Rectangular Polar Parametric

Σχετικά έγγραφα
Rectangular Polar/Cylindrical Spherical Parametric Vector Matrix

Rectangular Polar Parametric

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

Trigonometric Formula Sheet

Homework 8 Model Solution Section

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Chapter 7b, Torsion. τ = 0. τ T. T τ D'' A'' C'' B'' 180 -rotation around axis C'' B'' D'' A'' A'' D'' 180 -rotation upside-down C'' B''

Areas and Lengths in Polar Coordinates

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Parametrized Surfaces

CRASH COURSE IN PRECALCULUS

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π 2, π 2

Quantitative Aptitude 1 Algebraic Identities Answers and Explanations

11.4 Graphing in Polar Coordinates Polar Symmetries


Differential equations

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

THE UNIVERSITY OF MALTA DEPARTMENT OF MATHEMATICS MATHEMATICAL FORMULAE

Areas and Lengths in Polar Coordinates

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Review Exercises for Chapter 7

MATH 150 Pre-Calculus

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Reminders: linear functions

Derivations of Useful Trigonometric Identities

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

Solution to Review Problems for Midterm III

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

ECE 468: Digital Image Processing. Lecture 8

List MF20. List of Formulae and Statistical Tables. Cambridge Pre-U Mathematics (9794) and Further Mathematics (9795)

Review of Essential Skills- Part 1. Practice 1.4, page 38. Practise, Apply, Solve 1.7, page 57. Practise, Apply, Solve 1.

Section 9.2 Polar Equations and Graphs

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Inverse trigonometric functions & General Solution of Trigonometric Equations

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Section 8.2 Graphs of Polar Equations

) = ( 2 ) = ( -2 ) = ( -3 ) = ( 0. Solutions Key Spatial Reasoning. 225 Holt McDougal Geometry ARE YOU READY? PAGE 651

Spherical Coordinates

Geodesic Equations for the Wormhole Metric

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Lifting Entry (continued)

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Solutions to Exercise Sheet 5

Second Order Partial Differential Equations

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

Trigonometry 1.TRIGONOMETRIC RATIOS

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing

Section 8.3 Trigonometric Equations

d 2 y dt 2 xdy dt + d2 x

Double Integrals, Iterated Integrals, Cross-sections

Math221: HW# 1 solutions

PARTIAL NOTES for 6.1 Trigonometric Identities

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

Answer sheet: Third Midterm for Math 2339

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Approximation of distance between locations on earth given by latitude and longitude

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

Electromagnetic Waves I

Quadratic Expressions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com

F19MC2 Solutions 9 Complex Analysis

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Probability and Random Processes (Part II)

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

C.S. 430 Assignment 6, Sample Solutions

Math 6 SL Probability Distributions Practice Test Mark Scheme

Trigonometry Functions (5B) Young Won Lim 7/24/14

SPECIAL FUNCTIONS and POLYNOMIALS

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Κλασσική Θεωρία Ελέγχου

ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο

Lecture 26: Circular domains

Transcript:

Hrold s AP Clculus BC Rectngulr Polr Prmetric Chet Sheet 15 Octoer 2017 Point Line Rectngulr Polr Prmetric f(x) = y (x, y) (, ) Slope-Intercept Form: y = mx + Point-Slope Form: y y 0 = m (x x 0 ) Generl Form: Ax + By + C = 0 Clculus Form: f(x) = f () x + f(0) (r, θ) or r θ Polr Rect. Rect. Polr x = r cos θ y = r sin θ tn θ = y x r 2 = x 2 + y 2 r = ± x 2 + y 2 θ = tn 1 ( y x ) Point (,) in Rectngulr: x(t) = y(t) = <, > t = 3 rd vrile, usully time, with 1 degree of freedom (df) < x, y > = < x 0, y 0 > + t <, > < x, y > = < x 0 + t, y 0 + t > where <, > = < x 2 x 1, y 2 y 1 > x(t) = x 0 + t y(t) = y 0 + t m = y x = y 2 y 1 x 2 x 1 = r = r 0 + sv + tw Plne n x (x x 0 ) +n y (y y 0 ) + n z (z z 0 ) = 0 Vector Form: n (r r 0 ) = 0 where: v nd w re given vectors defining the plne r 0 is the vector of fixed point on the plne Copyright 2011-2017 y Hrold Toomey, WyzAnt Tutor 1

Rectngulr Polr Prmetric. Generl Eqution for All Conics: Generl Eqution for All Conics: Conics Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0 where Line: A = B = C = 0 Circle: A = C nd B = 0 Ellipse: AC > 0 or B 2 4AC < 0 Prol: AC = 0 or B 2 4AC = 0 Hyperol: AC < 0 or B 2 4AC > 0 Note: If A + C = 0, squre hyperol Rottion: If B 0, then rotte coordinte system: A C cot 2θ = B x = x cos θ y sin θ y = y cos θ + x sin θ New = (x, y ), Old = (x, y) rottes through ngle θ from x-xis r = p 1 e cos θ (1 e 2 ) 0 e < 1 where p = { 2d for { e = 1 (e 2 1) e > 1 p = semi-ltus rectum or the line segment running from the focus to the curve in direction prllel to the directrix Eccentricity: Circle e = 0 Ellipse 0 e < 1 Prol e = 1 Hyperol e > 1 Copyright 2011-2017 y Hrold Toomey, WyzAnt Tutor 2

Rectngulr Polr Prmetric. x 2 + y 2 = r 2 (x h) 2 + (y k) 2 = r 2 Centered t Origin: r = (constnt) θ = θ [0, 2π] or [0, 360 ] Circle Center: (h, k) Vertices: NA Focus: (h, k) Centered t (r 0, φ): r 2 + r 0 2 2rr 0 cos(θ φ) = R 2 Hint: Lw of Cosines or r = r 0 cos(θ φ) + 2 r 0 2 sin 2 (θ φ) x(t) = r cos(t) + h y(t) = r sin(t) + k [t min, t mx ] = [0, 2π) (h, k) = center of circle (h, k) Copyright 2011-2017 y Hrold Toomey, WyzAnt Tutor 3

Rectngulr Polr Prmetric. (x h) 2 2 (y k)2 + 2 = 1 Center: (h, k) Vertices: (h ±, k) nd (h, k ± ) Foci: (h ± c, k) Focus length, c, from center: c = 2 2 Ellipse: r = (1 e2 ) for 0 e < 1 1 + e cos θ where e = c = 2 2 reltive to center (h,k) x(t) = cos(t) + h y(t) = sin(t) + k [t min, t mx ] = [0, 2π] (h, k) = center of ellipse Rotted Ellipse: x(t) = cos t cos θ sin t sin θ + h y(t) = cos t sin θ + sin t cos θ + k Ellipse θ = the ngle etween the x-xis nd the mjor xis of the ellipse Interesting Note: The sum of the distnces from ech focus to point on the curve is constnt. d 1 + d 2 = k Copyright 2011-2017 y Hrold Toomey, WyzAnt Tutor 4

Prol Rectngulr Polr Prmetric. Verticl Axis of Symmetry: x 2 = 4 py (x h) 2 = 4p(y k) Vertex: (h, k) Focus: (h, k + p) Directrix: y = k p Horizontl Axis of Symmetry: y 2 = 4 px (y k) 2 = 4p(x h) Vertex: (h, k) Focus: (h + p, k) Directrix: x = h p Prol: 2d r = for e = 1 1 + e cos θ where d = 2p Trigonometric Form: y = x 2 r sin θ = r 2 cos 2 θ sin θ r = cos 2 = tn θ sec θ θ Verticl Axis of Symmetry: x(t) = 2pt + h y(t) = pt 2 + k (opens upwrds) or y(t) = pt 2 k (opens downwrds) [t min, t mx ] = [ c, c] (h, k) = vertex of prol Horizontl Axis of Symmetry: y(t) = 2pt + k x(t) = pt 2 + h (opens to the right) or x(t) = pt 2 h (opens to the left) [t min, t mx ] = [ c, c] (h, k) = vertex of prol Projectile Motion: x(t) = x 0 + v x t y(t) = y 0 + v y t 16t 2 feet y(t) = y 0 + v y t 4.9t 2 meters v x = v cos θ v y = v sin θ Generl Form: x = At 2 + Bt + C y = Dt 2 + Et + F where A nd D hve the sme sign Copyright 2011-2017 y Hrold Toomey, WyzAnt Tutor 5

Hyperol Rectngulr Polr Prmetric. (x h) 2 2 (y k)2 2 = 1 Center: (h, k) Vertices: (h ±, k) Foci: (h ± c, k) Focus length, c, from center: c = 2 + 2 Hyperol: r = (e2 1) for e > 1 1 + e cos θ Eccentricity: where e = c = 2 + 2 = sec θ > 1 reltive to center (h,k) Left-Right Opening Hyperol: x(t) = sec( t) + h y(t) = tn( t) + k [t min, t mx ] = [ c, c] (h, k) = vertex of hyperol Up-Down Opening Hyperol: x(t) = tn(t) + h y(t) = sec(t) + k [t min, t mx ] = [ c, c] (h, k) = vertex of hyperol p = semi-ltus rectum or the line segment running from the focus to the curve in the directions θ = ± π 2 Interesting Note: The difference etween the distnces from ech focus to point on the curve is constnt. d 1 d 2 = k Generl Form: x(t) = At 2 + Bt + C y(t) = Dt 2 + Et + F where A nd D hve different signs Copyright 2011-2017 y Hrold Toomey, WyzAnt Tutor 6

Rectngulr Polr Prmetric. 1 st Derivtive 2 nd Derivtive f f(x + h) f(x) (x) = lim h 0 h f f(x) f(c) (c) = lim x c x c f (x) = dy = y = D x f (x) = d (dy ) = d2 y 2 = y dy = dy = dr sin θ + r cos θ dr cos θ r sin θ Hint: Use Product Rule for y = r sin θ x = r cos θ d 2 y 2 = d (dy ) = d (dy ) dy = dy, provided 0 d 2 y 2 = d (dy ) = Riemnn Sum: n d (dy ) S = f(y i )(x i x i 1 ) i 1 Left Sum: S = ( 1 n ) [f() + f ( + 1 n ) + f ( + 2 n ) + + f( 1 n )] Integrl F(x) = f(x) = F() F() Middle Sum: S = ( 1 1 3 ) [f ( + ) + f ( + n 2n 2n ) + + f( 1 2n )] Right Sum: S = ( 1 n ) [f ( + 1 n ) + f ( + 2 n ) + + f()] Copyright 2011-2017 y Hrold Toomey, WyzAnt Tutor 7

Inverse Functions Arc Length Rectngulr Polr Prmetric. f(f 1 (x)) = f 1 (f(x)) = x Inverse Function Theorem: f 1 1 () = f () where = f () L = 1 + [f (x)] 2 Proof: s = (x x 0 ) 2 + (y y 0 ) 2 s = ( x) 2 + ( y) 2 ds = 2 + dy 2 ds = 2 + dy 2 ( 2 2) ds = 2 + ( dy ) 2 2 ds = 2 (1 + ( dy ) 2 ) if y = sin θ if y = cos θ if y = tn θ if y = csc θ if y = sec θ if y = cot θ L = ds ds = r 2 + ( dr ) 2 Circle: L = s = rθ then θ = sin 1 y then θ = cos 1 y then θ = tn 1 y then θ = csc 1 y then θ = sec 1 y then θ = cot 1 y Proof: L = (frction of circumference) π (dimeter) L = ( θ ) π (2r) = rθ 2π θ = rcsin y θ = rccos y θ = rctn y θ = rccsc y θ = rcsec y θ = rccot y L = ( L = ( + ( dy + ( dy + ( dz ds = 1 + ( dy ) 2 L = ds Perimeter Squre: P = 4s Rectngle: P = 2l + 2w Tringle: P = + + c Circle: C = πd = 2πr Ellipse: C π( + ) π Ellipse: C = 4 2 1 ( c )2 sin 2 θ 0 Copyright 2011-2017 y Hrold Toomey, WyzAnt Tutor 8

Are Lterl Surfce Are Rectngulr Polr Prmetric. Squre: A = s² Rectngle: A = lw Rhomus: A = ½ Prllelogrm: A = h Trpezoid: A = ( 1+ 2 ) h 2 Kite: A = d 1 d 2 2 Tringle: A = ½ h Tringle: A = ½ sin(c) Tringle: A = s(s )(s )(s c), where s = ++c 2 Equilterl Tringle: A = ¼ 3s 2 Frustum: A = 1 3 ( 1+ 2 ) h 2 Circle: A = πr² Circulr Sector: A = ½ r²θ Ellipse: A = π Cylinder: S = 2πrh Cone: S = πrl S = 2π f(x) 1 + [f (x)] 2 A = 1 2 [f(θ)]2 where r = f(θ) Proof: Are of sector: A = s dr = r θ dr = 1 2 r2 θ where rc length s = r θ For rottion out the x-xis: S = 2πy ds For rottion out the y-xis: S = 2πx ds A = g(t) f (t) where f(t) = x nd g(t) = y or x(t) = f(t) nd y(t) = g(t) Simplified: A = y(t) (t) Proof: f(x) y = f(x) = g(t) = df(t) = f (t) For rottion out the x-xis: S = 2πy ds For rottion out the y-xis: S = 2πx ds ds = r 2 + ( dr 2 ) r = f(θ), θ ds = ( 2 ) + ( dy 2 ) if x = f(t), y = g(t), t Copyright 2011-2017 y Hrold Toomey, WyzAnt Tutor 9

Totl Surfce Are Surfce of Revolution Volume Rectngulr Polr Prmetric. Cue: S = 6s² Rectngulr Box: S = 2lw + 2wh + 2hl Regulr Tetrhedron: S = 2h Cylinder: S = 2πr (r + h) Cone: S = πr² + πrl = πr (r + l) For revolution out the x-xis: A = 2π f(x) 1 + ( dy ) 2 For revolution out the y-xis: A = 2π x 1 + ( dy ) 2 dy Cue: V = s³ Rectngulr Prism: V = lwh Cylinder: V = πr²h Tringulr Prism: V= Bh Tetrhedron: V= ⅓ h Pyrmid: V = ⅓ Bh Cone: V = ⅓ h = ⅓ πr²h Sphere: S = 4πr² Ellipsoid: S = (too complex) For revolution out the x-xis: A = 2π r cos θ r 2 + ( dr ) 2 For revolution out the y-xis: A = 2π r sin θ Sphere: V = 4 3 πr3 r 2 + ( dr ) 2 Ellipsoid: V = 4 3 πc For revolution out the x-xis: A = 2π y(t) ( + ( dy For revolution out the y-xis: A = 2π x(t) ( + ( dy Copyright 2011-2017 y Hrold Toomey, WyzAnt Tutor 10

Rectngulr Polr Prmetric. Disc Method - Rottion out the x- xis: V = π [f(x)] 2 Cylindricl Shell Method: = (re of circle) d(thickness) Disc Method: Volume of Revolution Wsher Method - Rottion out the x-xis: V = π { [f(x)] 2 [g(x)] 2 } Cylinder Method - Rottion out the y-xis: V = 2πx f(x) = (circumference) (hight) Copyright 2011-2017 y Hrold Toomey, WyzAnt Tutor 11