ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS

Σχετικά έγγραφα
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. Μέρος Β Κεφάλαιο 1ο Εμβαδά επίπεδων σχημάτων Πυθαγόρειο Θεώρημα 1.4 Πυθαγόρειο Θεώρημα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος

1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ

Γ Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 1

Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α.

Συνοπτική θεωρία. Οι σημαντικότερες αποδείξεις. Ερωτήσεις αντικειμενικού τύπου. Ασκήσεις. Διαγωνίσματα

Τι ονομάζουμε εμβαδόν μιας επίπεδης επιφάνειας; Αναφέρετε ονομαστικά τις μονάδες μέτρησης επιφανειών.

3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ

Ιδιότητες τετραπλεύρων / Σύγκριση τριγώνων / Πυθαγόρειο Θεώρημα Θεμελιώδη θεωρήματα / Προτάσεις /

Ενδεικτικό Φύλλο Εργασίας 1. Επίπεδα και Ευθείες Ονοματεπώνυμο:... Τάξη Τμήμα:... Ημερομηνία:...

Cabri II Plus. Λογισμικό δυναμικής γεωμετρίας

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

ΣΕΝΑΡΙΟ 1 Ο ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

2. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ

Qwertyuiopasdfghjklzxcvbnmq. wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer tyuiopasdfghjklzxcvbnmqwerty. opasdfghjklzxcvbnmqwertyuiop

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Β ΓΥΜΝΑΣΙΟΥ 2013

Επέκταση του Πυθαγόρειου Θεωρήματος με χρήση Τ.Π.Ε.

Εφαρμογές του Πυθαγορείου θεωρήματος- Υπολογισμοί στο Δένδρο του Πυθαγόρα. Σ.Πατσιομίτου 1

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ

ΘΕΩΡΙΑ ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: ΘΕΜΑ 1 ο. A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ;

ΣΧΗΜΑΤΑ-ΓΡΑΜΜΕΣ-ΜΕΤΡΗΣΗ Μιχάλης Χριστοφορίδης Ανδρέας Σάββα Σύμβουλοι Μαθηματικών

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΣΕΝΑΡΙΟ ΤΠΕ ΓΕΝΙΚΕΥΜΕΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ - ΝΟΜΟΣ ΣΥΝΗΜΙΤΟΝΩΝ

Σχολικός Σύµβουλος ΠΕ03

Μαθηματικά προσανατολισμού Β Λυκείου

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΔΕΥΤΕΡΟΒΑΘΜΙΕΣ ΕΞΙΣΩΣΕΙΣ

Qwertyuiopasdfghjklzxcvbnmq. wertyuiopasdfghjklzxcvbnmqw ertyuiopasdfghjklzxcvbnmqwer. tyuiopasdfghjklzxcvbnmqwerty. uiopasdfghjklzxcvbnmqwertyui

1.Μετρώντας τις διαστάσεις του Θεάτρου

Ενδεικτικό Φύλλο Εργασίας 1. Ορθογώνιο Παραλληλεπίπεδο - Κύβος

5. Τα μήκη των βάσεων ενός τραπεζίου είναι 8 cm και 12 cm και το ύψος του είναι 7. Να βρείτε το εμβαδό του.

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ. 2. Να μπορούν να βρούν μία πλευρά ενοςορθογωνίου τριγώνου αν ξέρουν

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΑΣΚΗΣΗ 1 Ποιο από τα δύο σχήματα Α, Β έχει το μεγαλύτερο εμβαδόν;

κατασκευής ενός τριγώνου, με υπολογισμό του εμβαδού του τριγώνου,,με την σχέση που υπάρχει μεταξύ του ύψους και του εμβαδού του, τη

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ. Το Θεώρημα γεννιέται πριν από 4000 χρόνια

Επαναληπτικές Ασκήσεις

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

Να απαντήσετε τα θέματα 1 και 2 αιτιολογώντας πλήρως τις απαντήσεις σας. Το κάθε θέμα είναι 10 μονάδες.

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα

Ενδεικτικό Φύλλο Εργασίας 1. Ορθογώνιο Παραλληλεπίπεδο - Κύβος

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ

2. Πόσοι ακέραιοι αριθμοί μεταξύ του 10 και του 100 αυξάνονται κατά 9 μονάδες, όταν αντιστραφούν τα ψηφία τους; Γ. Αν, Δ. Αν, τότε. τότε.

ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii)

Μαθηματικά Γ Γυμνασίου Εισαγωγή στα Πρότυπα Τεστ. Πειραματικά Λύκεια ΕΠΕΣ Π.Π. ΓΕΛ Βαρβακείου Σχολής Συντάκτης Λυγάτσικας Ζήνων ΠΕ 03 Χρόνος

MAΘΗΜΑΤΙΚΑ. κριτήρια αξιολόγησης B ΓΥΜΝΑΣΙΟΥ. Πέτρος Μάρκος

Ορισμός Το εμβαδόν κυκλικού δίσκου ακτίνας ρ, ισούται µε. Ε = πρ 2.

Άλγεβρα Α ΕΠΑΛ Εξεταστέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.

Αθανασίου Ανδρέας, Αντωνιάδης Μ., Γιασουµής Ν., Ιωάννου Ι., Ματθαίου Κ., Μουσουλίδου M., Παπαγιάννης Κ., Φιλίππου Α. (2013). Μαθηµατικά Α Γυµνασίου,

Ε.Π. Εκπαίδευση και Δια Βίου Μάθηση, ΕΣΠΑ ( ) ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ

Ο παρακάτω πίνακας τιμών θα βοηθήσει να γίνει πιο κατανοητή η λειτουργία των εντολών της συγκεκριμένης άσκησης. Α/Α Εντολές Μνήμη (Μεταβλητή α) Οθόνη

Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Α Σ.

Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΔΙΑΧΕΙΡΙΣΗ ΥΛΗΣ ΜΑΘΗΜΑ ΓΕΩΜΕΤΡΙΑ

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

Σταυρούλα Πατσιομίτου

Εξεταστέα ύλη μαθηματικών Α Λυκείου 2017

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΜΕΡΟΥΣ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ GEOGEBRA

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ : ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ ΤΑΞΗ: Γ ΓΥΜΝΑΣΙΟΥ. ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΧΡΟΝΟΣ : 6 διδακτικές ώρες

ΜΑΘΗΜΑΤΙΚΑ Β Γυμνασίου

Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια ( ) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

1. Η γραφική παράσταση της συνάρτησης y = 2x + β διέρχεται από το σημείο Α( 1, 2). Να βρείτε τον αριθμό β.

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ

A

Ο Υπολογισμός του π από τον Αρχιμήδη. Οι πιο σημαντικές συνεισφορές του Αρχιμήδη στα Μαθηματικά ανήκουν στον Ολοκληρωτικό Λογισμό.

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ

2.3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

Μαθηματικά Β Γυμνασίου

ΑΣΚΗΣΗ 3 η : H βαθµολογία των µαθητών σε ένα διαγώνισµα στα Μαθηµατικά φαίνεται στο παραπάνω ραβδόγραµµα.

ΠΡΟΓΡΑΜΜΑΤΙΣΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ

ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

Κεφάλαιο 1: Κίνηση και γεωμετρικά σχήματα

Ιωάννης Σ. Μιχέλης Μαθηματικός

Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ I.

Β Γυμνασίου, Μέρο Α, Κεφάλαιο 2, Πραγματικοί αριθμοί

ΜΑΘΗΜΑΤΙΚΑ MATHEMATICS

Θυμάμαι σαν χθες (παρόλου που πέρασαν μερικά χρονάκια) τον Μαθηματικό μας, να μας λέει με δυνατή και σοβαρή φωνή:

ΓΥΜΝΑΣΙΟ ΑΓΙΟΥ ΑΘΑΝΑΣΙΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2012(Β ΣΕΙΡΑ) ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ :

3, ( 4), ( 3),( 2), 2017

Παρασκευή-Ανδριάννα Μαρούτσου Πρότυπο Γυμνάσιο Ευαγγελικής Σχολής Σμύρνης Επιβλέπων καθηγητής: Νικόλαος Μεταξάς, Δρ. Μαθηματικών Θεματική Ενότητα:

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

: :

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΤΩΝ ΕΠΑΛ

ΘΕΜΑΤΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ

Διαχείριση Καταστάσεων προβλημάτων στο Νηπιαγωγείο. Από τη μοιρασιά της τούρτας στην ανάπτυξη γεωμετρικών εννοιών

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ' ΓΥΜΝΑΣΙΟΥ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ ΘΕΩΡΙΑ :

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

Transcript:

246 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΚΑΙ ΤΟ ΕΜΒΑΔΟ ΚΥΚΛΙΚΟΥ ΔΙΣΚΟΥ ΜΕΣΑ ΑΠΟ ΜΙΑ ΣΕΙΡΑ JAVA-APPLETS Φουναριωτάκης Αθανάσιος Μαθηματικός Β/θμιας Εκπαίδευσης Προσωπική ιστοσελίδα: http://users.ira.sch.gr/thafounar E-mail: thafounar@sch.gr ΠΕΡΙΛΗΨΗ Θα παρουσιασθούν μια ομάδα από Java applets με τα οποία μπορούμε να διδάξουμε το Πυθαγόρειο θεώρημα και το εμβαδόν του κυκλικού δίσκου σε μαθητές της Β-Γυμνασίου.Με τα applets αυτά δίνεται η δυνατότητα στους μαθητές να επανανακαλύψουν το Πυθαγόρειο θεώρημα, να διαπιστώσουν την ισχύ του σε όλα τα ορθογώνια τρίγωνα και να κατανοήσουν τον τρόπο υπολογισμού του εμβαδού του κυκλικού δίσκου.. ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Πυθαγόρειο θεώρημα, java applets, Bhaskara, Perigal, εμβαδόν κυκλικού δίσκου ΣΤΟΧΟΙ Με τα παρακάτω applets επιδιώκουμε οι μαθητές: α) Να επανανακαλύψουν το Πυθαγόρειο θεώρημα. β) Να διαπιστώσουν την ισχύ του στα ορθογώνια τρίγωνα και όχι σε άλλα. γ) Να κατανοήσουν την απόδειξη που έδωσε ο Πυθαγόρας στο ομώνυμο θεώρημα δ) Να διαπιστώσουν την ελκυστικότητα του θεωρήματος ερχόμενοι σε επαφή με διάφορες αποδείξεις που δόθηκαν κατά καιρούς σ αυτό. ε) Να κατανοήσουν τη διαδικασία τεμαχισμού ενός κυκλικού δίσκου και σύνθεσης ενός ορθογωνίου από τα κομμάτια που προκύπτουν. ΠΑΡΟΥΣΙΑΣΗ ΛΟΓΙΣΜΙΚΟΥ Αρχικά παρουσιάζουμε ένα ορθογώνιο τρίγωνο έξω από το οποίο έχουμε σχεδιάσει τα τετράγωνα των πλευρών του. Θέτουμε το ερώτημα: Αν γεμίσουμε τα τετράγωνα των καθέτων πλευρών με μικρά πετραδάκια και τα μεταφέρουμε στο τετράγωνο της υποτείνουσας, τι θα γίνει άραγε; Πατάμε το πλήκτρο «Γέμισμα» και τα τετράγωνα των καθέτων πλευρών γεμίζουν με μικρά πετραδάκια.όπως φαίνεται στην επόμενη εικόνα.

3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ-ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 247 Σχήμα 1.Τα τετράγωνα γεμάτα Σχήμα 2. Η διαδικασία μεταφοράς σε εξέλιξη Πατάμε το πλήκτρο «Εκκίνηση» και αρχίζει η διαδικασία μεταφοράς των κομματιών από τα τετράγωνα των καθέτων πλευρών στο τετράγωνο της υποτείνουσας,όπως φαίνεται στο σχήμα 2. Με τα σχετικά πλήκτρα μπορούμε να σταματήσουμε τη διαδικασία, να την επιταχύνουμε ή επιβραδύνουμε ενώ με το πλήκτρο Reset επανερχόμαστε στην αρχική κατάσταση για επανάληψη της διαδικασίας. Στο τέλος το τετράγωνο της υποτείνουσας έχει καλυφθεί από τα κομμάτια και οι μαθητές αβίαστα συμπεραίνουν ότι το άθροισμα των εμβαδών των τετραγώνων των καθέτων πλευρών είναι ίσο με το εμβαδόν του τετραγώνου της υποτείνουσας. Για να ενισχύσουμε το συμπέρασμα στο οποίο φθάσαμε χρησιμοποιούμε το επόμενο applet στο οποίο χωρίζουμε το τετράγωνο της μίας κάθετης πλευράς σε κομμάτια και μετακινώντας τα μαζί με το τετράγωνο της άλλης κάθετης πλευράς γεμίζουμε το τετράγωνο της υποτείνουσας. Η όλη διαδικασία φαίνεται στις επόμενες τρις εικόνες. Η μετακίνηση των κομματιών γίνεται με το ποντίκι και εάν υπάρχει η σχετική υποδομή μπορούν μόνοι τους οι μαθητές να μετακινήσουν τα κομμάτια:

248 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ Μέχρι τώρα οι μαθητές έχουν πεισθεί για την ισχύ του Πυθαγορείου θεωρήματος μπορεί όμως κάποιος να ρωτήσει αν το θεώρημα ισχύει σε όλα τα ορθογώνια τρίγωνα ή αν ισχύει και στα τρίγωνα που δεν είναι ορθογώνια.γι αυτό χρησιμοποιούμε το επόμενο applet στο οποίο έχουμε ένα ορθογώνιο και ένα οξυγώνιο τρίγωνο τα οποία μπορούμε να μεταβάλλουμε και να δούμε αν ισχύει το θεώρημα Στο παραπάνω applet πατώντας στις κορυφές Α και Β του ορθογωνίου τριγώνου αριστερά μπορούμε να μεταβάλουμε τις διαστάσεις του και να διαπιστώσουμε ότι σε όλα τα ορθογώνια τρίγωνα ισχύει το Πυθαγόρειο θεώρημα.στο δεξιό σχήμα έχουμε ένα οξυγώνιο τρίγωνο στις πλευρές του οποίου έχουμε κατασκευάσει τετράγωνα,παρατηρούμε ότι το θεώρημα δεν ισχύει.μεταβάλλοντας τη γωνία Ε μπορούμε να διαπιστώσουμε ότι μόνο στην περίπτωση που γίνει ορθή ισχύει το θεώρημα. Για να παρουσιάσουμε την απόδειξη που έδωσε ο Πυθαγόρας στο θεώρημα και υπάρχει στο σχολικό βιβλίο χρησιμοποιούμε το παρακάτω applet:

3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ-ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 249 Πατώντας το πλήκτρο «Σχήμα 1» σχεδιάζεται το πρώτο τετράγωνο πλευράς β+γ που υπάρχει στο σχολικό βιβλίο και φαίνεται στην παρακάτω εικόνα: Πατώντας το πλήκτρο «Σχήμα 2», σχεδιάζεται το άλλο τετράγωνο πλευράς β+γ όπως φαίνεται παρακάτω. Η σχεδίαση των τετραγώνων γίνεται με ελεγχόμενη κίνηση ώστε η όλη κατασκευή να γίνει κατανοητή από τους μαθητές.αν υπάρχει η αναγκαία υποδομή η όλη κατασκευή μπορεί να γίνει από τους ίδιους τους μαθητές χρησιμοποιώντας ειδικό applet.

250 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ Στο ιστορικό σημείωμα του σχολικού βιβλίου αναφέρονται οι αποδείξεις που έδωσαν ο Ινδός μαθηματικός Bhaskara και ο Perigal. Τις αποδείξεις αυτές μπορούμε να παρουσιάσουμε χρησιμοποιώντας τα παρακάτω applets. Στο applet αυτό φαίνονται τα κομμάτια στα οποία χώρισε ο Bhaskara το τετράγωνο της υποτείνουσας τα οποία αναδιατάσσοντας κατάλληλα σχηματίζουμε τα τετράγωνα των καθέτων πλευρών του ορθογωνίου τριγώνου. Πατώντας το πλήκτρο «Μεταφορά» τα κομμάτια μεταφέρονται και διατάσσονται όπως στην επόμενη εικόνα: Μπορούμε τώρα να μετακινήσουμε με το ποντίκι τα τετράγωνα των καθέτων πλευρών και να καλύψουμε το νέο σχήμα που δημιουργήθηκε, όπως φαίνεται στην επόμενη εικόνα: Η όλη κατασκευή μπορεί να γίνει και εδώ από τους ίδιους τους μαθητές. Για την απόδειξη Perigal χρησιμοποιούμε το επόμενο applet: Στο applet αυτό φαίνονται τα κομμάτια στα οποία χώρισε ο Perigal το τετράγωνο της υποτείνουσας τα οποία αναδιατάσσοντας κατάλληλα σχηματίζουμε τα τετράγωνα των καθέτων πλευρών. Πατώντας το πλήκτρο «Μεταφορά» τα κομμάτια μεταφέρονται και διατάσσονται όπως στην επόμενη εικόνα:

3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ-ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 251 Μπορούμε τώρα να μετακινήσουμε με το ποντίκι τα τετράγωνα των καθέτων πλευρών και να καλύψουμε το νέο σχήμα που δημιουργήθηκε,όπως φαίνεται στην επόμενη εικόνα: Η όλη κατασκευή μπορεί και εδώ να γίνει και εδώ από τους ίδιους τους μαθητές. Μπορούμε επίσης να παρουσιάσουμε τις αποδείξεις που έδωσαν στο Πυθαγόρειο θεώρημα ο Ευκλείδης,ο Κινέζος σοφός Hui και ο Λεονάρντο ντα Βίντσι χρησιμοποιώντας τα σχετικά applets τα οποία λόγω χώρου δεν παρουσιάζω εδώ. Για το εμβαδόν του κυκλικού δίσκου θα χρησιμοποιήσουμε το επόμενο applet: Στο applet αυτό μπορούμε να χωρίσουμε τον κυκλικό δίσκο σε όσα κομμάτια θέλουμε δίνοντας στο αριθμητικό πεδίο τον αριθμό που θέλουμε.πατώντας τα πλήκτρα «Μεταφορά» και «Συμπλήρωση» μεταφέρονται τα κομμάτια και σχηματίζεται ένα σχήμα που μοιάζει με ορθογώνιο όπως φαίνεται παρακάτω

252 3 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ Αυξάνοντας τον αριθμό 8 βλέπουμε ότι σχήμα που προκύπτει μοιάζει όλο και περισσότερο με ορθογώνιο για 20 π.χ φαίνεται παρακάτω και βγάζουμε τα συμπεράσματα μας. Όλα τα παραπάνω applets υπάρχουν και μπορείτε να τα δείτε στην ιστοσελίδα μου http://users.ira.sch.gr/thafounar ΒΙΒΛΙΟΓΡΑΦΙΑ 1. Lucas N.H.Bunt- Phillip S.Jones Jack D.Bedient (1981).Οι Ιστορικές Ρίζες των Στοιχειωδών Μαθηματικών. 2. Γιάννη Θωμαίδη Ανδρέα Πούλου.(2000).Διδακτική της Ευκλείδειας Γεωμετρίας 3. Μαθηματικά Β Γυμνασίου. ΟΕΔΒ