EXPLORING THE SYNERGIES AMONG THE ENERGY, HYGROTHERMAL, FIRE AND ENVIRONMENTAL PERFORMANCES OF BUILDING ELEMENTS



Σχετικά έγγραφα
Criteria for the Holistic Consideration of External Building Elements

ΕΝΕΡΓΕΙΑ στα ΚΤΙΡΙΑ 3η Τεχνική Ηµερίδα ASHRAE στη Βόρειο Ελλάδα Θεσσαλονίκη 14 Μαΐου 2016

Ενέργεια στα κτίρια 2η Τεχνική Ηµερίδα ASHRAE στη Βόρειο Ελλάδα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική»

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. «Προστασία ηλεκτροδίων γείωσης από τη διάβρωση»

ΣΥΓΧΡΟΝΕΣ ΤΑΣΕΙΣ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΩΝ ΚΙΝΔΥΝΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

Σπανό Ιωάννη Α.Μ. 148

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΝΑΥΤΙΛΙΑ

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Démographie spatiale/spatial Demography

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

[1] P Q. Fig. 3.1

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΠΗΡΕΑΖΕΙ ΤΗΝ ΠΡΟΛΗΨΗ ΚΑΡΚΙΝΟΥ ΤΟΥ ΜΑΣΤΟΥ

1) Abstract (To be organized as: background, aim, workpackages, expected results) (300 words max) Το όριο λέξεων θα είναι ελαστικό.

ΔΘΝΙΚΗ ΥΟΛΗ ΓΗΜΟΙΑ ΓΙΟΙΚΗΗ ΚΑ ΔΚΠΑΙΓΔΤΣΙΚΗ ΔΙΡΑ ΣΔΛΙΚΗ ΔΡΓΑΙΑ

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

ΠΕΡΙΒΑΛΛΟΝΤΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΑΠΟ ΤΗΝ ΟΙΚΙΑΚΗ ΧΡΗΣΗ ΙΑΦΟΡΩΝ ΜΟΡΦΩΝ ΕΝΕΡΓΕΙΑΣ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΒΕΛΤΙΩΣΗ ΔΙΕΡΓΑΣΙΩΝ ΕΡΓΑΣΤΗΡΙΟΥ ΕΛΕΓΧΟΥ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΕΦΑΡΜΟΓΗ ΕΡΓΑΛΕΙΩΝ ΔΙΑΣΦΑΛΙΣΗΣ ΠΟΙΟΤΗΤΑΣ ΣΕ ΜΕΤΑΛΛΟΒΙΟΜΗΧΑΝΙΑ

ΔΘΝΗΚΖ ΥΟΛΖ ΓΖΜΟΗΑ ΓΗΟΗΚΖΖ ΚΑ ΔΚΠΑΙΓΔΤΣΙΚΗ ΔΙΡΑ ΣΔΛΗΚΖ ΔΡΓΑΗΑ

Biodiesel quality and EN 14214:2012

ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΙΓ' ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ

Τμήμα Πολιτικών και Δομικών Έργων

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

GREECE BULGARIA 6 th JOINT MONITORING

Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ

AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

Θερμομόνωση - υγρομόνωση για ενεργειακή απόδοση κτιρίων οπλισμένου σκυροδέματος στην Κύπρο

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

ΠΕΡΙΕΧΟΜΕΝΑ. Μάρκετινγκ Αθλητικών Τουριστικών Προορισμών 1

Approximation of distance between locations on earth given by latitude and longitude

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ΔΘΝΗΚΖ ΥΟΛΖ ΓΖΜΟΗΑ ΓΗΟΗΚΖΖ

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ»

Γιπλυμαηική Δπγαζία. «Ανθπυποκενηπικόρ ζσεδιαζμόρ γέθςπαρ πλοίος» Φοςζιάνηρ Αθανάζιορ. Δπιβλέπυν Καθηγηηήρ: Νηθφιανο Π. Βεληίθνο

ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΕΝΙΣΧΥΣΗ ΤΩΝ ΚΟΜΒΩΝ ΟΠΛΙΣΜΕΝΟΥ ΣΚΥΡΟΔΕΜΑΤΟΣ ΜΕ ΒΑΣΗ ΤΟΥΣ ΕΥΡΩΚΩΔΙΚΕΣ

Η ΣΗΜΑΣΙΑ ΤΗΣ ΜΗ ΓΡΑΜΜΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΓΙΑ ΤΟΝ ΣΧΕ ΙΑΣΜΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ

ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΥΠΟΓΕΙΑΣ ΡΟΗΣ ΚΑΙ ΜΕΤΑΦΟΡΑΣ ΝΙΤΡΙΚΩΝ ΣΤΟΝ ΠΑΡΑΚΤΙΟ ΥΔΡΟΦΟΡΕΑ ΤΟΥ ΠΛΑΤΥ ΠΟΤΑΜΟΥ ΣΤΟ ΝΟΜΟ ΡΕΘΥΜΝΟΥ

Πεξηβάιινλ θαη Αλάπηπμε ΔΘΝΙΚΟ ΜΔΣΟΒΙΟ ΠΟΛΤΣΔΥΝΔΙΟ ΓΙΔΠΙΣΗΜΟΝΙΚΟ - ΓΙΑΣΜΗΜΑΣΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΙΑΚΧΝ ΠΟΤΓΧΝ (Γ.Π.Μ..) "ΠΔΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΣΤΞΗ"

Μελέτη των μεταβολών των χρήσεων γης στο Ζαγόρι Ιωαννίνων 0

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΟΙ ΕΠΙΜΟΡΦΩΤΙΚΕΣ ΑΝΑΓΚΕΣ ΣΤΙΣ ΕΠΙΧΕΙΡΗΣΕΙΣ ΤΟΥ ΔΗΜΟΥ ΗΡΑΚΛΕΙΟΥ ΑΔΑΜΑΚΟΠΟΥΛΟΥ ΑΝΔΡΙΑΝΗ ΔΗΜΗΤΡΟΥΛΑΚΗ ΑΡΙΣΤΕΑ

the total number of electrons passing through the lamp.

Οικονοµετρική ιερεύνηση των Ελλειµµάτων της Ελληνικής Οικονοµίας

ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ ΣΕ Φ/Β ΠΑΡΚΟ 80KWp

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ "ΠΟΛΥΚΡΙΤΗΡΙΑ ΣΥΣΤΗΜΑΤΑ ΛΗΨΗΣ ΑΠΟΦΑΣΕΩΝ. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΕΠΙΛΟΓΗΣ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΣΥΜΒΟΛΑΙΟΥ ΥΓΕΙΑΣ "

ΓΗΠΛΧΜΑΣΗΚΖ ΔΡΓΑΗΑ ΑΡΥΗΣΔΚΣΟΝΗΚΖ ΣΧΝ ΓΔΦΤΡΧΝ ΑΠΟ ΑΠΟΦΖ ΜΟΡΦΟΛΟΓΗΑ ΚΑΗ ΑΗΘΖΣΗΚΖ

Thesis presentation. Turo Brunou

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

ΑΝΑΠΤΥΞΗ ΣΕΝΑΡΙΩΝ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΤΗΣ ΥΔΡΟΗΛΕΚΤΡΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΤΟΥ ΥΔΡΟΣΥΣΤΗΜΑΤΟΣ ΤΟΥ ΠΟΤΑΜΟΥ ΝΕΣΤΟΥ

Section 8.3 Trigonometric Equations

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Σπουδάστρια Δακανάλη Νικολέτα Α.Μ "Πώς η εξέλιξη της τεχνολογίας επηρεάζει την απόδοση των επιχειρήσεων" ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΟΥ ΑΝΘΡΩΠΟΥ

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. «Θεσμικό Πλαίσιο Φωτοβολταïκών Συστημάτων- Βέλτιστη Απόδοση Μέσω Τρόπων Στήριξης»

"ΦΟΡΟΛΟΓΙΑ ΕΙΣΟΔΗΜΑΤΟΣ ΕΤΑΙΡΕΙΩΝ ΣΥΓΚΡΙΤΙΚΑ ΓΙΑ ΤΑ ΟΙΚΟΝΟΜΙΚΑ ΕΤΗ "

ΦΩΤΟΓΡΑΜΜΕΤΡΙΚΕΣ ΚΑΙ ΤΗΛΕΠΙΣΚΟΠΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΜΕΛΕΤΗ ΘΕΜΑΤΩΝ ΔΑΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

þÿ ³¹µ¹½ º±¹ ±ÃÆ»µ¹± ÃÄ ÇÎÁ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΠΙΧΕΙΡΗΣΕΙΣ ΕΝ ΟΨΕΙ ΤΟΥ ΝΕΟΥ ΟΙΚΟΝΟΜΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ» Σπουδαστές Μαραβελάκης Γρηγόριος Α.Μ Μαυρομήτρος Δημήτριος Α.Μ.

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ

Χαρτογράφηση θορύβου

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Τοµέας οµοστατικής ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΑΣΤΟΧΙΑΣ ΑΠΟ ΛΥΓΙΣΜΟ ΚΑΙ ΠΛΑΣΤΙΚΟΠΟΙΗΣΗ ΣΕ ΜΕΤΑΛΛΙΚΑ ΠΛΑΙΣΙΑ

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

(Biomass utilization for electric energy production)

Development and operation of University-Industry Liaison Offices in the Republic of Cyprus: Creating the future Dr Gregory Makrides, Director of

; +302 ; +313; +320,.

Μετρήσεις ηλιοφάνειας στην Κύπρο

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ & ΤΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ ΚΑΙ ΑΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΤΟΜΕΑΣ ΓΕΝΙΚΗΣ ΓΕΩΔΑΙΣΙΑΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΒΑΛΚΑΝΙΚΩΝ, ΣΛΑΒΙΚΩΝ & ΑΝΑΤΟΛΙΚΩΝ ΣΠΟΥΔΩΝ

ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ. Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο. την απόκτηση του διπλώματος

Right Rear Door. Let's now finish the door hinge saga with the right rear door

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

Αζεκίλα Α. Μπνπράγηεξ (Α.Μ. 261)

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΗΡΑΚΛΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ

Αστικές παρεμβάσεις ανάπλασης αδιαμόρφωτων χώρων. Δημιουργία βιώσιμου αστικού περιβάλλοντος και σύνδεση τριών κομβικών σημείων στην πόλη της Δράμας

4.6 Autoregressive Moving Average Model ARMA(1,1)

ΙΩΑΝΝΗ ΑΘ. ΠΑΠΑΪΩΑΝΝΟΥ

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ

2 Composition. Invertible Mappings

Study of urban housing development projects: The general planning of Alexandria City

ΕΘΝΙΚΗ ΥΟΛΗ ΔΗΜΟΙΑ ΔΙΟΙΚΗΗ ΙH ΕΚΠΑΙΔΕΤΣΙΚΗ ΕΙΡΑ

Η θέση ύπνου του βρέφους και η σχέση της με το Σύνδρομο του αιφνίδιου βρεφικού θανάτου. ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

Transcript:

3rd International Conference "ENERGY in BUILDINGS" ASHRAE - Hellenic Chapter November 15, 2014 EXPLORING THE SYNERGIES AMONG THE ENERGY, HYGROTHERMAL, FIRE AND ENVIRONMENTAL PERFORMANCES OF BUILDING ELEMENTS Dimitrios Bikas, Dimitrios Aravantinos, Katerina Tsikaloudaki, Theodoros Theodosiou, Karolos Kontoleon, Christina Giarma Laboratory of Building Construction & -Physics Department of Civil Engineering, Aristotle University of Thessaloniki

1. Introduction This paper refers to the main steps of the SYNERGY project that focuses on the research and the development of high energyefficient building elements, assessed under integrated protection criteria and life cycle design aspects. Synergy (Συνέργεια): working together for an overall goal

1. Introduction The project is funded by the Action COOPERATION 2011 of the National Strategic Reference Framework. The Action supports the cooperation between enterprises and research institutions of the country, through the joint implementation of research and technology projects that promote green development, competitiveness and extroversion of Greek enterprises, as well as improve the quality of life of the citizens. Key objective of the Action is the motivation of the private sector to undertake Research and Development activities and increase the funding from own resources.

1. energy hygrothermal fire environmental The SYNERGY project concerns a holistic approach in designing and evaluating the building elements of new and existing constructions in Greece, with regard to their energy, hygrothermal, fire and environmental performances.

1. εµφάνιση, ευστάθεια, ηχοπροστασία, θερµοπροστασία, υγροπροστασία, πυροπροστασία, περιβ. επιπτώσεις

1. the SYNERGY project is elaborated by two academic units of the Aristotle University of Thessaloniki: the Laboratory of Building Construction and -Physics and the Laboratory of Metal Structures and two SMEs, FIBRAN, producer of insulation materials and TESSERA MULTIMEDIA, an ICT company that is active on the development of software and applications as well as on web design. The project started on the beginning of 2013 and is going to last 30 months. During this period a detailed analysis of most of the building elements met in the majority of constructions in Greece will be conducted with reference to their energy, hygrothermal, fire and environmental performances, as well as catalogues and computational tools for their properties estimation will be developed.

1. Such.. an approach is crucial for the development of efficient buildings in the view of the implementation of the forthcoming EPBD recast, which aims at the promotion of nearly zero energy buildings and the enhancement of their environmental characteristics during their entire life cycle. old buildings efficient buildings + source: G.Hauser

1... Apart from the knowledge and the theoretical results that will derive during the project, there are also more practical products, such as the catalogues and the computational tools with numerous constructional details and information regarding their thermophysical, hygrothermal, fire resistance and environmental properties. These tools are very useful for all engineers, especially during the design and the decision-making phases of a new building or a renovation project. In fact, their importance will come to light in a few years, when the design and the construction of a building will take into account several energy related criteria due to the near zero-energy building requirements.

2. The Synergy current and future outcomes Within the context of the project most of the common construction element configurations that can be found in the building envelope of typical Greek buildings have been recorded, designed and systematically classified.

2. (b) (a) The study refers to new building constructions (with envelope elements thermally protected according to the requirements of the building energy performance legislation) (a) as well as to existing buildings with poor (b) or no insulation protection (c) (c)

2. an individual building component, i.e. a flat roof a junction between a vertical and a horizontal building element, i.e. between an external wall and the flat roof. Beyond the 180 construction details that have been produced for the individual building elements, details of their junctions have been elaborated, giving all necessary information for the appropriate layers succession, the associated materials and the finishes.

2. codification codification Organization of a catalogue / directory of construction details position position drawing drawing notes notes Scale 1:10 legend legend

2.

2.

2. Organization of a catalogue / directory of construction details

2.

2.

2.

2. T.O.T.E.E. 20701-2/2010

2. from the individual building elements to their junctions and to integrated vertical sections

2. Composition of integrated vertical sections by selecting alternative elements

WP 0 : Management 1. 2. WP2: Investigation of the energy efficiency of BEs. Common/ general catalog D.2.1. Catalog with construction details of most common building elements and their joints found in Greek constructions WP3: Investigation of the hygrothermal performance of BEs WP4: Study of the behavior of BEs in fire WP5: Identification of the environmental impacts of BEs and constructional solutions WP6: Development of databases and computational tools WP 7 : Promotion and dissemination of project results Route to society

2.1 The energy performance of the building elements The energy performance of a building element is mainly represented by the value of its thermal transmittance (U-value). Within the project s context, the U-value of each building element that has been identified and included in the analysis was calculated for different widths and thermophysical characteristics of the thermal insulation layer. For the remaining layers, the conventional widths and materials used in Greek constructions were taken into account. Given that among the objectives of the current project is to deliver catalogues and tools for engineers, a practical table was formulated for each building element, presenting the building element assembly along with the layers configuration and a matrix presenting the thermal transmittance values that are derived for the different widths and thermal conductivity values of thermal insulation.

2.1 A practical table for estimating the thermal transmittance of a particular building element for different widths and thermal conductivity values of the thermal insulation material. The practical merit of this matrix is that the engineer can make a quick estimate of the required thermal insulation, while at the same time the accurate and comprehensive construction detail is at hand. BUILDING ELEMENT σα-130β Β. LAYERS' DESCRIPTION AND THERMOPHYSICAL CHARACTERISTICS Flat roof Layer's Thermal Thermal Density with thermal insulation Α/Α Layers width conduct. resist. above the concrete slab ρ d λ d/λ with no air gap kg/m 3 m W/(m K)m 2 K/W 1 Cement tiles 2100 0,030 1,500 0,020 2 Cement mortar 2000 0,020 1,400 0,014 3 Geotextile 80 0,001 0,040 0,025 4 Water proofing membrane 1100 0,007 0,230 0,030 Zone A' : U max = 0,500 W/(m 2 K) 5 Cement based leveling compound 2000 0,010 1,400 0,007 Zone B' : U max = 0,450 W/(m 2 K) 6 Lightweight concrete for slopes 1000 0,080 0,350 0,229 Zone C' : U max = 0,400 W/(m 2 K) 7 Polyethylene membrane 1390 0,0005 0,170 0,003 Zone D' : U max = 0,350 W/(m 2 K) 8 Thermal insulation (selection from the table below) 9 Vapour barrier 1390 0,0005 0,170 0,003 Α. CONSTRUCTION DETAIL 10 Reinforced concrete 2400 0,200 2,500 0,080 11 Lime-cement mortar 1800 0,015 0,870 0,017 12 13 Internal thermal resistance Rsi = 0,100 m 2 K/W External thermal resistance Rse = 0,040 m 2 K/W C. THERMAL TRANSMITTANCE VALUES in W/(m 2 K) for different widths and thermal conductivity values of the thermal insulation material λ d 0,000 0,030 0,040 0,050 0,060 0,070 0,080 0,090 0,100 0,110 0,120 0,130 0,140 0,027 1,759 0,595 0,488 0,413 0,358 0,316 0,283 0,256 0,234 0,215 0,199 0,186 0,174 0,029 1,759 0,624 0,513 0,436 0,379 0,335 0,301 0,272 0,249 0,229 0,212 0,198 0,185 1. Lime-cement mortar 0,031 1,759 0,651 0,538 0,458 0,399 0,354 0,318 0,288 0,264 0,243 0,225 0,210 0,197 2. Reinforced concrete 0,033 1,759 0,677 0,562 0,480 0,419 0,372 0,334 0,303 0,278 0,256 0,238 0,222 0,208 3. Vapour barrier 0,035 1,759 0,701 0,584 0,501 0,438 0,389 0,350 0,318 0,292 0,269 0,250 0,233 0,219 4. Thermal insulation 0,037 1,759 0,725 0,606 0,521 0,457 0,406 0,366 0,333 0,306 0,282 0,262 0,245 0,230 5. Polyethylene membrane 0,039 1,759 0,748 0,627 0,540 0,475 0,423 0,382 0,348 0,319 0,295 0,274 0,256 0,240 6. Lightw eight concrete for slopes 0,041 1,759 0,769 0,648 0,559 0,492 0,439 0,397 0,362 0,332 0,308 0,286 0,267 0,251 7. Cement based leveling compound 0,043 1,759 0,790 0,667 0,578 0,509 0,455 0,412 0,376 0,346 0,320 0,298 0,278 0,261 8. Water proofing membrane 0,045 1,759 0,810 0,686 0,595 0,526 0,471 0,426 0,389 0,358 0,332 0,309 0,289 0,272 9. Geotextile 0,047 1,759 0,829 0,704 0,613 0,542 0,486 0,440 0,403 0,371 0,344 0,320 0,300 0,282 10. Cement mortar 0,049 1,759 0,847 0,722 0,629 0,558 0,501 0,454 0,416 0,383 0,355 0,331 0,310 0,292 11. Cement tiles 0,051 1,759 0,864 0,739 0,646 0,573 0,515 0,468 0,429 0,395 0,367 0,342 0,321 0,302 0,053 1,759 0,881 0,756 0,661 0,588 0,529 0,481 0,441 0,407 0,378 0,353 0,331 0,312 0,055 1,759 0,898 0,772 0,677 0,603 0,543 0,494 0,454 0,419 0,389 0,364 0,341 0,321 0,065 1,759 0,971 0,845 0,748 0,670 0,608 0,556 0,512 0,475 0,442 0,414 0,389 0,367 0,075 1,759 1,032 0,908 0,810 0,731 0,666 0,612 0,565 0,526 0,491 0,461 0,434 0,411 0,085 1,759 1,085 0,962 0,864 0,785 0,718 0,662 0,614 0,573 0,537 0,505 0,477 0,451 Total width of the building element (including the thermal insulation) d 0,364 0,394 0,404 0,414 0,424 0,434 0,444 0,454 0,464 0,474 0,484 0,494 0,504

2.1 Furthermore, one can perceive at what extent the thermal behaviour of the existing buildings can be enhanced, since such constructions have either inadequate (i.e. 0.03 m 0.04 m) or no thermal protection. This information can be of great interest, since due to the expected adaptation of the national legislation on the thermal protection requirements to the EPBD recast, it is very likely to expect significant decrease of maximum acceptable heat transfer coefficients in some Greek climatic zones. In every case, the direct assessment of the energy performance of the construction elements with enhanced, conventional and limited thermal protection can present the potential benefits that can arise from the thermal insulation of existing buildings.

2.1 Beyond the thermal transmittance, another significant parameter for the evaluation of the overall thermal behaviour of the building envelope is the estimation of the linear thermal transfer coefficient of the thermal bridges located in composite building elements and at the intersection between the construction elements. Within the context of the project, the linear thermal transmittance encountered at the junctions between the examined construction elements - and their variations- have been calculated, resulting in a prolonged atlas for thermal bridges. For every examined case, apart from the calculation of the linear thermal transmittance, the temperature profile within the construction element is calculated and presented on the elements cross-section. This representation has a twofold merit: firstly it assists non-specialists to understand the thermal bridging effect and secondly it constitutes valuable information when estimating the probability of vapour condensation.

2.1

2.1 The temperature distribution at the junction of a flat roof and a vertical wall element and the resulting values of linear thermal transmittance Ψ for various widths of thermal insulation.

2.1 pages from the atlas of thermal bridges

2.1 pages from the atlas of thermal bridges

2.2 The hygrothermal performance of the building elements The study of the hygrothermal behaviour of the building elements reflects their performance against the presence, accumulation and variation of moisture in their mass or on their surface, as these phenomena are induced by various factors. Two main axes can be discerned: first the estimation of vapour condensation risk inside and on the surface of the building elements, as well as their performance against rain and driving rain. For the estimation of vapour condensation risk a calculation tool has been developed. It can be used for the determination of the temperature and the vapour pressure profiles prevailing across the building element, as well as the risk of interstitial condensation. If the latter occurs, the amount of the condensation is calculated, along with the amount of evaporation. The comparison between the condensation and evaporation rates follows, which indicates whether moisture is accumulated in the building element on an annual basis.

2.2 The algorithm employed by the tool is in line with the international standards. The basic steps are summarized as follows: Selection of the boundary conditions for the building element analysis (i.e. city for the climatic data, and usage density for the vapour production). Determination of the building element s position and composing layers, as well as the materials of each layer. The tool is equipped with a database containing the common building elements and materials, which can be enriched with new assemblies. Calculation of the saturation vapour pressure and the water vapour pressure for the assessment of the interstitial condensation phenomenon on a monthly basis. If interstitial condensation occurs, the first month of the condensation is determined. The accumulated condensate is calculated till the rate of condensation becomes negative, i.e. till evaporation occurs. Determination of the condensation and evaporation rates on an annual basis

2.2 The water vapour diffusion and the saturation vapour pressure in a multilayer building element, when no interstitial condensation occurs

2.2

2.2

2.3 The fire resistance performance of the building elements The study concerns the fire dynamics of building enclosures, i.e. the detailed analysis of the fire performance of common building elements adopted in the majority of constructions in Greece. E integrity W radiation I isolation

2.3 The fire resistance performance of the building elements The prediction processes to quantify the behaviour of fire and to extort the means to reduce the impact of fire on people, property, and the environment is extremely valuable. In order to undertake the above study Fire Dynamics Simulator (FDS) is applied; It is a computational fluid dynamics (CFD) model of fire-driven fluid flow developed by the National Institute of Standards and Technology (NIST). The exploitation of CFD and FEM research models is important in order to predict precisely the actual fire scenario, determine accurately the time-history temperatures at each discrete point and override the need of large-scale fire experiments.

2.3 Table 1-A Time [minutes] of Temperature evolution on the unexposed sidewall for various cross sections. Temperature step Τ=35 C, with initial temperature 20 C, insulation criterion I ( Τ=140 C)

2.3 Table 1-A Time [minutes] of Temperature evolution on the unexposed sidewall for various cross sections. Temperature step Τ=35 C, with initial temperature 20 C, insulation criterion I ( Τ=140 C)

2.4 The environmental performance of the building elements Under this task the aim is to study and estimate the environmental impact in the different levels of building materials, elements and whole buildings, according to life cycle principles, with the use of LCA tools. The intention is to show clear results and provide useful practical information of the environmental performance of the building materials, elements and whole buildings to engineers and to construction industry professionals. Weighting of masonry in bricks (wall) per impact category.

2.4 The working package includes: Composition of a Lifecycle Assesment (LCA) database at the material level, covering materials and technologies of the building elements indicated on the 2nd WP. Development of a LCA data base at the level of building elements, concerning environmental impact categories and embodied energy Principles of calculation of the total environmental impacts of the building life cycle using above mentioned data bases. Weighting of life cycle of beam of reinforced concrete per impact category.

2.4

2.4

Α. ΟΜΙΚΟ ΣΤΟΙΧΕΙΟ: ΤΟα-1206 Β. ΠΕΡΙΓΡΑΦΗ ΤΩΝ ΣΤΡΩΣΕΩΝ ΚΑΙ ΘΕΡΜΟΤΕΧΝΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ Δικέλυφη οπτοπλινθοδομή Πάχος Συντελ. Θερµική Πυκνότ. σε επαφή με εξωτερικό αέρα Α/Α Στρώσεις δοµικού στοιχείου (από µέσα προς τα έξω) στρώσ. θερµ.αγ. αντίστσ. επιχρισμένη εσωτερικά ρ d λ d/λ με επικολλημένες πλάκες μαρμάρου kg/m 3 m W/(m K) m 2 K/W με θερμομόνωση στον πυρήνα 1 1.4.2.α Ασβεστοτσιµεντοκονίαµα 1800 0,020 0,870 0,023 χωρίς 2.4 ενδιάμεσο κλειστό ή αεριζόμενο διάκενο αέρα 2 1.7.2.2.γ Οπτοπλινθοδοµή µε διάτρητες οπτοπλίνθους 1700 0,090 0,580 0,155 3 6.1.2.2.δ Πετροβάµβακας σε µορφή πλακών 150 0,060 0,035 1,714 4 1.7.2.2.γ Οπτοπλινθοδοµή µε διάτρητες οπτοπλίνθους 1700 0,090 0,580 0,155 Γ. ΚΑΤΑΣΚΕΥΑΣΤΙΚΗ ΛΕΠΤΟΜΕΡΕΙΑ 5 1.4.2.α Ασβεστοτσιµεντοκονίαµα 1800 0,020 0,870 0,023 6 1.1.1.6 Μάρµαρο 2800 0,020 3,500 0,006 7 8 9 10 Συµπληρωµατικά υλικά (kg/m2 διατοµής) kg 11 12 13 14 µέσα έξω Aντίσταση θερµικής µετάβασης εσωτερικά Ri = 0,130 m 2 K/W Aντίσταση θερµικής µετάβασης εξωτερικά Ra = 0,040 m 2 K/W U= 0,445 (W/m K). ΠΕΡΙΒΑΛΛΟΝΤΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ /m2 ΔΙΑΤΟΜΗΣ (CRADLE TO GATE) Από τη µέθοδο CML Baseline 2000 v2.04 Από τη µέθοδο Cumulative energy Demand v.1.05 Κατηγορίες Μονάδες Μέτρησης Cradle to gate Abiotic depletion (ADP) kg Sb eq 7,4899101E-01 Κατηγορίες Μονάδες Μέτρησης Non renewable (ENR) MJ Cradle to gate 1,9743149E+03 Acidification (AP) kg SO2 eq 6,7802759E-01 Renewable (ER) MJ 1,8965849E+02 Eutrophication (EP) kg PO4---eq 1,2022649E-01 Total ENR + ER MJ 2,1639734E+03 Global warming (GWP100) kg CO2 eq 1,4038231E+02 Ozone layer depletion (ODP) kg CFC-11 eq 1,0753497E-05 Photochemical oxidation (POCP) kg C2H4 eq 2,4861680E-02

Α. ΟΜΙΚΟ ΣΤΟΙΧΕΙΟ: ΤΟα-1206 Β. ΠΕΡΙΓΡΑΦΗ ΤΩΝ ΣΤΡΩΣΕΩΝ ΚΑΙ ΘΕΡΜΟΤΕΧΝΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ Δικέλυφη οπτοπλινθοδομή Πάχος Συντελ. Θερµική Πυκνότ. σε επαφή με εξωτερικό αέρα Α/Α Στρώσεις δοµικού στοιχείου (από µέσα προς τα έξω) στρώσ. θερµ.αγ. αντίστσ. επιχρισμένη εσωτερικά ρ d λ d/λ με επικολλημένες πλάκες μαρμάρου kg/m 3 m W/(m K) m 2 K/W με θερμομόνωση στον πυρήνα 1 1.4.2.α Ασβεστοτσιµεντοκονίαµα 1800 0,020 0,870 0,023 χωρίς 2.4 ενδιάμεσο κλειστό ή αεριζόμενο διάκενο αέρα 2 1.7.2.2.γ Οπτοπλινθοδοµή µε διάτρητες οπτοπλίνθους 1700 0,090 0,580 0,155 3 6.1.2.2.δ Πετροβάµβακας σε µορφή πλακών 150 0,060 0,035 1,714 4 1.7.2.2.γ Οπτοπλινθοδοµή µε διάτρητες οπτοπλίνθους 1700 0,090 0,580 0,155 Γ. ΚΑΤΑΣΚΕΥΑΣΤΙΚΗ ΛΕΠΤΟΜΕΡΕΙΑ 5 1.4.2.α Ασβεστοτσιµεντοκονίαµα 1800 0,020 0,870 0,023 6 1.1.1.6 Μάρµαρο 2800 0,020 3,500 0,006 7 8 9 10 Συµπληρωµατικά υλικά (kg/m2 διατοµής) kg 11 12 13 14 µέσα έξω Aντίσταση θερµικής µετάβασης εσωτερικά Ri = 0,130 m 2 K/W Aντίσταση θερµικής µετάβασης εξωτερικά Ra = 0,040 m 2 K/W U= 0,445 (W/m K). ΠΕΡΙΒΑΛΛΟΝΤΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ /m2 ΔΙΑΤΟΜΗΣ (CRADLE TO GATE) Από τη µέθοδο CML Baseline 2000 v2.04 Από τη µέθοδο Cumulative energy Demand v.1.05 Κατηγορίες Μονάδες Μέτρησης Cradle to gate Abiotic depletion (ADP) kg Sb eq 7,4899101E-01 Κατηγορίες Μονάδες Μέτρησης Non renewable (ENR) MJ Cradle to gate 1,9743149E+03 Acidification (AP) kg SO2 eq 6,7802759E-01 Renewable (ER) MJ 1,8965849E+02 Eutrophication (EP) kg PO4---eq 1,2022649E-01 Total ENR + ER MJ 2,1639734E+03 Global warming (GWP100) kg CO2 eq 1,4038231E+02 Ozone layer depletion (ODP) kg CFC-11 eq 1,0753497E-05 Photochemical oxidation (POCP) kg C2H4 eq 2,4861680E-02

Α. ΟΜΙΚΟ ΣΤΟΙΧΕΙΟ: ΤΟα-1206 Β. ΠΕΡΙΓΡΑΦΗ ΤΩΝ ΣΤΡΩΣΕΩΝ ΚΑΙ ΘΕΡΜΟΤΕΧΝΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ Δικέλυφη οπτοπλινθοδομή Πάχος Συντελ. Θερµική Πυκνότ. σε επαφή με εξωτερικό αέρα Α/Α Στρώσεις δοµικού στοιχείου (από µέσα προς τα έξω) στρώσ. θερµ.αγ. αντίστσ. επιχρισμένη εσωτερικά ρ d λ d/λ με επικολλημένες πλάκες μαρμάρου kg/m 3 m W/(m K) m 2 K/W με θερμομόνωση στον πυρήνα 1 1.4.2.α Ασβεστοτσιµεντοκονίαµα 1800 0,020 0,870 0,023 χωρίς 2.4 ενδιάμεσο κλειστό ή αεριζόμενο διάκενο αέρα 2 1.7.2.2.γ Οπτοπλινθοδοµή µε διάτρητες οπτοπλίνθους 1700 0,090 0,580 0,155 3 6.1.2.2.δ Πετροβάµβακας σε µορφή πλακών 150 0,060 0,035 1,714 4 1.7.2.2.γ Οπτοπλινθοδοµή µε διάτρητες οπτοπλίνθους 1700 0,090 0,580 0,155 Γ. ΚΑΤΑΣΚΕΥΑΣΤΙΚΗ ΛΕΠΤΟΜΕΡΕΙΑ 5 1.4.2.α Ασβεστοτσιµεντοκονίαµα 1800 0,020 0,870 0,023 6 1.1.1.6 Μάρµαρο 2800 0,020 3,500 0,006 7 8 9 10 Συµπληρωµατικά υλικά (kg/m2 διατοµής) kg 11 12 13 14 µέσα έξω Aντίσταση θερµικής µετάβασης εσωτερικά Ri = 0,130 m 2 K/W Aντίσταση θερµικής µετάβασης εξωτερικά Ra = 0,040 m 2 K/W U= 0,445 (W/m K). ΠΕΡΙΒΑΛΛΟΝΤΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ /m2 ΔΙΑΤΟΜΗΣ (CRADLE TO GATE) Από τη µέθοδο CML Baseline 2000 v2.04 Από τη µέθοδο Cumulative energy Demand v.1.05 Κατηγορίες Μονάδες Μέτρησης Cradle to gate Abiotic depletion (ADP) kg Sb eq 7,4899101E-01 Κατηγορίες Μονάδες Μέτρησης Non renewable (ENR) MJ Cradle to gate 1,9743149E+03 Acidification (AP) kg SO2 eq 6,7802759E-01 Renewable (ER) MJ 1,8965849E+02 Eutrophication (EP) kg PO4---eq 1,2022649E-01 Total ENR + ER MJ 2,1639734E+03 Global warming (GWP100) kg CO2 eq 1,4038231E+02 Ozone layer depletion (ODP) kg CFC-11 eq 1,0753497E-05 Photochemical oxidation (POCP) kg C2H4 eq 2,4861680E-02

Α. ΟΜΙΚΟ ΣΤΟΙΧΕΙΟ: ΤΟα-1206 Β. ΠΕΡΙΓΡΑΦΗ ΤΩΝ ΣΤΡΩΣΕΩΝ ΚΑΙ ΘΕΡΜΟΤΕΧΝΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ Δικέλυφη οπτοπλινθοδομή Πάχος Συντελ. Θερµική Πυκνότ. σε επαφή με εξωτερικό αέρα Α/Α Στρώσεις δοµικού στοιχείου (από µέσα προς τα έξω) στρώσ. θερµ.αγ. αντίστσ. επιχρισμένη εσωτερικά ρ d λ d/λ με επικολλημένες πλάκες μαρμάρου kg/m 3 m W/(m K) m 2 K/W με θερμομόνωση στον πυρήνα 1 1.4.2.α Ασβεστοτσιµεντοκονίαµα 1800 0,020 0,870 0,023 χωρίς 2.4 ενδιάμεσο κλειστό ή αεριζόμενο διάκενο αέρα 2 1.7.2.2.γ Οπτοπλινθοδοµή µε διάτρητες οπτοπλίνθους 1700 0,090 0,580 0,155 3 6.1.2.2.δ Πετροβάµβακας σε µορφή πλακών 150 0,060 0,035 1,714 4 1.7.2.2.γ Οπτοπλινθοδοµή µε διάτρητες οπτοπλίνθους 1700 0,090 0,580 0,155 Γ. ΚΑΤΑΣΚΕΥΑΣΤΙΚΗ ΛΕΠΤΟΜΕΡΕΙΑ 5 1.4.2.α Ασβεστοτσιµεντοκονίαµα 1800 0,020 0,870 0,023 6 1.1.1.6 Μάρµαρο 2800 0,020 3,500 0,006 7 8 9 10 Συµπληρωµατικά υλικά (kg/m2 διατοµής) kg 11 12 13 14 µέσα έξω Aντίσταση θερµικής µετάβασης εσωτερικά Ri = 0,130 m 2 K/W Aντίσταση θερµικής µετάβασης εξωτερικά Ra = 0,040 m 2 K/W U= 0,445 (W/m K). ΠΕΡΙΒΑΛΛΟΝΤΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ /m2 ΔΙΑΤΟΜΗΣ (CRADLE TO GATE) Από τη µέθοδο CML Baseline 2000 v2.04 Από τη µέθοδο Cumulative energy Demand v.1.05 Κατηγορίες Μονάδες Μέτρησης Cradle to gate Abiotic depletion (ADP) kg Sb eq 7,4899101E-01 Κατηγορίες Μονάδες Μέτρησης Non renewable (ENR) MJ Cradle to gate 1,9743149E+03 Acidification (AP) kg SO2 eq 6,7802759E-01 Renewable (ER) MJ 1,8965849E+02 Eutrophication (EP) kg PO4---eq 1,2022649E-01 Total ENR + ER MJ 2,1639734E+03 Global warming (GWP100) kg CO2 eq 1,4038231E+02 Ozone layer depletion (ODP) kg CFC-11 eq 1,0753497E-05 Photochemical oxidation (POCP) kg C2H4 eq 2,4861680E-02

Α. ΟΜΙΚΟ ΣΤΟΙΧΕΙΟ: ΤΟα-1206 Β. ΠΕΡΙΓΡΑΦΗ ΤΩΝ ΣΤΡΩΣΕΩΝ ΚΑΙ ΘΕΡΜΟΤΕΧΝΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ Δικέλυφη οπτοπλινθοδομή Πάχος Συντελ. Θερµική Πυκνότ. σε επαφή με εξωτερικό αέρα Α/Α Στρώσεις δοµικού στοιχείου (από µέσα προς τα έξω) στρώσ. θερµ.αγ. αντίστσ. επιχρισμένη εσωτερικά ρ d λ d/λ με επικολλημένες πλάκες μαρμάρου kg/m 3 m W/(m K) m 2 K/W με θερμομόνωση στον πυρήνα 1 1.4.2.α Ασβεστοτσιµεντοκονίαµα 1800 0,020 0,870 0,023 χωρίς 2.4 ενδιάμεσο κλειστό ή αεριζόμενο διάκενο αέρα 2 1.7.2.2.γ Οπτοπλινθοδοµή µε διάτρητες οπτοπλίνθους 1700 0,090 0,580 0,155 3 6.1.2.2.δ Πετροβάµβακας σε µορφή πλακών 150 0,060 0,035 1,714 4 1.7.2.2.γ Οπτοπλινθοδοµή µε διάτρητες οπτοπλίνθους 1700 0,090 0,580 0,155 Γ. ΚΑΤΑΣΚΕΥΑΣΤΙΚΗ ΛΕΠΤΟΜΕΡΕΙΑ 5 1.4.2.α Ασβεστοτσιµεντοκονίαµα 1800 0,020 0,870 0,023 6 1.1.1.6 Μάρµαρο 2800 0,020 3,500 0,006 7 8 9 10 Συµπληρωµατικά υλικά (kg/m2 διατοµής) kg 11 12 13 14 µέσα έξω Aντίσταση θερµικής µετάβασης εσωτερικά Ri = 0,130 m 2 K/W Aντίσταση θερµικής µετάβασης εξωτερικά Ra = 0,040 m 2 K/W U= 0,445 (W/m K). ΠΕΡΙΒΑΛΛΟΝΤΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ /m2 ΔΙΑΤΟΜΗΣ (CRADLE TO GATE) Από τη µέθοδο CML Baseline 2000 v2.04 Από τη µέθοδο Cumulative energy Demand v.1.05 Κατηγορίες Μονάδες Μέτρησης Cradle to gate Abiotic depletion (ADP) kg Sb eq 7,4899101E-01 Κατηγορίες Μονάδες Μέτρησης Non renewable (ENR) MJ Cradle to gate 1,9743149E+03 Acidification (AP) kg SO2 eq 6,7802759E-01 Renewable (ER) MJ 1,8965849E+02 Eutrophication (EP) kg PO4---eq 1,2022649E-01 Total ENR + ER MJ 2,1639734E+03 Global warming (GWP100) kg CO2 eq 1,4038231E+02 Ozone layer depletion (ODP) kg CFC-11 eq 1,0753497E-05 Photochemical oxidation (POCP) kg C2H4 eq 2,4861680E-02

Α. ΟΜΙΚΟ ΣΤΟΙΧΕΙΟ: ΤΟα-1206 Β. ΠΕΡΙΓΡΑΦΗ ΤΩΝ ΣΤΡΩΣΕΩΝ ΚΑΙ ΘΕΡΜΟΤΕΧΝΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ Δικέλυφη οπτοπλινθοδομή Πάχος Συντελ. Θερµική Πυκνότ. σε επαφή με εξωτερικό αέρα Α/Α Στρώσεις δοµικού στοιχείου (από µέσα προς τα έξω) στρώσ. θερµ.αγ. αντίστσ. επιχρισμένη εσωτερικά ρ d λ d/λ με επικολλημένες πλάκες μαρμάρου kg/m 3 m W/(m K) m 2 K/W με θερμομόνωση στον πυρήνα 1 1.4.2.α Ασβεστοτσιµεντοκονίαµα 1800 0,020 0,870 0,023 χωρίς ενδιάμεσο κλειστό ή αεριζόμενο διάκενο αέρα 2 1.7.2.2.γ Οπτοπλινθοδοµή µε διάτρητες οπτοπλίνθους 1700 0,090 0,580 0,155 3 6.1.2.2.δ Πετροβάµβακας σε µορφή πλακών 150 0,060 0,035 1,714 4 1.7.2.2.γ Οπτοπλινθοδοµή µε διάτρητες οπτοπλίνθους 1700 0,090 0,580 0,155 Γ. ΚΑΤΑΣΚΕΥΑΣΤΙΚΗ ΛΕΠΤΟΜΕΡΕΙΑ 5 1.4.2.α Ασβεστοτσιµεντοκονίαµα 1800 0,020 0,870 0,023 6 1.1.1.6 Μάρµαρο 2800 0,020 3,500 0,006 7 8 9 10 Συµπληρωµατικά υλικά (kg/m2 διατοµής) kg 11 12 13 14 µέσα έξω Aντίσταση θερµικής µετάβασης εσωτερικά Ri = 0,130 m 2 K/W Aντίσταση θερµικής µετάβασης εξωτερικά Ra = 0,040 m 2 K/W U= 0,445 (W/m K). ΠΕΡΙΒΑΛΛΟΝΤΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ /m2 ΔΙΑΤΟΜΗΣ (CRADLE TO GATE) Από τη µέθοδο CML Baseline 2000 v2.04 Από τη µέθοδο Cumulative energy Demand v.1.05 Κατηγορίες Μονάδες Μέτρησης Cradle to gate Abiotic depletion (ADP) kg Sb eq 7,4899101E-01 Κατηγορίες Μονάδες Μέτρησης Non renewable (ENR) MJ Cradle to gate 1,9743149E+03 Acidification (AP) kg SO2 eq 6,7802759E-01 Renewable (ER) MJ 1,8965849E+02 Eutrophication (EP) kg PO4---eq 1,2022649E-01 Total ENR + ER MJ 2,1639734E+03 Global warming (GWP100) kg CO2 eq 1,4038231E+02 Ozone layer depletion (ODP) kg CFC-11 eq 1,0753497E-05 Photochemical oxidation (POCP) kg C2H4 eq 2,4861680E-02

3. Conclusions The need for energy conservation in buildings is an urgent priority both for Europe and at a national level. The requirements of current regulations and the more stringent requirements specified in the foreseeable future necessitate the thorough analysis and development of reliable component solutions that will ensure high energy and hygrothermal performance, fire safety and minimized environmental impacts in the lifecycle of the building components and buildings. It is important to highlight that the expected products of the SYNERGY project will not only act as a guideline for the technical community, but it will promote the use of building materials, which are efficient from every aspect of view.

WP 0 : Management WP2: Investigation of the energy efficiency of BEs. Common/ general catalog D.2.1. Catalog with construction details of most common building elements and their joints found in Greek constructions WP3: Investigation of the hygrothermal performance of BEs WP4: Study of the behavior of BEs in fire WP5: Identification of the environmental impacts of BEs and constructional solutions WP6: Development of databases and computational tools WP 7 : Promotion and dissemination of project results Route to market

2.4

3. Conclusions

3rd International Conference "ENERGY in BUILDINGS" ASHRAE - Hellenic Chapter November 15, 2014 EXPLORING THE SYNERGIES AMONG THE ENERGY, HYGROTHERMAL, FIRE AND ENVIRONMENTAL PERFORMANCES OF BUILDING ELEMENTS Dimitrios Bikas, ευχαριστώγιατηνπροσοχήσας Dimitrios Aravantinos,! Katerina Tsikaloudaki, Theodoros Theodosiou, Karolos Kontoleon, Christina Giarma Laboratory of Building Construction & -Physics Department of Civil Engineering, Aristotle University of Thessaloniki www.lbcp.gr