Defects in Hard-Sphere Colloidal Crystals

Σχετικά έγγραφα
Gradient Descent for Optimization Problems With Sparse Solutions

A Classical Perspective on Non-Diffractive Disorder

Diamond platforms for nanoscale photonics and metrology

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

Lifting Entry (continued)

encouraged to use the Version of Record that, when published, will replace this version. The most /BCJ BIOCHEMICAL JOURNAL

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Robust Network Interdiction with Invisible Interdiction Assets

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

On the Galois Group of Linear Difference-Differential Equations

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t



This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

Multi-GPU numerical simulation of electromagnetic waves

Προβολές και Μετασχηματισμοί Παρατήρησης

Ψηφιακή ανάπτυξη. Course Unit #1 : Κατανοώντας τις βασικές σύγχρονες ψηφιακές αρχές Thematic Unit #1 : Τεχνολογίες Web και CMS

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Klausur Strömungslehre

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Spherical Coordinates

Solution to Review Problems for Midterm III

Matrices and Determinants

encouraged to use the Version of Record that, when published, will replace this version. The most /BCJ

Supplementary Materials: A Preliminary Link between Hydroxylated Metabolites of Polychlorinated Biphenyls and Free Thyroxin in Humans

Rectangular Polar Parametric

Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers

Διαφορικός λογισµός. y(x + Δx) y(x) dy dx = lim Δy


14.5mm 14.5mm

ITU-R P ITU-R P (ITU-R 204/3 ( )

Selective mono reduction of bisphosphine


Liner Shipping Hub Network Design in a Competitive Environment

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

Αστροφυσική. Οµάδα 2. v f = 0

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Λύση Για να είναι αντιστρέψιμος θα πρέπει η ορίζουσα του πίνακα να είναι διάφορη του μηδενός =

ITU-R P (2012/02) &' (

MathCity.org Merging man and maths

JMAK の式の一般化と粒子サイズ分布の計算 by T.Koyama

ΟΡΟΙ ΚΑΙ ΠΡΟΥΠΟΘΕΣΕΙΣ ΣΧΕΔΙΟΥ

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Προσωπική Aνάπτυξη. Ενότητα 2: Διαπραγμάτευση. Juan Carlos Martínez Director of Projects Development Department

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

m 1, m 2 F 12, F 21 F12 = F 21

Alterazioni del sistema cardiovascolare nel volo spaziale

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Κλασσική Θεωρία Ελέγχου


A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3

Microscopie photothermique et endommagement laser

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Differentiation exercise show differential equation

This is a repository copy of Persistent poverty and children's cognitive development: Evidence from the UK Millennium Cohort Study.

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat

ιανύσµατα A z A y A x 1.1 Αλγεβρικές πράξεις µεταξύ διανυσµάτων 1.2 Εσωτερικό γινόµενο δύο διανυσµάτων ca = ca x ˆx + ca y ŷ + ca z ẑ

Προσωπική Aνάπτυξη. Ενότητα 4: Συνεργασία. Juan Carlos Martínez Director of Projects Development Department

VBA ΣΤΟ WORD. 1. Συχνά, όταν ήθελα να δώσω ένα φυλλάδιο εργασίας με ασκήσεις στους μαθητές έκανα το εξής: Version ΗΜΙΤΕΛΗΣ!!!!

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Parts Manual. Trio Mobile Surgery Platform. Model 1033

þÿÿ ÁÌ» Â Ä Å ¹µÅ Å½Ä ÃÄ

ITU-R P (2012/02)

ΦΥΕ 14 6η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι ϐαθµολογικά ισοδύναµες)

derivation of the Laplacian from rectangular to spherical coordinates

Decision-Making in the Dark: How Pre-Trial Errors Change the Narrative in Criminal Jury Trials

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Εγκατάσταση λογισμικού και αναβάθμιση συσκευής Device software installation and software upgrade

the total number of electrons passing through the lamp.

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ η ΕΡΓΑΣΙΑ. Προθεσµία παράδοσης 16/11/10

Note: Please use the actual date you accessed this material in your citation.

Second Order RLC Filters

Electronic Supplementary Information

Working Paper Series 06/2007. Regulating financial conglomerates. Freixas, X., Loranth, G. and Morrison, A.D.

Reforming the Regulation of Political Advocacy by Charities: From Charity Under Siege to Charity Under Rescue?

m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx


CYLINDRICAL & SPHERICAL COORDINATES

ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

encouraged to use the Version of Record that, when published, will replace this version. The most /BCJ

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

ITU-R P (2009/10)

ΠΟΛΥ ΜΕΓΑΛΗ : ΜΕΓΑΛΗ : ΜΕΣΑΙΑ: ΜΙΚΡΗ

Η χρήση των δορυφορικών εικόνων IKONOS για την παραγωγή ορθοφωτογραφιών

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Παραμύθια τησ Χαλιμϊσ, τομ. A Σελύδα 1

SPECIAL FUNCTIONS and POLYNOMIALS

CRETAPLANT A Pilot Network of Plant Micro-Reserves in Western Crete Πιλοτικό Δίκτυο Μικρο-Αποθεμάτων Φυτών στη Δυτική Κρήτη (LIFE04NAT_GR_000104)

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee


Ορμή - Κρούσεις. ΦΥΣ Διαλ.23 1

Free Energy and Phase equilibria

Exercises to Statistics of Material Fatigue No. 5

Scrum framework: Ρόλοι

Transcript:

Defects in Hard-Sphere Colloidal Crystals The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Accessed Citable Link Terms of Use Persson Gulda, Maria Christina Margareta. 2012. Defects in Hard- Sphere Colloidal Crystals. Doctoral dissertation, Harvard University. November 13, 2017 8:05:51 PM EST http://nrs.harvard.edu/urn-3:hul.instrepos:10406377 This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:hul.instrepos:dash.current.terms-ofuse#laa (Article begins on next page)

µ V m =0.19V o V o S m =0.49k B T

φ φ φ φ φ

µ

µ µ µ µ µm 3 µ 3 µm µm µ 3 µ 3 µ 3 µ 3

µ 3 µ 3 µ 2 µ 2

1 a<11 2 > 6 µ a µ

µ α

F PK F PK F l F d

1

Σ

2

µ σ σ 3 3.9 10 15 3 f RawStock f water

f water =0.369% f RawStock f RawStock σ d v settling g F d F g v settling F g = mg = 4 3 πa3 ρg a d ρ η v a F d =6πηav v settling v settling = 4a2 ρg 18η

η 1.6 10 3 7 10 7 a 2 U thermal = 3k BT 2 U kinetic = mv2 2 v b <v b >= 3kB T m k B 2 10 3 10 4

φ F = U TS U thermal = 3 2 k BT F =( 3 2 k B S)T φ φ φ φ φ φ

P ρ k B P = ρk B TZ(φ) Z φ Z(β) = 2.557696 + 0.1253077β +0.1762393β 2 1.053308β 3 +2.818621β 4 2.921934β 5 +1.118413β 6 + 12 3β β β β(φ) = 4(1 φ φ o ) φ o ρ SilicaRawStock 3 f RawStock

V RawStock = V Cell f RawStock V Cell A Cell h Cell V RawStock = A Cell h Cell f RawStock m Silica V RawStock ρ SilicaRawStock m Silica = V RawStock ρ SilicaRawStock = A Cell h Cell f RawStock ρ SilicaRawStock V Silica m Silica ρ Silica 3 V Silica = m Silica ρ Silica = A Cellh Cell f RawStock ρ SilicaRawStock ρ Silica V Crystal V Silica Φ Crystal V Crystal = V Silica Φ Crystal = A Cellh Cell f RawStock ρ SilicaRawStock ρ Silica Φ Crystal V Crystal A Cell h Crystal

h Crystal = h Cellf RawStock ρ SilicaRawStock ρ Silica Φ Crystal f RawStock Φ Crystal h Cell h Crystal h Crystal = h Cellf RawStock 50 mg/cm 3 Φ Crystal 2 g/cm 3 =0.025 h Cellf RawStock Φ Crystal

φ φ φ φ φ

d c U kinetic = mv2 b 2 mgd d d c = v2 b 2g

v b d c 100 700 f RawStock h Cell

3

G G = H TS S H H h H = n h

H p V v V v = V p + V relax V p V relax H = np V v S s c s v s c S c = k B ln( (N + n)! )=k B [(N + n)ln(n + n) Nln(N) nln(n)] N! n! G = n h nt s v k B T [(N + n)ln(n + n) Nln(N) nln(n)]

δ G δn = h T s v k B T [ln(n + n)+ N + n N + n ln(n) n n ] n = h T s v + k B T ln( N + n ) = 0 x v x v = n N + n = h T sv e k B T 10 6 10 3 10 4 10 7 10 4 10 3 10 2 10 3 Γ

G m = H m T S m = p V m T S m Γ= ν exp( G m k B T )=ν exp(p V m T S m ) k B T k B V m S m ν D λ ν = 6D λ 2 D η k B a D = k BT 6πηa λ 2a ν ν = k BT 4πηa 3 k B =1.38 10 23 T = 300 η =1.6 10 3 a =1.55 10 6 /2 µ ν 0.6 1.

V a S a G a = p V a T S a x v x v2 x v2 x 2 v = exp( G a k B T )=exp(t S a p V a ) k B T

µ

x template y template µ

ax ay az x template bx by bz y template (ax δx) 2 +(ay δy) 2 +(az δz) 2 = x 2 template (bx δx) 2 +(by δy) 2 +(bz δz) 2 = y 2 template δx δy δz µ z template µ µ D Body µ D 2 Body = x2 + y 2 + z 2 z = DBody 2 x2 y 2 µ z = DBody 2 x2 y 2 = (2d) 2 2d 2 = 2d = 2 1.56 = 2.21µ

ε z ε x ε y ν ε z + ε x ν + ε y ν =0 ε x,y = 1.63 1.56 1.56 =4.5% ε z = 2ε x,y ν = 2 0.045 0.37 = 3.3% z template z template = z(1 + ε z ) = 2.21 (1 0.033) = 2.14µ (cx δx) 2 +(cy δy) 2 +(cz δz) 2 = z 2 template δx δy δz δx =0.1538µ δy =0.1553µ δz =0.1099µ

µ

µ

N particles(111) 36 3 = 108 V Box(111) V Box(111) µ 3

µ 3 N P articles(100) V Box(100) µm 3 µ 3 µ 3 µ 3

µ

µ µ µ ū ū = c r r 3 = c 1 r V = u ds = u4πr 2 u = V 4πr 2 u 1 u 2 = R 1 R 2 = R2 2 R 2 1 R 1 = 2.292 (2.29 2.26)µm =0.06µm 1.622 R 1 µ R 1 µ

µ µ R 1 µ µ 3 µ 3 µ µ

µ µ µ µ

µm 3 µ 3

µ µ

µm µm

µ µ 3 µ 3 µ 3

P (v f )= γ <v f > exp γv f <v f > v f <v f > γ µ 3 γ/< v f > <v f > µ 3 <v particle >=< v o > + <v f >= 4 3 (1.55 2 )3 π/0.74 + 0.052 = 2.69µm 3 v o v particle <v f >

µ 3

µ 3

µ 3 µ 3 µ 3 µ 3 µ 3 µ 3

µ 3 µ 3

µ 3 µm 2 µ 2 V v V v = V p + V relax PVo Nk B T

µ 3 µ 3

µ 2 µ 2

V relax V v µ µ µ 3 µ 3 µ 3 µ 3 µ 3 µ 3 µ 3 µ 3 µ 3 V relax V v µ µ µ 3 µ 3 µ 3 µ 3 µ 3 µ 3 µ 3 µ 3 µ 3 µ 3 µ 3 ρ N/V p k B T = ZN V PV o Nk B T = ZV o V

G m k B T Γ= 1 1115 1 14 3600 =1.8 10 8 sec 1 ν =0.6 1 Γ ν PV o Nk B T PV o Nk B T PV o Nk B T Γ ν 1021

µ 3 r v1 r v2 1 11 12 ( r i + r v2 ) = r v1 i=1 1 11 12 ( r j + r v1 ) = r v2 j=1 r i r j µm 3 µm 3

µm 3 V a H a S a G a = H a T S a G a µ 3 µ 3 V v V v = 18 (3.13 2.75)µm 3 =6.84µm 3 µ 3 V v V relax µ 3 Γ= 4 18 1 13.5 3600 =4.6 10 6 sec 1

4 ±2.3 10 6 ν =0.6 1 Gm k B T ±0.7

log Γ ν = p V m k B T + S m k B V o log Γ ν = pv 0 V m + S m k B T V 0 k B V m V 0 S m k B

Γ= 3 5 1 13.5 3600 =1.2 10 5 sec 1 4 ±0.7 10 5 ν 1 Gm k B T ±0.8 G m k B T Γ 1 Gm k B T 1.8 10 8 (4.6 ± 2.3) 10 6 11.8 ± 0.7 (1.2 ± 0.7) 10 5 10.8 ± 0.8

4

1 6 a<11 2 > 2 2

σ y α σ y = σ o + kd 1 2

1 10 111 a ± 1 2 a[01 1] ± 1 2a[110] π ± 1 2a[101] π T 1 2 a[01 1] 1 2 a[0 11] T ± 1 2 a[110], ± 1 2a[101] 1 2 1 2 a[110] 1 2 a[110] T +2 1 6 a[11 2]

1 2 a[110] 1 2 a[101] T + 1 6 a[2 1 1] 1 2 Σ 1 6 [ 1 1 2] 1 6 a[ 1 12]

pv = Z(V )k B T K = V dp dv K = Zk BT V (1 V Z δz δv ) µ

γ µ = 1 V δ 2 F δγ 2 γ U thermal µ = T V δ 2 S δγ 2 µ o a 6 (α) α ε = bcos(α) L

U elastic = 1 2 Eε2 elastic h ε elastic ε 0 ε ε elastic = ε 0 ε U elastic U elastic = 1 2 E(ε 0 bcos(α) ) 2 h L U dislocation = 1 µb 2 L 4π(1 ν) ln R r o ν r o 1 L = ε 0 bcos(α) 1 4π(1 ν) µ 1 1 E cos 2 (α) h ln4h b h c h c = 1 µ 1 4π(1 ν) E ε 0 b cos(α) ln4h c b

E µ = 2(1 + ν) Z z o U elastic = 1 2 Eε2 0z U elastic F elastic = 1 2 LEε2 0

F repel = µ(bcos(α))2 4π(1 ν)z z o z o = (bcos(α))2 µ 2π(1 ν)lε 2 0 E µm µ 1.025a

1 6 a<11 2 >

a µ a A particle A particle = a2 2 µ A particle N layer = A total 2L 2 = A particle a 2 µ N layer µ

µ a µ

h(number of layers) = 0.022t + 28.38 (0 t 900min) t layer a 2 µ 2 h(µm) = 0.018t + 23 (0 t 900min) J v settling n ColloidsInSolution J = v settling n ColloidsInSolution Γ A CrossSection Γ= JA= v settling n ColloidsInSolution A CrossSection n ColloidsInSolution ρ SilicaInRawStock m colloid f RawStock n ColloidsInSolution = ρ SilicaInRawStock m colloid f RawStock Γ N layer = A CrossSection A particle = A CrossSection 2a 2 t layer

h T heory h T heory = Γ N layer t layer = v settlingρ SilicaInRawStock f RawStock A particle t layer m colloid ρ SilicaInRawStock v settling m colloid A particle t layer f RawStock µ ρ ColloidsInSolution o o o o

(ˆx, ŷ, ẑ)

µ

[ˆx00] 1 6 [ 12 1] [0ŷ0] 1 3 [ 1 1 1] [00ẑ] 1 2 [ 101] ˆx 1 6 2 6 1 6 ŷ 1 3 1 3 1 3 ẑ 1 2 1 2 [ˆx00] 1 6 [121] [0ŷ0] 1 3 [ 11 1] [00ẑ] 1 2 [ 101]

ˆx 1 6 2 6 1 6 ŷ 1 3 1 3 1 3 ẑ 1 2 1 2 a 6 [112] a 6 [112] a 6 [112] b t a 6 [112] LeftCrystalSystem = a 6 [112] LeftCrystalSystem+ a 6 [112] RightCrystalSystem+ b t bt = a 6 [112] RightCrystalSystem b t bt = [0.2556, 0.8944, 0.1278]

bt,exp = [0.2756, 0.7203, 0.2759] µ µ

a A perp article = 3a 2 4 µ

L 2 L 1 ε = b L 1 ε = b L 1 ( A hl 2 )= ba V A effective L 1 A effective = Asinα α o L 1 beffective = bcosα

α

ε = bcosαasinα V 8.3 10 4 9.9 10 4 4.0 10 4 6 10 3 2 10 3

F PK F PK b σ d s F PK =( σ b) d s F PK = F d +2F l

F PK

F PK F l F d

F PK = F d + F l F d = 4η π Sv S µ η 1.6 10 3 µ 1.5 10 15 F l = 1 2 µb2 µ =2 b =0.81µ 6.5 10 13 F PK = σb S σ = µ ε = µ(ε o ε) ε = 1 2 µb2 µb S =8 10 3 ε ε o ε

S r F PK F PK r F PK 2 r F PK (3 r) =T (3 r)+2t S F PK F PK S = T S + 2T 3 r T S 8 10 3 µb ε b ε b =8 10 3 (1 + 2 S 3 r ) r µ ε o ε

5

V m =0.19V o V o S m =0.49k B T

6

10 4

µ µ

2

o

7

8 µ