα Γεωλογικό
P((1,1)), P((1,2)), P((2,1)), P((2,2))
ΘΕΜΑ Α Α.. ΘΕΩΡΙΑ ΣΧΟΛΙΚΟ ΠΑΡΑΓΡΑΦΟΣ. Α.. ΘΕΩΡΙΑ ΣΧΟΛΙΚΟ ΠΑΡΑΓΡΑΦΟΣ. Α.3. ΘΕΩΡΙΑ ΣΧΟΛΙΚΟ ΠΑΡΑΓΡΑΦΟΣ.3 Α.4. )Σ )Λ 3)Σ 4)Λ 5)Λ ΘΕΜΑ Β Β.. Ω={(,), (,), (,3), (,4), (,5), (,), (,), (,3), (,4), (,5), (3,),
Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015
Φροντιστήριο #8 Ασκήσεις σε Πιθανότητες 15/05/2015 Άσκηση Φ8.1 Τρεις λαμπτήρες επιλέγονται τυχαία από ένα σύνολο 15 λαμπτήρων εκ των οποίων οι 5 είναι ελαττωματικοί. (α) Βρέστε την πιθανότητα κανείς από
P(200 X 232) = =
ΕΝΔΕΙΚΤΙΚΑ ΘΕΜΑΤΑ ΠΙΘΑΝΟΤΗΤΕΣ. Το μέγεθος ενός αναλογικού σήματος, που λαμβάνεται από έναν ανιχνευτή και μετράται σε microvolts, είναι τυχαία μεταβλητή που ακολουθεί την Κανονική κατανομή Ν(00, 6) σε συγκεκριμένη
ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΣΤΑΤΙΣΤΙΚΗΣ
ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΣΤΑΤΙΣΤΙΚΗΣ Στα πλαίσια του προπτυχιακού μαθήματος Χρονικές σειρές Τμήμα μαθηματικών ΑΠΘ Διδάσκουσα: Αγγελική Παπάνα 1 Μονοδιάστατες τυχαίες μεταβλητές Τυχαία μεταβλητή είναι