EFFECT OF PRECURSOR MICROSTRUCTURE ON MORPHOLOGY FEATURE AND MECHANICAL PROPERTY OF C Mn Si STEEL

Σχετικά έγγραφα
Effects of Retained Austenite Characteristics on Delayed Fracture Properties of Ultra High-Strength TBF Steels

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA HIGH STRENGTH LOW ALLOY STEEL

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

Delta Inconel 718 δ» ¼


Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp


BEHAVIOR OF MARTENSITE REVERSE TRANSFORMA- TION IN 18Mn TRIP STEEL DURING WARM DEFORMATION

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

EFFECT OF LOADING MODES ON MECHANICAL PROPERTY AND STRAIN INDUCED MARTENSITE TRANSFORMATION OF AUSTENITIC STAINLESS STEELS

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

2 SFI

v w = v = pr w v = v cos(v,w) = v w

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

BEHAVIOUR AND MECHANISM OF STRAIN HARDEN- ING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

48 12 Ö Vol.48 No ACTA METALLURGICA SINICA Dec pp Î µ TG142.1, Á A Ì µ (2012)

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

Supporting Information

AN INVESTIGATION ON THE CREEP BEHAVIOR OF PURE Mg

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

REGULATION OF RETAINED AUSTENITE AND ITS EFFECT ON THE MECHANICAL PROPERTIES OF LOW CARBON STEEL

MECHANICAL PROPERTIES OF MATERIALS

Physical and Chemical Properties of the Nest-site Beach of the Horseshoe Crab Rehabilitated by Sand Placement

MICROSEGREGATION OF SOLUTE ELEMENTS IN SOLIDIFYING MUSHY ZONE OF STEEL AND ITS EFFECT ON LONGITUDINAL SURFACE CRACKS OF CONTINUOUS CASTING STRAND

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

ΜΔΛΔΣΖ ΔΝΓΟΣΡΑΥΤΝΖ Δ ΥΑΛΤΒΔ ΘΔΡΜΖ ΔΛΑΖ

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

49 Ö 6 Đ Vol.49 No ACTA METALLURGICA SINICA Jun pp

EFFECTS OF B ON THE MICROSTRUCTURE AND HYDROGEN RESISTANCE PERFORMANCE OF Fe Ni BASE ALLOY

p din,j = p tot,j p stat = ρ 2 v2 j,

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

DISCONTINUOUS YIELDING BEHAVIOR OF β PHASE CONTAINING TiAl ALLOY DURING HIGH TEMPERATURE DEFORMATION PROCESS

½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

Supporting Information

GF GF 3 1,2) KP PP KP Photo 1 GF PP GF PP 3) KP ULultra-light 2.KP 2.1KP KP Fig. 1 PET GF PP 4) 2.2KP KP GF 2 3 KP Olefin film Stampable sheet

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

Ανώτερα Μαθηματικά ΙI

SYNTHESIS KINETICS OF (Y, Gd) 2 O 3 Eu 3+ NANO POWDERS DURING PROCESS OF PREPARATION

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Dr. D. Dinev, Department of Structural Mechanics, UACEG

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

MODEL RESEARCH BASED ON LIQUID/SOLID TWO PHANSE FLOWS IN METALLURGY STIRRED TUBULAR REACTOR

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.


EXPERIMENTAL RESEARCH ON MELTING SURFACE BEHAVIOR IN MOLD UNDER COMPOUND MAGNETIC FIELD

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

WAFER LEVEL ELECTRODEPOSION OF Fe Ni NOVEL UBM FILMS

; +302 ; +313; +320,.

ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ

{:=, :, goto, if, else} ß ß LB {beg, end, l 1, l 2,..., }.

Electronic Supplementary Information (ESI)

Δυναμικοί τύποι δεδομένων

tan(2α) = 2tanα 1 tan 2 α

Blowup of regular solutions for radial relativistic Euler equations with damping

College of Life Science, Dalian Nationalities University, Dalian , PR China.

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

Supporting Information. Enhanced energy storage density and high efficiency of lead-free

ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ

ΔΙΕΡΕΥΝΗΣΗ ΤΟΥ ΜΠΑΙΝΙΤΙΚΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ ΣΕ ΧΑΛΥΒΕΣ ΥΨΗΛΟΥ ΠΥΡΙΤΙΟΥ

Protective Effect of Surface Coatings on Concrete

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Morganναδώσειμίαεναλλακτικήμέθοδο,αποδεικνύονταςπρώταότιηευθείαπουδιχοτομεί κάθεταμίαχορδήπεριέχειτοκέντροτουκύκλου. Παρ όλααυτά,καιαυτήημέθοδοςέχει

P ,.. ³,. Š. ³. ˆ ˆŸ Œˆ ˆŸ ˆ ˆ ˆ Š ˆ 9 3 ˆ Œ NiÄNb. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö. Õ³ Ó, μ Ö

Base Metal + Alloying Elements

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

P Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É. ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U.

MICROSTRUCTURES AND PROPERTIES OF PULSED MIG ARC BRAZED FUSION WELDED JOINT OF Al ALLOY AND GALVANIZED STEEL

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

E#ects of Drying on Bacterial Activity and Iron Formation in Acid Sulfate Soils

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

STRUCTURE AND MAGNETIC BEHAVIOR OF Zn 1 x Co x O CRYSTAL POWDERS PREPARED BY SOL GEL TECHNIQUE

Transcript:

Æ 49 Í Æ Vol.49 No. 3 Ñ Æ 558 566 ACTA METALLURGICA SINICA Dec. 3 pp.558 566 ÓÔÜ É C Mn Si Û ÐÇ µ» º ² ³¼¼ ± ( Ø Å ÆÊ, 83) Å À ºÎ Ç Æ ¾ Õ Ô Ð (IQ&P) Ù.C.9Mn.3Si ²Đ ± Ä. ĐÎ ÔÙÇ ¹Ù, ËÇ Æ Æ (M) ²Đ É Ë Æ µ ( ) «Æ; µ ËÇ Æ Æ Ë Æ (B F) Ü ²Đ Ë Æ ß «Æ. Ç Ë IQ&P Ç Ù, B F Ç Æ²Đ ÓÌ Ö 976 MPa, Þ¹ 6.7%, ÂÌ 6 GPa %; µ Ë M Ç Æ Ì Í»Ð, ÂÌ Á 3 GPa %. Â Ò ¹ ÇÆÝ µ», B F Ç Æ²Đ Ç µ ÇÆÝ ¹, Þ «ÆÐ µ, µ¾ ÇÆÝ ¹ Á Ð ÓÙ, Á ÞÙ ÇÊ ; µ M Ç Æ²Đ Ç ÆÝ ¹, Þ «ÆÇ µ Ð, µ¾ ÇÆÝ ¹ Á е Ú, Á ÞÙǺ Æ. ºÎ ± «Æ Æ Ü ¼, µ à ΠºÎÇ Æ»ÌÁ. Æ IQ&P Ç, ²Đ, «Æ, ¾ ÇÆÝ ¹ ÞËÎ TG4. Đ ÀÖÑ A Đ 4 96(3) 558 9 EFFECT OF PRECURSOR MICROSTRUCTURE ON MORPHOLOGY FEATURE AND MECHANICAL PROPERTY OF C Mn Si STEEL REN Yongqiang, XIE Zhenjia, ZHANG Hongwei, YUAN Shengfu, SONG Tingting, SHANG Chengjia School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 83 Correspondent: SHANG Chengjia, professor, Tel: ()63348, E-mail: cjshang@ustb.edu.cn Supported by National Basic Research Program of China (No.CB638) Manuscript received 3 5 3, in revised form 3 9 4 ABSTRACT The effects of different precursor microstructure on the morphology and mechanical properties of the.c.9mn.3si multiphase steel which was obtained by the treatment of intercritical reheating quenching and partitioning (IQ&P) heat treatment were examined. Under the same IQ&P heat treatment parameters, multiphase microstructure which contains lath like ferrite matrix and film or short needle like retained austenite can be obtained by the martensite (M) precursor steel; while multiphase steel which has a bainite ferrite (B F) precursor can obtain a microstructure of equiaxed like ferrite matrix and particale like retained austenite. After the IQ&P process, tensile strength of the multiphase steel which has a B F precursor is up to 976 MPa, but elongation of this kind of steel is only 6.7%, and thus the product of strength and elongation of this kind of steel is only 6 GPa %; while multiphase steel which has a M precursor has realized the combined properties of high strength and excellent ductility, product of strength and elongation of this kind of steel reaches 3 GPa %. As for the work hardening behavior of the uniform elongation stage, although B F precursor multiphase steel has a higher work hardening index n than the M precursor multiphase steel, stability of the retained austenite in this kind of steel is relatively poor, variation behavior curve of the instantaneous n value with true strain for this kind of steel shows a notched like shape; as for the * µ À Ð Ü ¾ CB638 ± ÙÀ : 3 5 3, ± ÙÀ : 3 9 4 : ÊÌ, º, 983, DOI:.374/SP.J.37.3.3

Æ ÖÉË : ÆÅ C Mn Si À«Ð à 559 multiphase steel which has a M precursor, retained austenite in this kind of steel is relatively stable, variation behavior curve of the instantaneous n value with true strain for this kind of steel is much more steady, which shows a trend of gradual increasing. The reason for the different tensile testing and work hardening results above is related to the morphology, proportion and distribution state of the retained austenite and matrix microstructures, which is due to the effect of different morphology and microstructure characteristics of the precursor phases by the roots. KEY WORDS IQ&P process, multi phase steel, retained austenite, instantaneous work hardening index ½ ¹ ÛÌ Ý Æ Å Æ, ÌÑÚ Đ ½. Ì Ç Ç¼ (DP) [,] Ì Ç Ç ¼ Æ Ð (transformation induced plasticity, TRIP) [3 5] Æ Ç Ç ¼ Æ Ö Õ Ñ ± (IQ&P) [6 ] Í ± Æ Ç Ý C Mn Si ÝÆ Í. Ó, ¹ Ô ÅÃÌ, ± à ¼Í Ì Ö È ½Æ ÁÝ. Õ, Santofimia [] Í IQ&P È ±È Ç Ç Ì Ç (M F).C 3.5Mn.5Si Û (Ö 4.5 mm) Ú, Ï Ì Ç Ç Æ Ç Æ ³. ³ Ý Í Î ¼Ñ, Ø ÔÍ º ½¾ È ²Ü Î. ß ± Þ Mn 3.5%( º),  ÅÑ ± Mn È ¼, ½Â ÚÛÕ Ò»., Mn б È ÚÆ Å. È ÌÎÞ IQ&P Õ ÚÈ, ± Ö 6 mm Å.C.9Mn.3Si Ú, Í ±È»ÏÈ Ç ( Ç Ç Ì Ç), Ç Ç ±Í ÈÇÞ Å. Õ ÌÊ Â Ú Ø Æ 5 kg, Þ²Æ ( º, %) : C., Mn.9, Si.3, S.75, P.6, Fe. Õ, ÚÆÖ 6 mm ƾ, ØÛÌ RJX 8 ± Õ ÕĐ ÓÞ h,, 7 À È Æ 6 mm Ö. ² 86, Ø Ø. Đ² ½ Ô 6 mm mm 8 mm. ÌÕ º Ø Õ Ú A C3 =856, A C =738, M s =346 (A C3 Õ ÛËÕÌ ÇÐ Ç ², A C Õ ¹ ÇÅ Ç, M s ØÑ Ç Ä ), À, Õ Ú È Ý. ²Û, ² Ø 4 JU ± ÕĐ 9 3 min Ð ÇÞ, Ø½Ñ (W.Q) Ø (A.C) Đ»Ï È Ç ; ² Ö ÕĐ 78 (Æ ) 5 min, Ø Ú Ç± Mn, C ŠDZ «, Ø½Ñ 3, ½ Æ Ô, ÛØ 78 3 Ø 8 /s Ñ, ̱³, 6 s Ø, Ì Ø Ê, Ö Þ ± 4 ( È ) 5 min, Ø Ø. Ì È Õ ÚØ Æ²É 5 mm Ô. Ô GB/T 8, Â.5 3 s. Ô Î Î, 3% Û (Ç Å º) Ü. Í DMAX RB X ¾ (XRD) ±³ ± Ç Æ C Õ, È µ 4 kv, 5 ma, Ð.. ÛÌ Oxford EBSD Æ ULTRA 55 ¹ (SEM) ± Ç ÆÃ ½Â ³, Ð ¾ (EBSD) Æ. µm. Í Å, ß, ÌÓ º [3] Û Ç () γ, () γ, (3) γ ÆÌ Ç T, o C 9 o C, 8 s W.Q./A.C. 78 o C, 9 s W.Q. 4 o C, 9 s 3 o C A.C. ß.C.9Mn.3Si ÔÙÇ Ë Fig. Schematics of heat treatments applied to the.c.9mn.3si steel (W.Q. and A.C. represent quenching in water and air cooling, respectively; T temperature, t time) t, s

5 ( # 56 6;,I, %IA# ~r =_!O O 5.. W XRD.N, 5(< b!o I 6 %J AG E.a,a,a. = _!O C f 8 T v ; < : ()α, ()α U ; <, C& ()γ ()γ [4] (3)γ ω(c)γ = (aγ.35467)/.467 () %, ω(c)γ = _!O% C # 5.; aγ I6 h = _!O C E A G E., nm. J ( ^, W Si, Mn % =_!OA G E. M! C 5 Æ ', Wt %u/_ M [5].. q e\ [ BE 9!Oz 3 min tm A z 3 min t fta e d vb 5 ( y[ a j b A. W [d#, E H / W PCe d v t5 ( R7!OPeO jw!o A Æ=,7T7OA U N B PeO. W B% Mn f,=.%, D" tmet%- _O N, G*Ueft dtb % v!o. &P Y / WPeO B E t! IQ&P d v t,.c.9mn.3si Æ 9!O {.C.9Mn.3Si AD\d u s a[a Fig. Microstructures of the.c.9mn.3si steel after different preliminary treatment (M martensite, B bainite, F ferrite) (a) quenched after 9 for austenizing (b) air cooled after 9 for austenizing Æ 49 U A B 5(y[ 3a j b A. Ee IQ&P dv t, sbc&zpy ^T7O!O [6 8] AÆg~!O/= _!O [6,7] AB N ' B. W [d #, Gm 7 f 7 ; T / W, ;m 7 f 7B j m 7 f 7B P y ^ x & %!. ;m 7 f 7 e } Æ, ^ \ v ' P 9 Z7, 5 ; * m 7 f 7 y ' e }n, ^ \ v ' v {, 4 5CF. *jt7o (IF)[] ÆT7O (F) Pn ; *=_!O/g~!O (RA/UM)[6,7] v!p}æ ;!O (B)[6 8] y<< ;G = _! O g ~!O, t P/ ay 7. W!O` ` b!oæ R 4 Æ [p= _!O P <<S n 7E, W*t SEM v p /[r &K_l ' ^ q. W [ 3a d#, PeOe!O ' B % fy *! OB, K%!O [p % * Æ, T7O O y v ' P R7 _h!oa3 d ^, =' B%!*-: =_!O/ g~!o ; C v'ptæ *7 7. U e\? [ 3b, PeOe!O T 7O ' B B % yfy * '!OB, T7O O y v ' P =,7, t [p Z 5 &x v P#!OPeO ' B % s5b ; g ^, =' B B % = _!O/g ~!O ; C % ; 4 5 { 3 N i N S6N 'OdN A D _ q p l $i9 4OB u s SEM Fig.3 SEM images of.c.9mn.3si steel with martensite (a) and bainite ferrite (b) as precursors treated by intercritical reheating quenching and partitioning (IQ&P) treatments (RA retained austenite, UM untempered martensite, IF intercritical ferrite)

Æ ÖÉË : ÆÅ C Mn Si À«Ð à 56 ÔØ µm, Ø Ú³ Æ. IQ&P È Ú Ñ ² (3 ) Å Õ Ú M s, È ² ±Ñ Ù»Đ Í Q&P ± Ç. Ä Æ Kim [9] Á, Ø Ö Õ Ì±, Đ¹ C Ñ Å Ç± «, µï Ð M s ³Å. 4a b ²È Ç Ç Ç Ì Ç ÕĐ 78 Ö 5 min ØÑ Õ., Æ Ö Õ Ø M s ²ÜÅ IQ&P Ì Ñ ² (3 ), ÏÈ Ç Ç Ì Ç ³ M s ±ÅÅ, Ï ØÑ Ñ ² (3 )»Đ¹ Ç, Ø 4 Ú Ý Ø Ç ½ C Å C DZ «Ì, ½Ã Ø ³ ±»Đ Ç.. Ò ³  IQ&P È ÚØ ³ Đ² ½. ², ØØ ±²È Ç Ç ³ ³, È Ç Ç Ì Ç ³ ³. ϳ, Æ Ö Õ Ñ Ú Ø, ³ ÔÍ Â 9 MPa, Í Ú 6 MPa, Óº  %, Ø Ú 6%. ³ È ÔÍ, ß Í Å, È Å Í, à Í.65, Å ³ Í.7;, Ï ³ Ø Å, 6.7%, à ÔÍ, ßÍ Å ( ÔÍ Ø É Å) ÑÅ 7 GPa %. ³ ÔÍ Å, ß Ø Ñ 34.%, Î º ½ Ã Í Å 3 GPa %., Ø È Ì Õ Ú È ºÚ, Ì ÇÈ Ç Å Û Ú º ½ÆÍ Å. Ä ÈÁ Á [] ±, ±Æ.3C.8Mn.35Si, È Ç Ç ³ Ì 3 Ú, Óº Ø 6.4% 8.6%, Í Å 6. GPa %, Å ³ ²., Ø Ï Ñ ² Ú (3 ) Ì (4 ) Û Å º ½, Û Å Í Å. 5  ³ ÈÌÂĐ ÈÌ ÂĐ Â. Ï, ØÆÀÔ Ì±, ÈÌÂĐ Â ÈÝ Ò Â, Ø ÝÈ Û É. ØÆÀ Ó º, ÂĐ Â ßÚ, ñ ³ ÂĐ Đ 77 MPa, ³ ÂĐ Ý Đ 4 MPa. Ï 5b, Ø Â Å 3.7% º, ³  Amount of expansion, m - - -3 (a) M s =67 o C Amount of expansion, m - - (b) M s =6 o C -4 5 5 3 35 4 45 5 Temperature, o C -3 5 5 3 35 4 Temperature, o C ß 4 ºÎÇ Æ.C.9Mn.3Si 78 Õ 5 min Ð Ð Fig.4 Dilatometry curves of the specimens obtained by reheating to 78 for 5 min, direct quenching to the room temperature for.c.9mn.3si steel with M (a) and B F (b) as precursors Á ³ ¾ Table Mechanical properties of (with M as precusor) and (with B F as precusor) multiphase steels Material R m, MPa R p., MPa YR A gt, % A, % R m A, MPa % 98 65.7 5.3 34. 3395.6 976 636.65.6 6.7 659. Note: R m tensile strength, R p. yield strength, YR yield ratio, A gt uniform elongation, A total elongation, R m A the product of tensile strength to total elongation

56 Æ 49 Í Engineering stress, MPa (a) 8 6 4 Strain=.38..5..5..5.3.35.4 Engineering strain True stress, MPa 4 8 6 4 Strain=.37..5..5..5.3 True strain ß 5 ²Đ ÇËÁ ÇËÁ Á Á Ð Fig.5 Engineering stress strain (a) and true tensile stress strain (b) curves of and multiphase steels Đ Å ³, Ø Â 3.7% Ø º, È ÂĐÝ ²Ü Ø. Í Õ ³ ± ºÆ, ± 5a ± ÂĐ Â, Ø º, Ï ³ Í Å, Ø Æ Đ ÌÚ ½¹, ³ Ø º ÈÌÂĐ Æ ÂĐ Å ³. Ï ³ ÈÇÞ ±,   3.7% (ÈÌ 3.8%) Ø, ³ ͳ ÂРе»±Â ³, Ï Â» Ú, Î ÐÕвÜ, ±ÂĐ 5b ±, Ý³Ý Ø 3.7% Ø Ó º, È Â Đ Â ²Ü Ø..3 ÈÇÞ º (n i ) ÌÕ Õ «Ô ÈÇÞ ², º ÌÚ [] Õ : n i = d(lgσ i) d(lgε i ) = d(lnσ i) d(lnε i ) = ε i(dσ i ) σ i (dε i ) () ±, σ i ε i ܳ ÂĐ Â, dσ i /dε i Ý «ÈÇÞ. 6, ÆÈÁÈ [] Ô IQ&P (3, Ø ± I) ³ ÈÇÞ º Â, ÏÁ ÂĐ Â Ð, ñ E I, E II E III ±Â Ó Â ¹ È 3 ³ n i Å Æ ±Â Â, ε u ¹ È Ó Â Ú, ε u =n i «Ñ Æ []. Ï, 3 ³ ÈÇÞ Ú Ø 3 Àº : ()  ε < E i (i=i, II, III), n i ¾ Æ; n i.35.3.5..5..5 E II E III E I Strain=.37 I []...5..5..5 True strain ß 6, I [] ²Đ ¾ ÇÆÝ ¹ Á Ð Fig.6 Plots of instantaneous strain hardening index as a u =n i founction of true strain for, and I [] multiphase steels (ε u uniform strain, n i instantaneous work hardening index, E I, E II, E III strains at minimum n i value of, II, III multiphase steel) ()  E i ε ε u, ±Â Óº Á Ð, n i Ü½ß µø  ¼ ¼ Î Ø À º ; (3)  ε > ε u, «¹,  ßÚ, n i Æ.  Æ, ÕÇÞ Đ¼Ð. Ï 3 ³ ± ß Ì Ç 5%, Ü ¹, ± Ç Ç ÚÂĐØß ± µã à Õ, ßÏ Õß ÛÕ ÈÇ Þµ»½ «Ì Ç ÛÕ ßÞ., ØÂ º (ε < E i ), 3 n i ÌÚ³µ³ Å, Ç Ù Å Ç¹. Â ß Đ Ì (E i ε ε u ), Ñ Ç²¹ л Æ

Æ ÖÉË : ÆÅ C Mn Si À«Ð à 563 Ç. Ï Ç Đ¹ ÇÅ, Ï Ç¼ Đ Ú Õ, Ï Ð ÍÞĐ¹À Ç À¹ n i Ú³, µ n i ܽ. Ì Ú, ± Ç».   Ӻ ( ε > ε u ), Ú ³º Ñ Ç Ç, Ï ÍÞ ÛÕ ÈÇÞ ½Đ, ± Ç, n i Ú³, «Ý Ý«. ØÆÀ Ó º, È Ç Ì ÇÈ Ç ³ ÈÇÞ º Â Ø ÈË, È ÔÚ È Ç Ç ³ ÈÇÞ º Â Ý Û, Ï Â ßÚÈ». Ã È Ç Ç I [] ³ ¼, º (E III ε.) Æ Ý ÀÅ Ú, à ÈÇÞ º Â ØÆ Ç ÈÝ ³», ß Ü½Å ³. ÄÆ Þ [3], ±È ½ ÈÇÞ º È TRIP  РÆ. ³ Ú ÈÇÞ º n imax ܽ ³, ³ n imax Ý ²Ü TYPE III ³ ;, ØÆÀ Ó º, n i ØÆÇ È Ý >>I., Ø IQ&P È Ú, Ì Ç Ì Ç È Ç ÇÈ ÇÅ Û ÈÇÞ ½, ØÏ IQ&P È Ê Ú Ì Û ÈÇÞ ½..4 ÅÆ Ý «ÄØÈ Ù Ì XRD ± ³ ± Ç, ¼Ý 7. ¼Ñ XRD, Đ ³ Ç (f γ ), º (a γ ), Ç C (c γ ) Æ Ç± Û C (f γ c γ ) ² º, ¼Ý³. ϳ, IQ&P Ú Ø, ³ ± Ç Ú,  %. Ã Ç C ¼, ³ ²Ü ³ ; ± ³ ± Ç Û C, È Å Ø. ÄÆ Mahieu [4] Á, ± Ç M s Ï Ã Å C, Mn, Si Ñ, Ú ³ : M s = 539 (43 c C ) (3.4 c Mn ) (7.5 c Si ) (3) ±, c C, c Mn, c Si ܳ DZ C, Mn, Si ( º, %). DZ C ϳ Intensity, a.u. () () () () (3) 5 6 7 8 9, deg ß 7 ²Đ XRD Fig.7 XRD spectra of and multiphase steels Á ³» Table Metallurgical parameters of and multiphase steels Material f γ, % a γ, nm c γ, % f γ c γ, % 3.368.4.8 6.363.7.9 Note: f γ volume fraction of retained austenite, a γ lattice parameter of retained austenite, c γ carbon concentration of retained austenite, f γ c γ the total carbon content of retained austenite ±, ÌÈ Ø 78 Õ, 5 min, Ï º Ú Ì± Mn Si Ý«, (3) ± Mn Si Ø Æ.9%.3 %. Ï (3) Đ, ³ ± Ç M s 9, ³ ± Ç M s 3. M s ²ÜÅ ( ), Ï ³ ± Ç ½Ø ÚÒØ»¹ Ç., Ï ³ M s ÅÅ, ³, ØÚ È ± ÇÈ Å Ñ. ½ ³ ÈÇÞ º Â, ³ ÈÇÞ º Â Ú À..5 EBSD Ï Â Å ± ³ ± Á ÝÆ ½Â ³, Å 78 µm 56 µm À µ Ì EBSD Á, ¼Ý 8. Ï ³ ± Ç 8.3% 5.5%(ÇÅ º).

. =_ 5 ( # 564 &, W ' EBSD ~$ 3G ", [%n. & ^[pt. µm Av =_!O, Gg, W[A = _!O 5 &x P# W XRD A > 4 A =_!O. Ue& EBSD AÆ XRD (.A =_!O ;!*, \ t PEAT IQ&P P C:.v, 8T!O T7O PeO dmz [pæ. µm =_!O. W[ 8 d#, j 4A% =_!O t ÆO P y ^!} 5 J. %= [%A B % { = _!O t G Æl [p 5 ; Y, y[ 9 A. W [d#, s B %X v ' i { Æ 49 U!Ot G ( e 79.%, e 76.3%) j l ( e 97.3%, e 95.3%) [pt µm Av. LNYZkz [5,6], e h TRIP J, = _!O [p Jt. µm, [p e v jeæ = _!O / B h : [7 9]. = A,, E IQ&P PC d v t s ' B = _!OX v '. [p t µm A,. ' 5 ` Æ [p= _!O n t, n A B ( t p e T % V- &x TRIP J. t 3 POz. ni #, ye ni te.! Tv' t, t;h*l J$b, Pyx{E^, )m & A 8 EBSD Fig.8 EBSD images of (a) and (b) multiphase steels 83 (a) (b) 844 8 8 Size distribution Size distribution 6 4 5 3 Length, 3 4 38 5 6 m 4 5 m 54 (c) 4 33 (d) Size distribution 8 6 8 6 4 4 9 3 Length, 6 Size distribution 4 6 46 35 Width, {9 6 m 3..5..5 Width,..5 3. m i & A$ <^ NsF ik {ZoX Fig.9 Distribution characteristics of retained austenite s grain diameter in length (a, b) and width (c, d) direction for steel (a, c) and steel (b, d)

Æ ÖÉË : ÆÅ C Mn Si À«Ð à 565 ÎØ º, ( 6). Ï 8 ß Đ, ³ ± ÇÌ ÇØ ³ È Ê, TYPE II ³ ± ÇÌ ÇØ ݳÈ. ³ ± Ç³È ; ³ ± Çݳ, ºÈ., ØÌ Ç Ç ß ½ «ĐÅ BS (band slope, ÄÏÛ ). ÄÆ Kwon [3] Ryde [3] ± ³ Ø BS ± Á¼, Þ ¾ (fcc) Ç ( Ø EBSD ± Õ), Ç Þ¾ (bcc) Ç Ç Ú Õ È Å BS (<55),»ÈØ BS ³Ý È «½Đ ( 8 ±«ÐÒĐ); Ç Þ¾ (bcc) Ì Ç ÝÈ Å Õ, BS (=55),»ÈØ BS Ý³Ý È É ½Đ ( 8 ±ÉÐĐ). ² 8 ± BS 3a b ± SEM ±, «ĐÄ ½ Ç Ç. Ï, ³ ± Ì Ç Ç Æ Ç/ Ç Ç ÔØÆÇ ±Ú ³ ± Ç, ¼ 3 ± SEM. ÄÆ Kwon [3] Á, Ø BS, ¼Ñ BS ± ½ Ú ³ ³ ± Á ÝÆÃ ½. 8 ± BS ±Â ÄÏÛ ± ½. Ï ³ ± (BS=55) Ì Ç Ý 74% 66%, Å (BS<55) Ç ÇÆ Ç Đ ÝÝË 7% 34%. ¼ Ï XRD Ç, ³ ± ÇÆ Ç Ç Đ Ý 4% %. 3 Í ÚÐ Relative frequency, %, Ì»Ï È Ç Ý± 8 7 6 Low BS value High BS value 73.5 65.7 Intermediate BS value.4.3... 8 4 6 8 4 6 Band slope ß ²Đ BS (band slope) Ð Fig. Change in BS (band slope) curve for and multiphase steels ±³ Ô ÆÃ Ý Ñ. Ï ³ È Å³ Ç Ç Ç, ÏÇ Ô ±ÅÚ, ³ ÔÍ Å. ³ Ï Ç, Ï Ô ± Æ, ± ³ È Å ÔÍ. Ï ³ È Ç ( Ç Ì Ç) Ï Ð ÇÞØ Ø, Ì Ç Ô Ú, ÏÌ Ç¼ Õ Å; ³ È ÇÝ ÏÑ Ê Ç, ¼ Õ, Ø 78 Æ Ö Õ, Ç ± Õ Ú³, ß Ç ¼ ³ ÇÌ Ç ¼ Õ Ø ³ Ì Ç Ç. Ï Ç± Í È ÊÞ, ³ Í Å ³. È, È C Ç Å Ñ, Ô ½. µm Ç ± TRIP ÂÈ Ü½ ÊÞ., Ç ÆÃ Å ½ бÃÑ Å. Á³², Ç ÇÈ Å Ñ [3], ½ ÇÆ Ç Ç Æ Ç ÇÝ È Ñ [33,34]. ÇÒØ Ç Ç, Ø Ì±Ç ² ²Đ  Ç, ÃØ Å ÑÚ ¹ Å Ç. ¼Ñ 8 EBSD ¼, ³ ±È ³ Ç Ç Ç, ñ Ǽ, Ï Ç ½, Æ Ú Ô Ç Ç ( 8b);» TYPEI³, ±È Ç Ç Ç, ñ Ç Ç È, ¼ È ½ Ñ (Æ ) Ì Ç Ê, Ã Ç Ç Ô ±Æ ³ ( 8a)., ³ ± Ç ³ ± ÇØ Å Å Ñ, Ø ½ Æ È Å Ó.  ³ º Æ Í Å Î ³ À,  ³ ÈÇÞ º  ³ ³ À. 4 Ð () ÌÆ Ö Õ Ñ ± ÚÈ, ±È Ç Ç (M) Ç Ì Ç (B F).C.9Mn.3Si Ú, Đ È»Ï Ç Ç ³. ³ ÔÍ Â 9 MPa, Í Ú 6 MPa, Óº

566 Æ 49 Í Â %, Ø Ú 6%. () Ï Õ ÚÈ ºÚ, B F È Ç³ ÔÍ 976 MPa, ßú Ñ 6.7%, Ã Í Å 6 GPa %; Ì M È Ç Í Î ¼Ñ, ÃÍ Å 3 GPa %. (3) B F È Ç³ È ÈÇÞ º, ßà ± ÇÑ, È ÇÞ º  ÔÚ,  ßÚØ ÈË ; M È Ç³ ÈÇÞ º Å, ßà ± ÇÈ Ñ, ÈÇÞ º  Û, Â ß ÚÈ». Ã Đ [] Speich G R, Demarest V A, Miller R L. Metall Trans, 98; A: 49 [] Takashi F, Hirofumi M, Michio E, Hiroshi T, Kazuo K, Osamu A, Teruaki Y. Trans ISIJ, 98; : 8 [3] Matsumura O, SakumaY, Takechi H. Scr Metall, 987; : 3 [4] Matsumura O, SakumaY, Takechi H. ISIJ Int, 99; 3: 4 [5] Sugimoto K, Misu M, Kobayashi M, Shirasawa H. ISIJ Int, 993; 33: 775 [6] Speer J G, Matlock D K, De Cooman B C, Schroth J G. Acta Mater, 3; 5: 6 [7] Speer J G, Edmonds D V, Rizzo F C, Matlock D K. Curr Opin Solid State Mater Sci, 4; 8: 9 [8] Edmonds D V,He K,Rizzo F C,De Cooman B C,Matlock D K, Speer J G. Mater Sci Eng, 6; A438 44: 5 [9] De Moor E, Lacroix S, Clarke A J, Penning J, Speer J G. Metall Mater Trans, 8; 39A: 586 [] Liu H P, Lu X W, Jin X J, Dong H, Shi J. Scr Mater, ; 64: 749 [] Paravicini B E, Santofimia M J, Zhao L, Sietsma J, Anelli E. Mater Sci Eng, 3; A559: 486 [] Santofimia M J, Nguyen Minh T, Zhao L, Petrov R, Sabirov I, Sietsma J. Mater Sci Eng, ; A57: 649 [3] Maruyama H. J Jpn Soc Heat Treat, 977; 7: 98 [4] Nishiyama Z. Martensitic Transformations. New York: Academic Press, 978: 6 [5] Sugimoto K, Usui N, Kobayashi M, Hashimoto S. ISIJ Int, 99; 3: 3 [6] Chiang J, Lawrence B, Boyd J D, Pilkey A K. Mater Sci Eng, ; A58: 456 [7] Santofimia M J, Zhao L, Sietsma J. Metall Mater Trans, 9; 4A: 46 [8] Sakuma Y, Matlock D K, Krauss G. Metall Trans, 99; 3A: [9] Kim S J, Lee C G, Choi I, Lee S. Metall Mater Trans, ; 3A: 55 [] Ren Y Q, Xie Z J, Shang C J. Acta Metall Sin, ; 48: 74 ( ÊÌ, Å, Å µ±, ; 48: 74) [] Dieter G E. Mechanical Metallurgy. nd Ed., New York: McGraw Hill Book Company, 988: 87 [] Jacques P, Cornet X, Harlet P, Ladrière J, Delannay F. Metall Mater Trans, 998; 9A: 383 [3] Yakubovsky O, Fonstein N, Bhattacharya D. In: De Cooman B C ed., Proceedings Conference Trip Aided High Strength Ferrous Alloys, Aachen: Wissenschaftsverlag Mainz Gmbh, : 63 [4] Mahieu J, Maki J, De Cooman B C, Claessens S. Metall Mater Trans, ; 33A: 573 [5] Bai D Q, Chiro A D, Yue S. Mater Sci Forum, 998; 84 86: 53 [6] Wang J, Van Der Zwaag S. Metall Mater Trans, ; 3A: 57 [7] Pereloma E V, Timokhina I B, Hodgson P D. Mater Sci Eng, 999; 73 75: 448 [8] Baik S C, Park S H, Kwon O, Kim D I, Oh K H. ISIJ Int, 6; 46: 599 [9] Thierry I, Josée D, Audrey C, Christopher O. Steel Res, ; 6 7: 8 [3] Kwon E P, Fujieda S, Shinoda K,Suzuki S. Mater Sci Eng, ; A58: 57 [3] Ryde L. Mater Sci Technol, 6; : 97 [3] Xiong X C, Chen B, Huang M X, Wang J F, Wang L. Scr Mater, 3; 68: 3 [33] Tsukatani I, Hashimoto S I, Inoue T. ISIJ Int, 99; 3: 99 [34] Sugimoto K I, Misu M, Kobayashi M, Shirasawa H. ISIJ Int, 993; 33: 775 (¹ : )