ϕ be a scalar field. The gradient is the vector field defined by

Σχετικά έγγραφα
ϕ be a scalar field. The gradient is the vector field defined by

webpage :

webpage :

ELE 3310 Tutorial 11. Reflection of plane waves Wave impedance of the total field

General theorems of Optical Imaging systems

Matrices and Determinants

Homework 8 Model Solution Section

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Multi-dimensional Central Limit Theorem

Inverse trigonometric functions & General Solution of Trigonometric Equations

ECE 222b Applied Electromagnetics Notes Set 3b

Multi-dimensional Central Limit Theorem

Convection Derivatives February 17, E+01 1.E-01 1.E-02 1.E-03 1.E-04 1.E-05 1.E-06 1.E-07 1.E-08 1.E-09 1.E-10. Error

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

( y) Partial Differential Equations

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

α & β spatial orbitals in

Phasor Diagram of an RC Circuit V R

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ

Chapter 4 : Linear Wire Antenna

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

19. ATOMS, MOLECULES AND NUCLEI HOMEWORK SOLUTIONS

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

ECE 222b Applied Electromagnetics Notes Set 3a

Na/K (mole) A/CNK

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Το άτομο του Υδρογόνου

Reminders: linear functions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Trigonometry 1.TRIGONOMETRIC RATIOS

Finite Field Problems: Solutions

Spherical Coordinates

Pairs of Random Variables

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Example Sheet 3 Solutions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

1.19 Curvilinear Coordinates: Curved Geometries

Section 8.3 Trigonometric Equations

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Constant Elasticity of Substitution in Applied General Equilibrium

Reflection & Transmission

EE512: Error Control Coding

Κύµατα παρουσία βαρύτητας

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

2. Chemical Thermodynamics and Energetics - I

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Mean-Variance Analysis

ON THE MEASUREMENT OF

8.324 Relativistic Quantum Field Theory II

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

Differential equations

Written Examination. Antennas and Propagation (AA ) April 26, 2017.


Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

α A G C T 國立交通大學生物資訊及系統生物研究所林勇欣老師

#%" )*& ##+," $ -,!./" %#/%0! %,!

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

! " #! $ %&! '( #)!' * +#, " -! %&! "!! ! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / # ' -. + &' (, % # , 2**.

1 B0 C00. nly Difo. r II. on III t o. ly II II. Di XR. Di un 5.8. Di Dinly. Di F/ / Dint. mou. on.3 3 D. 3.5 ird Thi. oun F/2. s m F/3 /3.

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Some Geometric Properties of a Class of Univalent. Functions with Negative Coefficients Defined by. Hadamard Product with Fractional Calculus I

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

Linearized Lifting Surface Theory Thin-Wing Theory

The Spiral of Theodorus, Numerical Analysis, and Special Functions

Lifting Entry (continued)

,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )

StringMassCylinder2. Clear["Global`*"] r = R * {Cos[theta[t]], Sin[theta[t]]} + u * {Sin[theta[t]], -Cos[theta[t]]}

D Alembert s Solution to the Wave Equation

LAPLACE TRANSFORM TABLE

ΘΕΩΡΙΑ ΤΩΝ ΗΜΙΑΓΩΓΩΝ ΔΕΥΤΕΡΗ ΕΝΟΤΗΤΑ ΟΜΟΓΕΝΕΙΣ ΗΜΙΑΓΩΓΟΙ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Byeong-Joo Lee

!"#$ % &# &%#'()(! $ * +

MathCity.org Merging man and maths

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Laplace s Equation in Spherical Polar Coördinates

derivation of the Laplacian from rectangular to spherical coordinates

Commutative Monoids in Intuitionistic Fuzzy Sets

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

m i N 1 F i = j i F ij + F x

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

m 1, m 2 F 12, F 21 F12 = F 21

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Fundamental Equations of Fluid Mechanics

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 28 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ( )

Forced Pendulum Numerical approach

DISPLAY SUPPLY: FILTER STANDBY

TeSys contactors a.c. coils for 3-pole contactors LC1-D

Transcript:

Amn Halloc Math Ecss E-mal : amn@sthths bpa : sthths/amn MATH EXERCISES GRADIENT DIVERGENCE CURL DEL NABLA OERATOR LALACIAN OERATOR CONTINUITY AND NAVIER-STOKES EQUATIONS VECTOR RODUCTS I and thn scala o dot podct cto o s podct In som boos s also consdd ot podct dnd b GRADIENT DIVERGENCE CURL DEL NABLA OERATOR LALACIAN OERATOR GRADIENT Lt ϕ b a scala ld Th adnt s th cto ld dnd b ad ϕ ϕ ϕ ϕ DIVERGENCE Lt R Q b a cto ld contnosl dntabl th spct to and Thn th dnc o s th scala ld dnd b R Q d CURL Th cl o s th cto ld dnd b Q R Q R R Q cl o Q R Q R cl DEL NABLA OERATOR Th cto dntal opato s calld dl o nabla / 7

Amn Halloc Math Ecss U can dnot ad d and cl as blo: ad ϕ ϕ d cl Not that s not th sam as Q R LALACIAN OERATOR Th Laplacan opato s dnd o a scala ld U b U U U U U and o a cto ld Q R b Q R Som omlas o pola and clndcal coodnats ola coodnats dm ϑ ϑ ϑ ϑ tansomaton: aa lmnt: da d d standad bass: [Rma : Not that a dpnd on hn mo om pont to pont ths s th ason h ths bass n som boos s calld local bass ] I n Catsan cood and ϑ th sam cto n pola coodnats thn ϑ [Rma : V can d ths omlas b calclatn th componnts o n th dctons o and Ths / 7

Amn Halloc Math Ecss smlal ϑ ϑ ] Clndcal coodnats : tansomaton: olm lmnt: d d d dv ϑ ϑ standad bass: I n Catsan cood and ϑ th sam cto n clndcal coodnats thn ha ollon cto componnts latonshp: ϑ [Rma : o ampl can t n th ollon a: ] scala ld: adnt: ad laplacan: cto ld: dnc: d cl: cl / 7

Amn Halloc Math Ecss EXERCISES nd a d b ad d and c cl nd ad d cl Whch on o th ollon nctons a b ln c p satss th Laplac qaton 0? 4 nd 5 Wt th nal tanspot qaton ϕ ϕu Γ ϕ S t φ thot opatos d cl o ad H U nctons ϕ Γ S a al nctons o t and 6 Whch on an o th ollon nctons 4 a ϕ b ϕ ϕ c satss th qaton ϕu Γ ϕ S? H Γ 5 U and S 4 7 nd hch on an o th ollon nctons a ϕ b ϕ 5 5 ϕ c satss th qaton ϕ d ϕu d Γadϕ S t h Γ U 4 and S 8 5 4 / 7

Amn Halloc Math Ecss 8 am 008 A Wt th nal tanspot qaton ϕ ϕu Γ ϕ S q t thot opatos d cl o ad H U nctons ϕ Γ S a al nctons o t and B Lt Γ U 4 nd S n th qaton q no that th ncton ϕ satss th qaton 9 Q6 am 008 Consd th ollon qaton ϕ ϕu Γ ϕ U 6 4 q t Lt Γ constant U nd th constant Γ n th qaton q no that th ncton ϕ t satss th qaton 0 I possbl nd o th n patal dats and a and b and c and d and 5 Hnt: Ncssa condton: I has contns dats thn th md dats o shold b qal Ths * s th ncssa condton o th stnc o a ncton that has th n dats Dtmn th al o a o hch th sstm o patal dntal qatons a and has soltons Thn nd pondn to ths al o a 5 / 7

Amn Halloc Math Ecss I possbl nd o th n patal dats and a and b and c and d and Hnt: Ncssa condton: I has contnos dats thn th md dats o shold b qal Ths Con : Con : Con : a th ncssa condton o th stnc o a ncton that has th n dats Dtmn th als o a and b o hch th sstm o patal dntal qatons a and b has soltons Thn nd pondn to ths als o a and b 4 W consd an ncompssbl dnst const stad stat aabls do not dpnd on tm sothmal Ntonan lo th a n loct ld V Us th ollon qatons contnt and Na Stos qatons to nd n psson o pss as a ncton o and h constant µ constant 00 0 and h 98m / s Incompssbl contnt qaton: 0 q Na Stos qatons: componnt: 6 / 7

Amn Halloc Math Ecss µ q t componnt: µ q t componnt: µ q4 t a V 4 0 b V 4 c V 4 5 am 009 A Consd th ollon qaton ϕ ϕu Γ ϕ U 6 6 4 8 4 t Lt Γ constant U 4 4 nd th constant Γ n th qaton q no that th ncton ϕ t satss th qaton q B W consd an ncompssbl dnst const stad stat aabls do not dpnd on tm sothmal Ntonan lo th a n loct ld V Us th ollon qatons contnt and Na Stos qatons to nd n psson o pss as a ncton o and h constant µ constant 00 0 and h 98m / s and V 6 4 4 6 am 009 W consd an ncompssbl dnst const stad stat aabls do not dpnd on tm sothmal Ntonan lo th a n loct ld V Us th ollon qatons contnt and Na Stos qatons to nd st paamt a and thn n psson o pss as a ncton o and h constant µ constant 00 0 and h 98m / s and V 5 a 7 / 7

Amn Halloc Math Ecss 7 Consd stad ncompssbl sothmal lamna statona Ntonan lo n a lon ond pp n th -dcton th constant ccla s-scton o ads R m Us th contnt and th Na-Stos qatons n clndcal coodnats to nd th loct ld V and th pss ld th ld lo satss th ollon condtons: c0 All patal dats th spct to tm t a 0 Stad lo c μ000 /m s and 000 /m c A Constant pss adnt / /50 a/m s appld n th hoontal as -as n o notaton: / /50 c Th lo s paalll to th as that s 0 and 0 c4 W assm that th lo s asmmtc Th loct dos not dpnd on that s 0 c5 Bonda cond No-slp bonda condton V ld V all : I thn 0 c6 Bonda condton : has mamm at 0 that s 0 0 --------------------------------------------------------------------------------------------- Th contnt and th Na-Stos qatons o an ncompssbl sothmal Ntonan lo dnst const st µ const th a loct ld V n Clndcal coodnats : Incompssbl contnt qaton 0 q a Na-Stos qatons n Clndcal coodnats: -componnt: t µ q b -componnt: t µ q c 8 / 7

Amn Halloc Math Ecss -componnt: t µ q d 8 Eam Mach 0 qston A 4ponts W consd an ncompssbl dnst const stad stat aabls do not dpnd on tm sothmal Ntonan lo th a n loct ld V c 4 b a Us th ollon qatons contnt and Na Stos qatons h constant µ constant 00 0 and 98m / s to nd: paamts a b and c n psson o pss as a ncton o and Th GRADIENT VECTOR th chan o aabls and bass Th adnt cto o th ncton s dnd as ad * I chan aabls to and plac bass ctos th n lnal ndpndnt ctos thn can pss th sam adnt cto ad n tms o aabls and ctos W smpl calclat th dats and n n aabls and pss as a lna combnatons o Thn sbsttt thos als nto * S th ollon ampl 7 W consd a scala ld n n clndcal coodnats h and bass ctos a nd th psson o th adnt ad n clndcal coodnats that s n tms o and a p th sam bass 9 / 7

Amn Halloc Math Ecss b c am 0; Q5 B ponts d ths s otn sd as a local bass o clndcal coodnats 8 am 06; Q6 A ponts D th Cach momntm qaton DV σ Dt Solton: S http://nomhannths/amn/ar_000/hl008/deriv_navier_stokespd ANSWERS AND SOLUTIONS: Solton: Q R a Snc d ha d 0 0 Ans a d ϕ ϕ ϕ b Snc ad ϕ ha o ϕ d ad d 00 Ans b ad d 00 d c cl Q R Ans c cl Solton: 0 / 7

Amn Halloc Math Ecss cl 0 Ths d cl 0 and tho ad d cl 000 0 Ans: ad d ot 000 0 0 0 Ans: Th ncton ln satss th Laplac qaton 4 Ans: d cl ad 6 5 Solton: ϕ d ϕu d Γadϕ Sφ t ϕ ϕ ϕ ϕ d ϕ ϕ ϕ d Γ Γ Γ Sφ t ϕ ϕ ϕ ϕ ϕ ϕ Γ Γ t ϕ Γ S φ 6 Whch on an o th ollon nctons 4 a ϕ b ϕ ϕ c satss th qaton ϕu Γ ϕ S? H Γ 5 U and S 4 Solton : Th qaton ϕu Γ ϕ S can b ttn as / 7

Amn Halloc d ϕu d Γadϕ S 5ϕ 5ϕ 5ϕ d ϕ ϕ ϕ d 4 ϕ ϕ ϕ 5 ϕ 5 ϕ 5 ϕ 4 Math Ecss q 4 a Lt ϕ ϕ V calclat th dats oϕ and sbsttt n th lt hand sd LHS and ht hand sd o th qaton q ϕ ϕ ϕ 4 4 ϕ 5 ϕ 5 ϕ 4 LHS: 5 RHS 60 4 Whnc LHS RHS Ths th ncton ϕ 4 s not a solton to th qaton b ϕ ϕ LHS 4 RHS 4 Whnc LHS RHS and th ncton ϕ s not a solton to th qaton ϕ ϕ c Lt Thn LHS 4 6 RHS 7 4 Ths LHS RHS and th ncton ϕ s not a solton to th qaton Ans: Non o th nctons satss th qaton 7 Ans: ncton ϕ 5 satss th qaton 8 am 98 A Wt th nal tanspot qaton ϕ ϕu Γ ϕ S q t thot opatos d cl o ad H U nctons ϕ Γ S a al nctons o t and / 7

Amn Halloc Math Ecss B Lt Γ U 4 nd S n th qaton q no that th ncton ϕ satss th qaton Solton: A ϕ ϕu Γ ϕ S t ϕ d ϕu d Γadϕ S t ϕ ϕ ϕ ϕ d ϕ ϕ ϕ d Γ Γ Γ S t ϕ ϕ ϕ ϕ ϕ ϕ ϕ Γ Γ Γ S q t B W sbsttt Γ U 4 and ϕ n th qaton q and t ϕ 4ϕ 8φ ϕ ϕ ϕ 0 S 0 8 4 0 6 8 S Consqntl S 4 8 8 4 9 Q6 am 008 Consd th ollon qaton ϕ ϕu Γ ϕ U 6 4 q t Lt Γ constant U nd th constant Γ n th qaton q no that th ncton ϕ t satss th qaton Solton: ϕ ϕu Γ ϕ U 6 4 t ϕ d ϕu d Γadϕ d cl U 6 4 t c cl U 0 ha d cl U 0 / 7

Amn Halloc Math Ecss ϕ ϕ ϕ ϕ d ϕ ϕ ϕ d Γ Γ Γ 0 6 4 t ϕ ϕ ϕ ϕ ϕ ϕ ϕ Γ Γ Γ 0 6 4 q t W sbsttt U and ϕ t n th qaton q and t ϕ ϕ ϕ φ ϕ ϕ ϕ Γ Γ Γ 6 4 t Not that Γ s a constant 6 0 Γ Γ 6 4 8 4Γ Γ Ans: Γ 0 I possbl nd o th n patal dats and a and b and c and d and 5 Hnt: Ncssa condton: I has contnos dats thn th md dats o shold b qal * s th ncssa condton o th stnc o a ncton that has th n dats Ans: a C b C c C d No solton c th condton * s not llld 5 Solton a Snc and th dats a contnos th condton * s llld and can nd o th n dats In od to nd ntat th spct to th st o th qatons q 4 / 7

Amn Halloc Math Ecss and t q d C Ths C W ha ntatd th spct to tho th constant stll dpnd on No to nd C dntat and sbsttt n q and t: C C C C C nall sbstttn C C n ha C h C s a constant Ans: om a a Thn o a ha C Ans: a C b C c C d No solton c th condton Con s not llld Solton a a and Snc th condtons Con a llld and can nd o th n dats In od to nd ntat th spct to th st o th qatons q q q and t d C Ths 5 / 7

Amn Halloc Math Ecss C W ha ntatd th spct to tho th constant stll dpnd on and No to nd C dntat and sbsttt n q and t: C C C C C W ha ntatd th spct to tho th constant stll dpnd on and Ths C No sbstttn n q ha C C C C C nall sbstttn C C n ha C h C s a constant Ans: om a a b b b b Ths all th condtons a llld a and b o ths als o a and b t C Calclaton o th pss ld o a non loct ld o an ncompssbl stad stat sothmal Ntonan lo 4 Ans: a 8 8 C 6 / 7

Amn Halloc Math Ecss 7 7 b C c 4 4 4 C Solton a W sbsttt 4 0 n q4 and t not that al dats th spct to t a 0: Contnt qaton: 0 0 q dntcall llld Na Stos qatons: componnt: 6 q componnt: 6 q componnt: 0 q4 No q s 8 C * Sbsttton n q mpls C 6 C 8 C Hnc om * ha 8 8 C ** No sbsttt ** n q4 and t 0 0 C C C h C s a constant nall sbstttn C C n ** ha 8 8 C h C s a constant 5 Solton A: ϕ ϕ U Γ ϕ U 6 6 4 8 4 t ϕ d ϕu d Γadϕ d cl U 6 6 4 8 4 t c cl U 0 ha d cl U 0 ϕ ϕ ϕ ϕ d ϕ ϕ ϕ d Γ Γ Γ 6 6 4 8 4 t 7 / 7

Amn Halloc Math Ecss ϕ ϕ ϕ ϕ ϕ ϕ ϕ Γ Γ Γ 6 6 4 8 4 t q W sbsttt U 4 4 and ϕ t n th qaton q and t ϕ 8ϕ 8ϕ φ ϕ ϕ Γ Γ t Not that Γ s a constant 6 6 6 4 8 6Γ 6 6 4 8 4 0 6Γ Γ 5 Ans A: Γ 5 Solton B: W sbsttt 6 4 4 n q4 and t not that al dats th spct to t a 0: Contnt qaton: 0 0 q dntcall llld Na Stos qatons: componnt: 6 4 q componnt: 4 8 q componnt: 4 4 q4 No q s 8 4 C * Sbsttton n q mpls C 4 8 C 8 C Hnc om * ha 8 4 8 C ** No sbsttt ** n q4 and t 4 4 4 4 C C 4 C h C s a constant nall sbstttn C C n ** ha 8 4 8 4 C Ans B: Γ ϕ 6 6 4 8 4 8 / 7

Amn Halloc Math Ecss C 4 8 4 8 h C s a constant 6 Solton 5 a V st sbsttt a 5 n q and t not that al dats th spct to t a 0: Contnt qaton: 0 a a No ha 5 V U th Na Stos qatons t: componnt: 6 9 q componnt: 5 q componnt: 4 q4 No q s 6 9 C * Sbsttton n q mpls 5 5 C C C Hnc om * ha 5 6 9 C ** W sbsttt ** n q4 and t C 4 4 C C h C s a constant nall sbstttn C n ** ha C 5 6 9 Ans : C 5 6 9 h C s a constant Q7 Consd stad ncompssbl sothmal lamna statona Ntonan lo n a lon ond pp n th -dcton th constant ccla s-scton o ads R m Us 9 / 7

Amn Halloc Math Ecss th contnt and th Na-Stos qatons n clndcal coodnats to nd th loct ld V and th pss ld th ld lo satss th ollon condtons: c0 All patal dats th spct to tm t a 0 Stad lo c μ000 /m s and 000 /m c A Constant pss adnt / /50 a/m s appld n th hoontal as -as n o notaton: / /50 c Th lo s paalll to th as that s 0 and 0 c4 W assm that th lo s asmmtc Th loct dos not dpnd on that s 0 c5 Bonda cond No-slp bonda condton V ld V all : I thn 0 c6 Bonda condton : has mamm at 0 that s 0 0 Th contnt and th Na-Stos qatons o an ncompssbl sothmal Ntonan lo dnst const st µ const th a loct ld V n Clndcal coodnats : ---------------------------------------------------------------- SOLUTION Incompssbl contnt qaton 0 q a Na-Stos qatons n Clndcal coodnats: -componnt: t µ q b -componnt: t µ q c -componnt: 0 / 7

Amn Halloc Math Ecss t µ q d W choos as a tcal as an a n a hoontal plan and th lo s paalll th th -as W dnot loct cto V h and a -componnt - componnt and -componnt n clndcal coodnats Accodn to th assmptons ha 0 0 and dos not dpnd on Snc s th tcal as ha that cto - 00 h 98 m/s hch n clndcal coodnats s and 0 No sbsttt / /50 a/m μ000 /ms n th contnt and Na- Stos qatons: Snc 0 and 0 accodn to c contnt qaton n clndcal coodnats 0 s 0 / 7

Amn Halloc Math Ecss Ths tlls s that s not a ncton o thmo c loct dos not dpnd on assmpton c4 concld that dpnds onl on To smpl notaton dnot * No sbsttt and 0 / /50 a/m μ000 /ms n th Na-Stos qatons: Th -componnt o th Na-Stos qaton s: 0 q -c Th -componnt o th Na-Stos qaton: 0 q -c Th Z-componnt o th Na-Stos qaton h and 0 q -c 50 000 50 s: Stp W nd th pss In od to nd th pss sol q -c q -c and th qaton s 50 that 50 om ths qatons t C 50 / 7

Amn Halloc Math Ecss Stp W nd th loct componnt W sol q -c th bondas c5 and c6: 0 q -c 50 000 0 c5 0 0 c6 d Rma: Tchncall can t nstad d aabl om q -c ha 0 50 000 4 c s no a ncton o onl on C sbsttton 0 and c6 C 0 C sbsttton and c5 C 4 4 Ths 4 and V 0 0 4 Ans : C 50 V 0 0 4 / 7

Amn Halloc Math Ecss 8 W consd an ncompssbl dnst const stad stat aabls do not dpnd on tm sothmal Ntonan lo th a n loct ld 4 a b c V Us th ollon qatons contnt and Na Stos qatons h constant µ constant 00 0 and / 98 s m to nd: paamts a b and c n psson o pss as a ncton o and Incompssbl contnt qaton: 0 q Na Stos qatons: componnt: t µ q componnt: t µ q componnt: t µ q4 ------------------------------------------------------------- W sbsttt 4 a b c n q4 and t not that al dats th spct to t a 0: Contnt qaton: 0 a a q Ths 4 b c Na Stos qatons: componnt: q componnt: q componnt: 4 / 7

Amn Halloc Math Ecss q4 Th sstm q q q4 s solabl onl md dats a qal: 4 : c c Con 0 0 : b bc Con 0 0 : b b Con Ths c and b0 W sol smpld qatons and t C 6 4 8 4 5 Ans C 6 4 8 4 5 9 W consd a scala ld n n clndcal coodnats h and bass ctos a nd th psson o th adnt ad n clndcal coodnats that s n tms o and a p th sam bass b c am 0; Q5 B ponts d ths s otn sd as a local bass o clndcal coodnats 5 / 7

Amn Halloc Math Ecss Solton: In aabls ha ad q o clndcal coodnats ha st t th dats and n coodnats th aabl s n both cood sstms Soln th ollon sstm o and t ** W sbsttt th dats ** n q and t *** ad To sol poblms a b c and d mst pss as a lna combnatons o and sbsttt thm nto *** a om *** c ha mmdatl ad b om nd q b Thn pt om q b nto *** and t ad 6 / 7

Amn Halloc Math Ecss and at collctn componnts o ad c om ha q c ttn om q c nto *** s ad d W can sol d n th sam mann as n abc bt ths tm can st collct tms and t th slt: ad Ans: a ad b ad c ad d ad 7 / 7