23 6 2003 11 ACTA SCIENTIAE CIRCUMSTANTIAE Vol. 23,No. 6 Nov.,2003 :025322468 (2003) 0620758207 :X511 :A CO 2 CH 4 N 2 O 1, 1,2 3, 210095 ; 2., 100029), 1, 2, 2 (1. : ( )2 CO 2 CH 4 N 2 O. CO 2, ( ) ; CH 4 N 2 O CO 2. N 2 O CO 2 ( p < 01001), ( p < 01001). (Q 10 ) 2117 1168. CO 2 ( p < 0105). CO 2 CH 4 N 2 O 198135 34100 mgπ(m 2 h),0163 0129 mgπ(m 2 h) 169157 75130 gπ(m 2 h), 3 1133151 51116 mgπ(m 2 h),1139 0120 mgπ(m 2 h) 231148 35109 gπ(m 2 h).,. : ;CO 2 ;CH 4 ;N 2 O ; ; A field study on CO 2, CH 4 and N 2 O emissions from rice paddy and impact factors ZOU Jianwen 1, HUANG Yao 1, 2, ZONGLianggang 1, ZHENG Xunhua 2, WANG Yuesi 2 (1. College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095 ;2. Institute of Atmospheric Physics, Beijing 100029) Abstract :A field experiment was conducted to evaluate CO 2, CH 4 and N 2 O emissions from rice paddy with static2chamber and a modified gas chromatograph (Agilent 4890D). In this paper, gas samples were taken simultaneously from rice2involved and rice2uninvolved plots. The seasonal trend of CO 2 emission from rice2involved plot was determined by air Πsoil temperature while soil water status was the main factor controlling the seasonal pattern of CO 2 emission from rice2uninvolved plot. Correlation analysis demonstrated that CO 2 emissions were significantly correlated with N 2 O fluxes during non2flooding period ( p < 01001). The exponential relationships between CO 2 emissions from rice2involved or rice2uninvolved plot and air or soil temperature were expressed through temperature coefficient ( Q 10 ), which was for 2117 and 1168, respectively ( p < 01001). A positive correlation of N 2 O flux with soil Πair temperature was also obvious during non2flooding period ( p < 01001) and a negative correlation of CO 2 emission with water level was perceivable for rice2involved or rice2uninvolved plots ( p < 0105). The mean seasonal emission rates of CO 2, CH 4 and N 2 O for rice2uninvolved plot were 198135 34100 mgπ(m 2 h), 0163 0129 mgπ(m 2 h) and 169157 75130 gπ(m 2 h), respectively. For rice2involved plot, the mean seasonal emission rates of CO 2, CH 4 and N 2 O reached 1133151 51116 mgπ(m 2 h), 1139 0120 mgπ(m 2 h),and 231148 35109 gπ(m 2 h),respectively. The calculation with Q 10 and mathematic functions suggested that the amount of CO 2 absorbed was more than the released for rice ecosystem over growing season. Keywords :rice paddy ; CO 2 ; CH 4 ; N 2 O ; impact factor ; correlation analysis CH 4 CH 4 12 % [1 ]. CH 4 30 Tg (20 40 Tg,1 Tg = 10 12 g) [2 ]., N 2 O 70 % 90 %, N 2 O2N 2 3 TgΠa [3 ], N 2 O2N :2002211218 ; :2003202228 : ( KZCX12SW201213) ; : (1971 ),, E2mail : jwzou21 @njau. edu. cn ; 3 E2mail : huangy @njau. edu. cn
6 : CO 2 CH 4 N 2 O 759 21 % 46 %. 2816 10 6 hm 2, 20 % (2001 ). CH 4 N 2 O 10 ], CO 2, CO 2 CH 4 N 2 O [11,12 ]. CO 2 CH 4 N 2 O., 2 CO 2 CH 4 N 2 O, CO 2 CH 4 N 2 O. 1 1. 1 2001. 9516,2001205219,2001206221,36 Πm 2, 5,10 15 d. 2 m 5 m, CO 2 CH 4 N 2 O, ( 1 m 1 m). ( ) 2. ( ), 50 cm 50 cm,, 10 cm,. 333 kg(n)πhm 2, 3, 2001206220 (N P 2 O 5 K 2 O = 8 8 9) 750 kgπhm 2 ; 2001206228 150 kgπhm 2 ; 2001207218 150 kgπhm 2. :2001207224 2001208202,2001209210 2001210205,2001210205,.. :ph(h 2 O) 617 ; 1715 gπkg, 119 gπkg ; 490 gπkg. 112 2 CO 2 CH 4 N 2 O.. 2, 1. 8 :00 10 :00,, 0 5 10 15 20 min, 60 ml. Agilent 4890D CO 2 CH 4 N 2 O [12],N 2 O ECD, 330 ;CO 2 CH 4 FID, 380 200. 55. 5 [13]. CO 2 CH 4 N 2 O. 1. 3, Temperature Logger (Onset Computer Corporation,USA) 8 :00 10 :00 10 cm., 105 015 h, 70.. 2 211 CO 2 CH 4 N 2 O 1 CO 2 CH 4 N 2 O., [4
760 23 1 Fig. 1 The seasonal variations on greenhouse gases and temperatures in rice paddy, ( 1). CO 2, CO 2 ( )., CO 2, CO 2, CO 2, CO 2. N 2 O ( 1),. ( ), CO 2 ( )., CO 2. CH 4, ( 1). CH 4 19 d, [6,9 ]. CH 4. N 2 O ( 1), CH 4,. CO 2 CH 4 N 2 O 3,,CO 2 CH 4 N 2 O. N 2 O, N 2 O CO 2, ( 1). N 2 O CO 2 1 CO 2 N 2 O Table 1 Correlation matrix of CO 2 and N 2 O emission with temperature during 1 non2flooding period ( n = 30, P 0101 = 014629, P 01001 = 015703) N 2 O2b 3 CO 2 2b N 2 O2a 3 CO 2 2a 0. 966 1 N 2 O2b 0. 769 0. 749 1 CO 2 2b 0. 569 0. 595 0. 766 1 N 2 O2a 0. 813 0. 782 0. 820 0. 586 1 CO 2 2a 0. 837 0. 901 0. 674 0. 585 0. 728 1 3 a ;b
6 : CO 2 CH 4 N 2 O 761 [14,15 ]., ( N 2 O ), N 2 O, CO 2. N 2 O CO 2,, [16 N 2 O 18 ], N 2 O [13,19 ], CO 2. CH 4 CO 2. 212 CO 2 CH 4 N 2 O, CO 2 ( 1)., CO 2, CO 2., CO 2. 1811 3413, CO 2 ( 1),, ( Q 10 ) 2117 ; 1618 2819, CO 2 ( 1) ( Q 10 = 1168). [21 CH 4 24 ]. CH 4,CH 4 [7,9,25 28 ]., CH 4, [25,29 ]., CH 4,,,CH 4. CH 4. N 2 O, N 2 O ( 1). ( ) N 2 O,, N 2 O ( 1).,, N 2 O. N 2 O [7 ]. 2. 3 CO 2 CH 4 CO 2, Q 10 = 2117 Q 10 = 1168 CO 2 25., CO 2 ( 2)., CO 2 2 CO 2 (a) (b) Fig. 2 The relationship between CO 2 emission rate and water level in rice paddy
762 23 ; CO 2,,,., CH 4 [32 34 ],, CH 4. Lindau [35 ] (5 10 cm) CH 4., 0 10 cm,5 cm CH 4, CH 4. 214 CO 2 CH 4 N 2 O 3 Fig. 3 Seasonal comparison of the total amounts of greenhouse gases in rice paddy. CO 2 CH 4 N 2 O 3. CH 4 1139 0120 mgπ(m 2 h), CH 4 (0163 0129 mgπ(m 2 h) ) 120 %. N 2 O 231148 35109 gπ(m 2 h), N 2 O 169157 75130 gπ(m 2 h), N 2 O 37 %. CO 2 1133151 51116 mgπ(m 2 h), CO 2 198135 34100 mgπ(m 2 h), Kahalil (295 mgπ(m 2 h) ) [11 ], CO 2 472 %,,,,. 215 CO 2 ( F s ) ( F v ), Q 10 = 1168, Q 10 = 2117, CO 2 : F = F s + F v = 439132 1168 ( ( T s - 25)Π10) + 846149 2117 ( ( T a - 25)Π10) ( R 2 = 018490, p < 01001 ) (1), F CO 2 mgπ(m 2 h), T s,1618 T s 2918, T a,1811 T a 3413. (1) CO 2 ( R s ), 11195 tπhm 2, 426145 mgπ(m 2 h), CO 2 2115.,. C [CO2 ] = 0127 CO 2 (2) C [CH4 ] = 0175 CH 4 (3) NPP = 111 TAGB [36 ] (4) C [NPP] = 0127 NPPΠ(0168 0185) = 0147 NPP [37 ] (5) C = C [NPP] - C [ Rs] - C [CH4 ] (6) C [CO2 ] C [CH4 ] CO 2 CH 4 C ;NPP (Net primary production), C [NPP] NPP C ; TAGB ( Total above2ground biomass)
6 : CO 2 CH 4 N 2 O 763. TAGB 20166 tπhm 2, C [NPP] 10168 tπhm 2, C [ Rs ] 3123 tπhm 2, C [CH4 ] 0103 tπhm 2, 7142 tπhm 2. 3 CO 2, ( ) CO 2, ; ( ) CH 4 N 2 O CO 2,., N 2 O CO 2,. CO 2. CO 2. CO 2 CH 4 N 2 O 472 %,120 % 37 %., CO 2 2115,. : [ 1 ] IPCC. Climate Change [A]. The supplementary report to the IPCC scientific assessment [ C]. New York :Cambridge University Press, 1992 [ 2 ]. [M]. :,2001. 6 10 [ 3 ] FAO and IAEA. Measurement of methane and nitrous oxide emissions from agriculture [A]. A Joint Undertaking by the Food and Agriculture Organization of the United Nations and the International Atomic Energy Agency [ C]. International Atomic Energy Agency, Vienna. 1992. 5 6 [ 4 ],,,. CH 4 N 2 O [J ].,1995,6 (4) :378 382 [ 5 ],,,. CH 4 N 2 O [J ].,1997,8 (3) :270 274 [ 6 ],,,. N 2 O CH 4 [J ].,1997,21 (2) :231 237 [ 7 ] Zheng X H,Wang M X,Wang Y S, et al. Characters of greenhouse gas (CH 4 N 2 O NO) emissions from croplands of southeast China [J ]. World Resource Review,1999,11 (2) :239 246 [ 8 ] Cai Z C,Xing G X,Yan X Y, et al. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management [J ]. Plant and Soil,1997,196 (1) :7 14 [ 9 ] Cai Z C,Xing G X,Shen G Y, et al. Measurements of CH 4 and N 2 O emissions from rice fields in Fengqiu,China [J ]. Soil Science and Plant Nutrition,1999,45 (1) :1 13 [10 ] Hou A X, Chen G X, Wang Z P, et al. Methane and nitrous oxide emissions from a rice field in relation to soil redox and microbiological processes [J ]. Soil Science Society of America Journal,2000,64 :2180 2186 [11 ] Kahalil. Emission of trace gases from Chinese rice fields and biogas generation :CH 4,N 2 O,CO 2,chorocarbons,and hydrocarbons [J ]. Chemosphere,1990,20 :207 213 [12 ],,,. CH 4 N 2 O CO 2 [J ].,2002,25 (4) :45 48 [13 ],,,. N 2 O [J ].,2001,22 (6) :20 23 [14 ],,,. [J ].,2001,56 (1) :44 53 [15 ] Aulakh M S, Doran J W, Walter D T, et al. Crop residue type and placement effects on denitrification and mineralization [J ]. Soil Science Society of America Journal,1991,55 :1020 1025 [16 ]. [J ].,1990,1 (1) :94 95 [17 ],. N 2 O [J ].,1993,4 (1) :295 298
764 23 [18 ],,,. N 2 O [J ].,1997,8 (2) :177 180 [19 ],,. N 2 O [J ].,1995,6 (4) : 387 391 [20 ] Sass R L,Fisher F M,Turner F T, et al. Methane emission from rice fields as influenced by solar radiation,temperature and straw incorporation [J ]. Global Biogeochemical Cycles,1991,5 :335 350 [21 ] Wassmann R,Neue H U,Bueno C, et al. Methane prduction capacities of different rice soils derived from inhernet and exogenous substrates [J ]. Plant and Soil,1998,203 :227 237 [22 ],,,. CH 4 [J ].,1993,8 (5) :1 12 [23 ] Husin Y A, Murdiyarso D. Methane flux from Indonesian wetland rice : The effect of water management and rice variety [J ]. Chemosphere,1995,31 :3153 3180 [24 ] Zheng X H,Wang M X,Wang Y S, et al. Comparison of manual and automatic methods for measurement of methane emission from rice paddy fields [J ]. Advances in Atmospheric Sciences,1998,15 (4) :569 579 [25 ] Huang Y,Jiang J Y,Sass R L, et al. Comparison of field measurements of CH 4 emission from rice cultivation in Nanjing,China and in Texas,USA [J ]. Advances in Atmospheric Sciences,2001,18 (6) :1121 1130 [26 ] Yagi K,Tsuruta H,Kanda K, et al. Effect of water management on methane emission from a Japanese rice paddy field :Automatmated methane monitoring [J ]. Global Biogeochemical Cycles,1996,10 :255 267 [27 ] Sass R L, Fisher F M, Wang Y B, et al. Methane emission from rice paddies : The effect of floodwater management [J ]. Global Biogeochemical Cycles,1996,6 :249 262 [28 ],,,. [J ].,1991,15 (1) :102 110 [29 ],,Wassmann R. [J ].,1993,17 (5) :604 610 [30 ] Yao H,Chen Z L. Effect of chemical fertilizer on methane emission from rice paddies [J ].Journal of Geophysical Research,1994,99 (D8) :16463 16470 [31 ] Yao H, Chen Z L. Seasonal variation of methane flux from a Chinese rice paddy in semiarid, temperate region [J ]. Journal of Geophysical Research,1994,99 (D8) :16471 16477 [32 ] Moore T R,Roulet N T. Methane flux2water table relations in northern wetlands [J ]. Geophysical Research Letters,1993,20 :587 590 [33 ] Schimel J P,Gulledge J. Microbial community structure and global trace gases [J ]. Global Change Biology,1998,4 :745 758 [34 ],. CH 4 [J ].,1993,8 (5) :1 12 [35 ] Lindau C W,Bollich P K,Delaune R D, et al. Effect of the urea fertilizer and environment factors on CH 4 emissions from a Louisiana rice field [J ]. Plant and Soil,1991,136 :195 203 [ 36 ] Huang Y,Sass R L,Fisher F M. Methane emission from Texas rice paddy soils. 1. Quantitative multi2year dependence of CH 4 emission on soil,cultivar and grain yield [J ]. Global Change Biology,1997,3 :479 489 [37 ] Huang Y,Gao L Z,Jin Z Q, et al. Simulating the optimal growing season of rice in the Yangtze River Valley and its adjacent area, China [J ]. Agricultural and Forest Meteorology,1998,91 :251 262