PETROSKILLS COPYRIGHT

Σχετικά έγγραφα
PETROSKILLS COPYRIGHT

PETROSKILLS COPYRIGHT

PETROSKILLS COPYRIGHT

APPENDIX A. Summary of the English Engineering (EE) System of Units

DuPont Suva 95 Refrigerant

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

DuPont Suva 95 Refrigerant

STEAM TABLES. Mollier Diagram

Electronic Analysis of CMOS Logic Gates

What happens when two or more waves overlap in a certain region of space at the same time?

Ύγρανση και Αφύγρανση. Ψυχρομετρία. 21-Nov-16

Proses = 0 / 0 Proses = 0 / 36 16" 4576 / 2.3 Barat : 4833 / Utara : 5941 / 3.05 Proses = 63 / 37 Flow : 9936 / 3.2

Access Control Encryption Enforcing Information Flow with Cryptography

NMBTC.COM /

Relativistic Kinematics. Chapter 1 of Modern Problems in Classical Electrodynamics by Charles Brau

RECIPROCATING COMPRESSOR CALCULATION SHEET ISOTHERMAL COMPRESSION Gas properties, flowrate and conditions. Compressor Calculation Sheet

A. Two Planes Waves, Same Frequency Visible light

ddupont Fluorochemicals

Magnet Wire General Engineering Data Bare and Film Insulated Copper and Aluminum

MnPAVE Validation: Comparison of MnROAD HMA Modulus Values

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΧΕΔΙΑΣΜΟΥ & ΑΝΑΛΥΣΗΣ ΔΙΕΡΓΑΣΙΩΝ


RECIPROCATING COMPRESSOR CALCULATION SHEET

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ. ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ (MSc)

Φυσική IΙ. Ενότητα 5: Ηλεκτρικό δυναμικό στις 3 διαστάσεις. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

DATA SHEET Surface mount NTC thermistors. BCcomponents

EE434 ASIC & Digital Systems Arithmetic Circuits

Gearmotor Data. SERIES GM9000: We have the GM9434H187-R1

Προσομoίωση Απόκρισης Συστήματος στο MATLAB

ISO Sample Report

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Διακριτή Μοντελοποίηση Μηχανικών Συστημάτων

ELWOOD HIGH PERFORMANCE MOTORS H-SERIES MOTOR DATA

Eects of Gas-Surface Interaction Model in Hypersonic Rareed Gas Flow

Φυσικά Μεγέθη (Φ.Μ.) & μονάδες μέτρησης αυτών

Theoretical Question 2: Strong Resistive Electromagnets SOLUTION


Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r

Συστήματα Αυτομάτου Ελέγχου Ι

Properties of Nikon i-line Glass Series

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

ΔΡΑΣΗ ΕΘΝΙΚΗΣ ΕΜΒΕΛΕΙΑΣ. «ΣΥΝΕΡΓΑΣΙΑ 2009» ΠΡΑΞΗ Ι:«Συνεργατικά έργα μικρής και μεσαίας κλίμακας»

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΕΙΟΥ

Δυναμική Μηχανών Ι. Διδάσκων: Αντωνιάδης Ιωάννης. Απόκριση Συστημάτων 1 ου Βαθμού Ελευθερίας, που περιγράφονται από Σ.Δ.Ε.

Εξάτµιση Σταγονιδίων Μονο-συστατικού και Πολυσυστατικού

A/m

Φυσική IΙ. Ενότητα 2: Ηλεκτρικό πεδίο. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

CENTRIFUGAL AIR COOLED CONDENSERS CONDENSADORES DE AIRE CENTRÍFUGOS. GPC, GMC and GSC Series. Series GPC, GMC y GSC

Oscillatory Gap Damping

Συστήματα Αυτομάτου Ελέγχου Ι

Answers to practice exercises

RAC. Technical Data Book. RAC(Quantum) for North America (R410A, 60Hz, HP) Model : AR09/12/18/24KSFPDWQNCV AR09/12/18/24KSFPDWQXCV

Μαθηματικοί Διαγωνισμοί για Μαθητές Λυκείου Α ΤΕΥΧΟΣ ΑΛΓΕΒΡΑ

Consolidated Drained

ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ ΚΑΙ ΣΧΕΔΙΑΣΜΟΙ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ I

RAC. Technical Data Book. RAC(Max Heat) for North America (R410A, 60Hz, HP) Model : AR09/12KSWSPWKNCV AR09/12KSWSPWKXCV

( ) Sine wave travelling to the right side

2. Chemical Thermodynamics and Energetics - I

NTC thermistors for temperature measurement

RECIPROCATING COMPRESSOR CALCULATION SHEET

38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4

A31. Aluminium heat exchanger A31

Prepolarized Microphones-Free Field

2 η ΕΝΟΤΗΤΑ, Μέρος 4 Επιλογή συλλέκτη. Νίκος Ανδρίτσος

Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r

Έλεγχος Αποθεμάτων υπό Αβέβαιη Ζήτηση

Grey Cast Irons. Technical Data

ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΕΡΕΥΝΑΣ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΗΜΟΚΡΙΤΟΣ / DEMOKRITOS NATIONAL CENTER FOR SCIENTIFIC RESEARCH

ΕΚΘΕΣΗ ΔΟΚΙΜΩΝ ΔΕΞΑΜΕΝΗΣ ΑΠΟΘΗΚΕΥΣΗΣ ΖΕΣΤΟΥ ΝΕΡΟΥ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΚΑΝΟΝΙΣΜΟ 812/2013 TEST REPORT

BSL Transport Phenomena 2e Revised: Chapter 2 - Problem 2C.4 Page 1 of 9

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΤΥΠΟΠΟΙΗΣΗ

ΕΚΘΕΣΗ ΔΟΚΙΜΩΝ ΔΕΞΑΜΕΝΗΣ ΑΠΟΘΗΚΕΥΣΗΣ ΖΕΣΤΟΥ ΝΕΡΟΥ ΣΥΜΦΩΝΑ ΜΕ ΤΟΝ ΚΑΝΟΝΙΣΜΟ 812/2013 TEST REPORT

Φυσική Ι. Ενότητα 2: Κίνηση σε επίπεδο Υλικό σημείο. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Swirl diffusers, Variable swirl diffusers Swirl diffusers

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

Ceramic PTC Thermistor: PH Series

Fin coil calculation with NTU

Θερ ικοί Αισθητήρες. Α. Πετρόπουλος - Τεχνολογία των αισθητήρων Θερμικοί αισθητήρες. 1. Αισθητήρας Μέτρησης Ροής

CONSULTING Engineering Calculation Sheet

SERIES DATASHEET INDUCTORS RF INDUCTORS (MRFI SERIES)


DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

ΕΚΘΕΣΗ ΔΟΚΙΜΩΝ ΔΕΞΑΜΕΝΗΣ ΑΠΟΘΗΚΕΥΣΗΣ ΖΕΣΤΟΥ ΝΕΡΟΥ ΣΥΜΦΩΝΑ ΜΕ ΤΟΥΣ ΚΑΝΟΝΙΣΜΟΥΣ 812/2013 & 814/2013 TEST REPORT

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Απόκριση σε Αρμονική Διέγερση

Επίλυση Δυναμικών Εξισώσεων

ECOL Motors In Aluminum Housing

SAW FILTER - RF RF SAW FILTER

ΕΙΣΑΓΩΓΗ ΣΤΗ ΧΗΜΙΚΗ ΜΗΧΑΝΙΚΗ

MATRIX. EBARA PUMPS EUROPE S.p.A. HORIZONTAL MULTISTAGE PUMPS

Supplementary Information 1.

Aluminum Electrolytic Capacitors (Large Can Type)

SMD Power Inductor-VLH

Class 03 Systems modelling


3.5 - Boundary Conditions for Potential Flow

6.4 Superposition of Linear Plane Progressive Waves

Φυσική IΙ. Ενότητα 6: Πυκνωτές. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Transcript:

Contents Specific Gravity... 2 Formation Volume Factor... 3 Compressibility Equation... 4 Pseudo-Reduced Variables... 5 Pseudo-Critical Variables... 6 SI Conversions... 6 Output... 6 Input... 6 Viscosity... 7 SI Conversions... 7 Output... 7 Input... 7 Density... 8 Pressure Gradient... 8 Compressibility... 8 Coefficient of Thermal Expansion... 9 Compressional Wave Velocity... 9 Darcy s Law... 10 Pseudo-Pressure... 10 Macros... 11 1

Specific Gravity γγ gg = ρρ ff ρρ ss Equation 1: Gas Specific Gravity (Real).γγ g specific gravity [1/air] [1/air].ρρ ff density of fluid of interest at standard conditions [lb/cuft] [kg/m 3 ].ρρ ss density of reference fluid at standard conditions [lb/cuft] [kg/m 3 ] γγ gg = MM wwww MM wwwwwwww Equation 2: Gas Specific Gravity (Ideal).γγ g specific gravity [1/air] [1/air].M wf apparent molecular mass of fluid of interest [lb/mol] [g/mol].m wair apparent molecular mass of reference fluid (air) [lb/mol] [g/mol] 2

Formation Volume Factor BB gg = VV VV ssss Equation 3: Gas Formation Volume Factor.B g formation volume factor [cuft/scf] [m 3 /sm 3 ].V reservoir volume [cuft] [m 3 ].V sc volume at standard conditions [scf] [sm 3 ] pp = ZZZZZZZZ VV Equation 4: Real Gas Equation.p pressure of interest [psia] [Pa].T temperature of interest [ o R] [K].V volume at pressure and temperature of interest [cuft] [m 3 ].n number of moles contained in volume [lb-mol] [g-mol].r universal gas constant [psia.cuft]/[mol. o R] [J/mol/K].Z compressibility factor [ ] [ ] BB gg = ZZZZ pp pp ssss ZZ ssss TT ssss Equation 5: Gas Formation Volume Factor from Real Gas Equation.p pressure of interest [psia] [kpa].t temperature of interest [ o R] [K].Z compressibility factor at conditions of interest [ ] [ ].p sc standard pressure [psia] [kpa].t sc standard temperature [ o R] [K].Z sc compressibility factor at standard conditions [ ] [ ] 3

Compressibility Equation ZZ = XX 2 ρρ pppp Equation 6: Dranchuk & Abu-Kassem Z-Factor 0 = 1 + XX 1 ρρ pppp + XX 2 + XX ρρ 3 ρρ 2 pppp + XX 4 ρρ 5 pppp + XX 5 1 + aa 11 ρρ pppp pppp XX 1 = aa 01 + aa 02 + aa 03 TT 3 + aa 04 4 + aa 05 5 pppp XX 2 = aa 00 pp pppp XX 3 = aa 06 + aa 07 + aa 08 TT 2 pppp XX 4 = aa 09 aa 07 + aa 08 XX 5 = aa 10 3 TT2 pppp 2 ρρ 2 pppp ee aa 11ρρ 2 pppp Where: Oilfield/SI. Z compressibility factor [ ]. ρ pr reduced density [ ]. p pr reduced pressure [ ]. T pr reduced temperature [ ].. a 00 to a 11 are constants Constant Value Constant Value a01 0.3265 a07-0.7361 a02-1.07 a08 0.1844 a03-0.5339 a09 0.1056 a04 0.01569 a10 0.6134 a05-0.05165 a11 0.721 a06 0.5475 a00 0.27 4

Pseudo-Reduced Variables pp pppp = pp pp pppp Equation 7: Pseudo-reduced pressure = TT Equation 8: Pseudo-reduced Temperature ρρ pppp = ρρ ρρ pppp Equation 9: Pseudo-reduced density.p pr pseudo-reduced pressure [] [].p pressure of interest [psia] [kpa].p pc pseudo-critical pressure [psia] [kpa].t pr pseudo-reduced temperature [] [].T temperature of interest [ o R] [K].p pc pseudo-critical temperature [ o R] [K].ρ pr pseudo-reduced density [] [].ρ fluid density at conditions of interest [lb/cuft] [kg/m 3 ].ρ pc pseudo-critical pressure [lb/cuft] [kg/m 3 ] 5

Pseudo-Critical Variables pp pppp = aa 00 + aa 01 γγ gg + aa 02 γγ gg 2 Equation 10: Standing's pseudo-critical pressure correlation = aa 10 + aa 11 γγ gg + aa 12 γγ gg 2 Equation 11: Standing's pseudo-critical temperature correlation Where: Oilfield.p pc pseudo-critical pressure [psia].t pc pseudo-critical temperature [ o R].γγ g specific gravity [1/air] a 00-a 12 are constants Constant Value Constant Value a00 677 a10 168 a01 15 a11 325 a02-37.5 a12 12.5 SI Conversions Output p pc [kpa] = p pc [psia] 0.145037738 T pc [K] = T pc [ o R] 5 9 Input [None] 6

Viscosity μμ gggg = (aa 0 + aa 1 MM ww )TT aa 2 aa 3 + aa 4 MM ww + TT Equation 12: Lee et al. dead gas viscosity correlation μμ gg = μμ gggg μμ pp Equation 13: Lee et al. live gas viscosity correlation μμ pp = ee XX 0ρρ [XX 1 ] Equation 14: Lee et al. pressure correction XX 0 = aa 5 + aa 6 TT + aa 7MM ww XX 1 = aa 8 + aa 9 XX 0 Where: Oilfield.μ g dynamic gas viscosity at pressure and temperature of interest [cp].μ gd dynamic atmospheric gas viscosity at temperature of interest [cp].μ p pressure correction factor [ ].ρ gas density [g/cc].m w gas molecular mass [lb/mol].t temperature of interest [ o F] X 0-X 1 are intermediate variables a 0-a 9 are constants. Constant Value Constant Value a0 9.4 a5 3.5 a1 0.02 a6 986 a2 1.5 a7 0.01 a3 209 a8 2.4 a4 19 a9-0.2 SI Conversions Output μ g [mpa.s] = μ g [cp] 1 Input T [ o F] = T [K] 9 5-459.68.ρ [g/cc] =.ρ [kg/m 3 ] 1000 M w [lb/mol] = M w [g/mol] 1 7

Density ρρ gg = MM wwpp ZZZZZZ Equation 15: Gas Density from the real gas law. ρ g gas density [lb/cuft] [kg/m 3 ].M w apparent molecular mass of the gas [lb/mol] [g/mol].p pressure of interest [psia] [Pa].T temperature of interest [degr] [K].Z compressibility factor [ ] [ ].R universal gas constant [[psia.cuft]/[mol. o R]] [J/mol/K] Pressure Gradient = MM wwpp 144ZZZZZZ Equation 16: Gas Gradient (oilfield units) = MM wwpp gg ZZZZZZ Equation 17: Gas Gradient (SI units). p/ z gas gradient [psi/ft] [Pa/m].M w apparent molecular mass of the gas [lb/mol] [g/mol].p pressure of interest [psia] [Pa].T temperature of interest [degr] [K].Z compressibility factor [ ] [ ].R universal gas constant [[psia.cuft]/[mol. o R]] [J/mol/K] 144 Square inches in a square foot [in 2 /ft 2 ] - g Acceleration due to gravity - [m/s 2 ] Compressibility cc gg = 1 pp 1 ZZ dddd dddd TT Equation 18: gas compressibility from the real gas law.c g compressibility of the gas [1/psi] [1/Pa].p pressure of interest [psia] [Pa].T temperature of interest [degr] [K].Z compressibility factor [ ] [ ] 8

Coefficient of Thermal Expansion αα gg = 1 TT + 1 ZZ dddd dddd pp Equation 19: Coefficient of thermal expansion from the real gas law.α g coefficient of thermal expansion of the gas [1/degF] [1/K].p pressure of interest [psia] [Pa].T temperature of interest [degr] [K].Z compressibility factor [ ] [ ] Compressional Wave Velocity γγ xx vv gg = ρρ gg cc gg Equation 20: Speed of sound in gas 2 1 = 1 TTVV mmαα gg γγ xx CC pp cc gg.v g compressional wave velocity [ft/s] [m/s].c p specific heat capacity at constant pressure [psi.cuft/mol/degf] [J/K].V m molar volume of the gas at temperature and pressure [cuft/lb-mol] [m 3 /g-mol] of interest.ρ g gas density at pressure and temperature of interest [lb/cuft] [kg/m 3 ].c g compressibility of the gas at temperature and [1/psi] [1/Pa] pressure of interest.α g coefficient of thermal expansion at temperature and [1/degF] [1/K] pressure of interest.t temperature of interest [degr] [K] 9

Darcy s Law qq gg = aa 00kk gg h pp ee pp wwww μμ gg BB gg ln rr ee rr 1 ww 2 + ss Equation 21: Darcy's Law for the radial flow of a gas.q g gas flow rate [scf/d] [m 3 /d].k g effective permeability to gas [md] [md].h Thickness [ft] [m].p e pressure at the edge of the reservoir [psia] [kpa].p wf pressure at the wellbore [psia] [kpa].μ g gas viscosity [cp] [mpa.s].b g gas formation volume factor [cuft/scf] [m 3 /sm 3 ].r e radius of edge of reservoir [ft] [m].r w radius of wellbore [ft] [m].s skin factor [ ] [ ].a 00 Unit conversion constant 5.61458/141.2 Pseudo-Pressure mm(pp) = 2 pp pp rrrrrr PP μμμμ dddd Equation 22 Pseudo-Pressure (Al-Hussainy).m(p) pseudo-pressure [psi 2 /cp] [ Pa/s].p ref reference pressure [psia] [kpa].μ gas viscosity [cp] [mpa.s].z gas compressibility factor [ ] [ ] mm(pp) = pp ii pp rrrrrr pp ρρ ii pp μμμμ dddd rrrrrr pp pp rrrrrr ρρ μμμμ dddd + pp rrrrrr Equation 23: Pseudo-Pressure (Walsh & Lake).m(p) pseudo-pressure [psia] [kpa].p i initial (high) reference pressure [psia] [kpa].p ref abandonment (low) reference pressure [psia] [kpa].ρ In-situ gas density [lb/cuft] [kg/m 3 ].μ gas viscosity [cp] [mpa.s].z gas compressibility factor [ ] [ ] 10

Macros Name Purpose Qualifier Units Source Date Module stan_pc Critical Pressure Gas [psia] Brown & Standing 1948 Z stan_tc Critical Temperature Gas [degf] Brown & Standing 1948 Z abou_z Z-Factor Gas [ ] Dranchuk & Abou- 1975 Z Kassem Lee1_Ugb Viscosity Gas, Live [cp] Lee, Gonzalez & Eakin 1966 Viscous Lee1_Ugd Viscosity Gas, Dead [cp] Lee Gonzalez & Eakin 1966 Viscous 11