Μαθηματικά Πληροφορικής

Σχετικά έγγραφα
Μαθηματικά Πληροφορικής

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Θεωρία Γραφημάτων 11η Διάλεξη

u v 4 w G 2 G 1 u v w x y z 4

Επίπεδα Γραφήματα (planar graphs)

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Βασικές Έννοιες Θεωρίας Γραφημάτων

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Βασικές Έννοιες Θεωρίας Γραφημάτων

d(v) = 3 S. q(g \ S) S

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

q(g \ S ) = q(g \ S) S + d = S.

2 ) d i = 2e 28, i=1. a b c

HY118-Διακριτά Μαθηματικά. Θεωρία γράφων/ γραφήματα. Τι είδαμε την προηγούμενη φορά. Συνεκτικότητα. 25 -Γράφοι

Θεωρία Γραφημάτων 6η Διάλεξη

Θεωρία Γραφημάτων 1η Διάλεξη

E(G) 2(k 1) = 2k 3.

Ασκήσεις στους Γράφους. 2 ο Σετ Ασκήσεων. Δέντρα

Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά.

e 2 S F = [V (H), V (H)]. 3-1 e 1 e 3

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

m = 18 και m = G 2

z 1 E(G) 2(k 1) = 2k 3. x z 2 H 1 H 2

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

HY118-Διακριτά Μαθηματικά. Τι είδαμε την προηγούμενη φορά. Θεωρία γράφων / γραφήματα. 25 -Γράφοι. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

HY118-Διακριτά Μαθηματικά

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Γράφοι. Αλγόριθμοι και πολυπλοκότητα. Στάθης Ζάχος, Δημήτρης Φωτάκης

Θεωρία Γραφημάτων 4η Διάλεξη

(elementary graph algorithms)

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ20 ΕΝΟΤΗΤΑ 5: ΘΕΩΡΙΑ ΓΡΑΦΗΜΑΤΩΝ/2. Μάθηµα 5.1: Παραστάσεις Γραφηµάτων. ηµήτρης Ψούνης

βασικές έννοιες (τόμος Β)

ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Εισαγωγή στους Αλγορίθμους

Συνεκτικότητα Γραφήματος

HY118-Διακριτά Μαθηματικά

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας

Διάλεξη 3: D Σχήμα 3.2: Ενδεικτική αναπαράσταση δίσκου D που ορίζει ο στην εμβάπτιση Γ. Σχήμα 3.3: Σχηματική επεξήγηση περιπτώσεων που απορ

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Διάλεξη 13: D Σχήμα 13.2: Ενδεικτική αναπαράσταση δίσκου D που ορίζει ο στην εμβάπτιση Γ. Σχήμα 13.3: Σχηματική επεξήγηση περιπτώσεων πο

Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα.

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είδαµε την προηγούµενη φορά. Συνεκτικότητα Γράφοι

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

Θεωρία Γραφημάτων 1η Διάλεξη

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Μορφές αποδείξεων. Μαθηματικά Πληροφορικής 2ο Μάθημα. Μορφές αποδείξεων (συνέχεια) Εξαντλητική μέθοδος

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

Θεωρία Γραφημάτων 5η Διάλεξη

Θεωρία Γραφημάτων 5η Διάλεξη

Εισαγωγή στη Θεωρία Γράφων

Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Φεβρουάριος 2017

Αναζήτηση Κατά Πλάτος

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs)

Φροντιστήριο #8 Ασκήσεις σε Γράφους 24/5/2016

ΘΕΩΡΙΑ ΓΡΑΦΩΝ. 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ

Γράφοι: κατευθυνόμενοι και μη

Διάλεξη 3: Σχήμα 3.3: Το σύνολο των κόκκινων ακμών είναι ακμοδιαχωριστής αλλά όχι τομή. Το σύνολο ακμών {1, 2, 3} είναι τομή. Από

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Θεωρία Γραφημάτων 7η Διάλεξη

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο

Κεφάλαιο 3. Γραφήματα. v1.3 ( ) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Φροντιστήριο #8 Ασκήσεις σε Γράφους 16/5/2017

Θεωρία Γραφημάτων 10η Διάλεξη

Στοιχεία Θεωρίας Γραφηµάτων (1)

Εισαγωγή στους Αλγορίθμους Ενότητα 7η

ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ

Δοµές Δεδοµένων & Ανάλυση Αλγορίθµων 3ο Εξάµηνο. Γραφήµατα. (Graphs)

Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Σεπτέμβριος 2017

Κεφάλαιο 3. Γραφήµατα v1.1 ( ) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Αναζήτηση Κατά Πλάτος

Θεωρία Γραφημάτων 3η Διάλεξη

HY118-Διακριτά Μαθηματικά

Αλγόριθµοι και Πολυπλοκότητα

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

... a b c d. b d a c

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων)

ΑΝΤΙΣΤΟΙΧΗΣΕΙΣ ΟΡΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙOΥΝΤΑΙ ΣΤΟΥΣ ΤΟΜΟΥΣ Α ΚΑΙ Β ΤΗΣ ΘΕ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» Ένα γράφημα αποτελείται από ένα σύνολο 94.

q={(1+2)/2}=1 A(1,2)= MERGE( 4, 6 ) = 4 6 q=[(3+4)/2]=3 A(1,4)= MERGE( 4 6, 5 8 ) = q=[(5+6)/2]=5 A(5,6)= MERGE( 2, 9 ) = 2 9

Θεωρία Γραφημάτων 2η Διάλεξη

Σημείωση: Δες ορισμό απλού γραφήματος στον Τόμο Α, σελ. 97 και τόμο Β, σελ 12.

jτο πλήθος των ταξιδιών που κάνει η αεροσυνοδός µέχρι την j ηµέρα. Σχηµατίζω µία ακολουθία που αποτελείται από τα a.

Αναζήτηση Κατά Πλάτος

Θεωρία Γραφημάτων 9η Διάλεξη

Ενότητα 5: Αλγόριθμοι γράφων και δικτύων

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες

Κεφάλαιο 3. Γραφήµατα v1.0 ( ) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Φροντιστήριο #9 Ασκήσεις σε Γράφους 18/5/2018

Transcript:

Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών

Κατευθυνόμενα γραφήματα Ορισμός Κατευθυνόμενογράφημα Gείναιέναζεύγος (V,E)όπου V πεπερασμένο σύνολο του οποίου τα στοιχεία ονομάζονται κόμβοι, και ένασύνολο Eπουείναιυποσύνολοτου V Vκαιτουοποίουτα στοιχείαονομάζονταιακμές: E {(u,v) u,v V}

Μη κατευθυνόμενα γραφήματα Μηκατευθυνόμενογράφημα Gείναιέναζεύγος (V,E)όπου E {{u,v} u,v V} δηλαδή μια ακμή σε ένα μη κατευθυνόμενο γράφημα είναι ένα μη διατεταγμένο ζεύγος κόμβων. Μια πρόταση που ισχύει για κατευθυνόμενα γραφήματα συνήθως μεταφέρεται και στα μη κατευθυνόμενα γραφήματα. Το αντίστροφο είναι πιο σπάνιο.

Βρόγχοι Ο ορισμός επιτρέπει θεωρητικά την ύπαρξη βρόγχων(loops), δηλ.ακμώντηςμορφής (u,u), u V. Γραφήματα χωρίς βρόγχους και παράλληλες ακμές ονομάζονται απλά γραφήματα. Τα γραφήματα που δεν είναι απλά ονομάζονται πολυγραφήματα. Οταν λέμε«γράφημα» θα εννοούμε απλό γράφημα. Αν ασχολούμαστε με πολυγράφημα, θα το αναφέρουμε ρητά.

Κατευθυνόμενα/ Μη κατευθυνόμενα Διαφορές: (u,v) {u,v} V ( V )δυνατέςακμές V ( V )/2δυνατέςακμές Συμβολισμός Αριθμόςκόμβων: V ήn Αριθμόςακμών: E ήm

Σχεδίαση γραφημάτων 2 3 (a) 2 3 (b) Σχήμα: Γραφικές παραστάσεις του ίδιου γραφήματος ΠΑΡΑΔΕΙΓΜΑ(Σχεδίαση Γραφημάτων) Δεν πρέπει να συγχέουμε ένα γράφημα με τη σχεδίασή του. Ενα γράφημα μπορεί να έχει πολλές σχεδιάσεις.

Ειδικές κατηγορίες γραφημάτων Ειδικές κατηγορίες γραφημάτων Συμπλήρωμα Ḡ = (V,E )του G = (V,E): E = {{u,v} {u,v} E,u v}. Ορισμός(Πλήρες/ Κενό) 2 3 2 3 5 5 (a) (b) Σχήμα:Ταγραφήματα K 5 και K 5

Ειδικές κατηγορίες γραφημάτων Ειδικές κατηγορίες γραφημάτων(συνέχεια) Ορισμός(Μονοπάτι/ Κύκλος) 2 3 5 2 3 5 (a) (b) Σχήμα:Ταγραφήματα P 5 και C 5

Ειδικές κατηγορίες γραφημάτων Ειδικές κατηγορίες γραφημάτων(συνέχεια) Ορισμός(Πλήρες διμερές) a b c d e f Σχήμα:Τογράφημα K 3,3

Ειδικές κατηγορίες γραφημάτων Ειδικές κατηγορίες γραφημάτων(συνέχεια) Δωδεκάεδρο(από τη Βικιπαίδεια) Το αντίστοιχο γράφημα

Ειδικές κατηγορίες γραφημάτων Ειδικές κατηγορίες γραφημάτων(συνέχεια) Ορισμός(Γράφημα του Πέτερσεν) 2 6 7 8 3 5 0 9 Σχήμα: Το γράφημα του Petersen

Ειδικές κατηγορίες γραφημάτων 2 3 5 Ορισμός Βαθμός ενός κόμβου σε μη κατευθυνόμενο γράφημα ονομάζεται ο αριθμός των ακμών που τον περιέχουν. Θεώρημα Σε κάθε γράφημα, το άθροισμα των βαθμών όλων των κόμβων είναι άρτιο. Απόδειξη.

Ειδικές κατηγορίες γραφημάτων Θεώρημα(Γενίκευση) Σεκάθεγράφημα G = (V,E)με mακμές,τοάθροισματων βαθμώντωνκόμβωνείναιίσομε 2m. degree(u) = u V u V v V :{u,v} E = {u,v} E 2 = 2m 2 5 3 2 3 5 [,2] [,] [2,3] [2,5] [3,] [3,5]

Ειδικές κατηγορίες γραφημάτων 2 3 5 Πόρισμα Σε κάθε γράφημα, ο αριθμός των κόμβων περιττού βαθμού είναι άρτιος. Σε κάθε ομάδα ανθρώπων με περιττό αριθμό μελών, υπάρχει πάντα κάποιος που έχει άρτιο αριθμό γνωστών.

Παράσταση γραφημάτων σε υπολογιστή Παράσταση γραφημάτων σε υπολογιστή 2 3 5 : 2,, 5 2: 2, 3 Λίστες γειτνίασης: 3: 2 : 3 5: Πλεονεκτήματα: Οικονομική σε μνήμη για αραιούς γραφήματα: Θ( V + E log V ).Κατάλληληγιακάποιουςαλγόριθμους. Μειονεκτήματα: Απαιτεί έργο για να ελέγξουμε αν μια ακμή (u,v)ανήκειστογράφημα.

Παράσταση γραφημάτων σε υπολογιστή Παράσταση γραφημάτων σε υπολογιστή 2 3 Πίνακας γειτνίασης: 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Πλεονεκτήματα: Άμεση απάντηση αν μια ακμή (u, v) ανήκει στο γράφημα. Εύκολα γενικεύεται για γραφήματα με βάρη στις ακμές. Μειονεκτήματα: Απαιτητική σε μνήμη για αραιά γραφήματα.

Παράσταση γραφημάτων σε υπολογιστή Μονοπάτια, κύκλοι 2 3 6 5 Μονοπάτι: (,2,3,5) Μονοπάτι(μηαπλό): (2,3,5,,3,6) Κύκλος: (2,3,5,,6,2)

Παράσταση γραφημάτων σε υπολογιστή Συνεκτικότητα Ορισμός Εναμηκατευθυνόμενογράφημα G = (V,E)ονομάζεται συνεκτικόανγιακάθε u,v Vυπάρχειμονοπάτιαπότο uστο v. Ενα κατευθυνόμενο γράφημα που έχει την ιδιότητα αυτή ονομάζεται ισχυρά συνεκτικό. 2 3 2 3 2 3 5 5 5 Συνεκτικός Μή συνεκτικός Μή ισχυρά συνεκτικός

Η έννοια του ελαχιστικού/μεγιστικού Εστωμιασχέσημερικήςδιάταξης πάνωσεένασύνολο P. Ενα στοιχείο p του P καλείται ελαχιστικό(αντίστοιχα μεγιστικό)ωςπροςτην ανδενυπάρχει p Pτέτοιοώστε p p(p p ). Με τους όρους ελαχιστικό/μεγιστικό μεταφράζουμε τους αγγλικούς όρους minimal/maximal, σε αντιδιαστολή με τους όρους minimum/maximum οι οποίοι υπονοούν ολική διάταξη. Παράδειγμα: P 2 U,γιακάποιοκατάλληλοσύμπαν Uκαι.Τότεένασύνολο S Pείναιελαχιστικό(αντίστοιχα μεγιστικό)αν x U, S \{x} P(αντ. x U, S {x} P.)

Δένδρα Ερώτηση: Ποια γραφήματα είναι ελαχιστικά συνεκτικά (minimally connected); Δηλαδή είναι συνεκτικά αλλά χάνουν τη συνεκτικότητα τους αν αφαιρέσουμε οποιαδήποτε ακμή τους; Απάντηση: Τα δένδρα. Ορισμός Δένδρα ονομάζονται τα συνεκτικά γραφήματα που δεν περιέχουν κύκλους. 5 2 3 6 7

Ιδιότητες των δένδρων Θεώρημα Οι παρακάτω προτάσεις είναι όλες ισοδύναμες με τον ορισμό των δένδρων: Δένδρα είναι τα συνεκτικά γραφήματα που αν αφαιρέσουμε οποιαδήποτε ακμή τους παύουν να είναι συνεκτικά. Είναι δηλαδή ελαχιστικά γραφήματα ως προς τη συνεκτικότητα. 2 Δένδρα είναι τα γραφήματα που δεν έχουν κύκλους, αλλά αν προσθέσουμε οποιαδήποτε νέα ακμή αποκτούν κάποιο κύκλο. Είναι δηλαδή μεγιστικά άκυκλα γραφήματα. 3 Δένδραείναιτασυνεκτικάγραφήματαμε n ακμές, όπου nείναιοαριθμόςτωνκόμβωντους. Δένδραείναιταγραφήματαπουγιακάθεζεύγοςκόμβων u και vυπάρχειέναμοναδικόμονοπάτιαπότον uστον v.

Ιδιότητες των δένδρων Θεώρημα Σε κάθε δένδρο με τουλάχιστον δύο κόμβους υπάρχει ένας τουλάχιστον κόμβος με βαθμό. Σε κάθε γράφημα, το άθροισμα των βαθμών είμαι 2m. Σταδένδραέχουμε m = n.αφού n 2,όλοιοικόμβοι έχουν βαθμό μεγαλύτερο του μηδενός. Αν κάθε κόμβος είχε βαθμό2ήπερισσότερο,τοάθροισματωνβαθμώνθαήταν μεγαλύτεροήίσοτου 2n.

Επίπεδα γραφήματα Ορισμός Ενα γράφημα G λέγεται επίπεδο (planar) αν υπάρχει τρόπος νασχεδιαστείστοεπίπεδομετέτοιοτρόποώστεοιακμέςτου να τέμνονται μόνο σε κορυφές. 7 6 5 3 2 Σχήμα: Επίπεδο γράφημα

Οψεις σε γραφήματα Ορισμός Ενα γράφημα G λέγεται ενεπίπεδο (plane) αν έχει σχεδιαστεί στοεπίπεδο R 2 μετέτοιοτρόποώστεοιακμέςτουνατέμνονται μόνο σε κορυφές. Οψεις ενός ενεπίπεδου G καλούνται οι μ-συνεκτικές συνιστώσες του R 2 \G.Τογράφηματουσχήματοςέχει5όψεις. Ενα υποσύνολο S του επιπέδου καλείται μ-συνεκτικό αν οποιαδήποτε δύο σημεία του S συνδέονται με μονοπάτι.

Τύπος του Euler Αριθμός κόμβων: n Αριθμός ακμών: m Αριθμός όψεων: f Θεώρημα(Τύπος του Euler) Σε κάθε συνεκτικό ενεπίπεδο γράφημα ο αριθμός των κόμβων n, τωνακμών mκαιτωνόψεων f συνδέονταιμετησχέση n m +f = 2. Απόδειξη: Με επαγωγή στον αριθμό των ακμών. Βάση της επαγωγής: Δένδρα.

Σχέση ακμών και κόμβων Θεώρημα Σεκάθεσυνεκτικόεπίπεδογράφημαμε n 3κόμβουςκαι m ακμές m 3n 6. Απόδειξη. Η απόδειξη βασίζεται σε δυο παρατηρήσεις: Κάθεακμήσυνορεύειμε(τοπολύ)δυοόψεις. 2 Κάθε όψη συνορεύει με 3 τουλάχιστον ακμές.

3 5 2 [,2] [2,3] [3,] [,] [,5] [3,5] [,5] (,2,3,5) (,,5) (3,,5) (,2,3,) Αν μετρήσουμε τις ακμές του διμερούς γραφήματος από αριστερά, είναιτοπολύ 2m(κάθεακμήβρίσκεταισε2τοπολύόψεις).Απόδεξιά είναι τουλάχιστον 3f (κάθε όψη έχει 3 τουλάχιστον ακμές). Άρα,σεκάθεγράφημα 3f 2m.Από Euler f = 2 n+m...

Η προηγούμενη απόδειξη δείχνει πόσο χρήσιμα είναι τα γραφήματα: Χρησιμοποιεί ένα διμερές γράφημα για να επιχειρηματολογήσει για τη σχέση ακμών και όψεων ενός άλλου γραφήματος!

Το K 5 δενείναιεπίπεδο Το K 5 δενείναιεπίπεδο Πράγματι,το K 5 έχει n = 5κόμβουςκαι m = 0ακμές.Δεν ισχύειπως m 3n 6,άραδενείναιεπίπεδο. Αναγκαία αλλά όχι ικανή Ησυνθήκη m 3n 6είναιαναγκαίαγιαναείναιένα γράφημα επίπεδο. Δεν είναι όμως ικανή: Υπάρχουν γραφήματα με λίγες ακμές που δεν είναι επίπεδα.

Συνθήκη για διμερή γραφήματα Θεώρημα Σε κάθε συνεκτικό διμερές επίπεδο γράφημα ο αριθμός των κόμβων nκαιτωνακμών mικανοποιεί m 2n. Συμπέρασμα:το K 3,3 δενείναιεπίπεδογιατίέχει n = 6και m = 9 > 2n

Ικανή και αναγκαία συνθήκη για επίπεδα γραφήματα Σχήμα: Ενα γράφημα και μια υποδιαίρεσή του Θεώρημα(Kuratowski, 930) Ενα γράφημα είναι επίπεδο αν και μόνο αν δεν περιέχει κάποια υποδιαίρεσητου K 5 ήτου K 3,3. (Χωρίς απόδειξη)

Κύκλοι του Euler και του Hamilton 3 2 Σχήμα: Οι γέφυρες του Königsberg

Κύκλοι του Euler και του Hamilton

Leonhard Euler (707-783)

Κύκλοι του Euler και του Hamilton 3 2 Σχήμα:Τογράφηματων7γεφυρών Θεώρημα Ενασυνεκτικόγράφημαέχεικύκλοτου Eulerμόνοανκαιμόνο ανόλοιοικόμβοιτουέχουνάρτιοβαθμό.

Κύκλοι του Euler και του Hamilton 7 8 9 5 6 2 3 Σχήμα:Γράφημαμεκύκλοτου Euler Θεώρημα Ενασυνεκτικόγράφημαέχεικύκλοτου Eulerμόνοανκαιμόνο ανόλοιοικόμβοιτουέχουνάρτιοβαθμό.