PFSB* Development and Validation of an MHD Code for Study of Argon plasma Flow Characteristics in the PFSB Thruster

Σχετικά έγγραφα
C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

19. ATOMS, MOLECULES AND NUCLEI HOMEWORK SOLUTIONS

Το άτομο του Υδρογόνου

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Αλληλεπίδραση ακτίνων-χ με την ύλη

Accelerator Physics Synchrotron Radiation. A. Bogacz, G. A. Krafft, and T. Zolkin Jefferson Lab Colorado State University Lecture 8

Sheet H d-2 3D Pythagoras - Answers

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

!"#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667

Example 1: THE ELECTRIC DIPOLE

Chapter 1 Fundamentals in Elasticity

Chapter 4 : Linear Wire Antenna

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Lecture 31. Wire Antennas. Generation of radiation by real wire antennas

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ


ECE 222b Applied Electromagnetics Notes Set 3a

!"!# ""$ %%"" %$" &" %" "!'! " #$!

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

, Snowdon. . Frahm.

Matrices and Determinants

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Τομέας Θεωρητικής Φυσικής

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o

Α Ρ Ι Θ Μ Ο Σ : 6.913

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

GEEPLUS VM1614. Force (N) vs Displacement (mm) Peak. Max 'ON' time. Force. Model No. VM

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

!"#$ % &# &%#'()(! $ * +

Chapter 22 - Heat Engines, Entropy, and the Second Law of Thermodynamics

Monolithic Crystal Filters (M.C.F.)

No No No No No.5. No

Note: Please use the actual date you accessed this material in your citation.

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

Lifting Entry (continued)

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

STANDARD LED LAMPS (ROUND TYPES)

a,b a f a = , , r = = r = T

Eulerian Simulation of Large Deformations

Wb/ Μ. /Α Ua-, / / Βζ * / 3.3. Ηλεκτρομαγνητισμός Ι Μ. 1. Β = k. 3. α) Β = Κ μ Π 2. B-r, 2 10~ ~ 2 α => I = ~ } Α k M I = 20Α

Prey-Taxis Holling-Tanner

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.


Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

APPENDIX I PITTSBURGH NO. 8 WASHABILITY DATA AND RECOVERY- CURVES

Ó³ Ÿ , º 3(194).. 673Ä677. Š Œ œ ƒˆˆ ˆ ˆŠ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ,ˆ..Š Ö, Ÿ. ʲ ±μ ±

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

(... )..!, ".. (! ) # - $ % % $ & % 2007

16 Electromagnetic induction

ITU-R P (2012/02)

Gapso t e q u t e n t a g ebra P open parenthesis N closing parenthesis fin i s a.. pheno mno nd iscovere \ centerline

Gradient Descent for Optimization Problems With Sparse Solutions

Jeux d inondation dans les graphes

Answers to practice exercises

Θερ ικοί Αισθητήρες. Α. Πετρόπουλος - Τεχνολογία των αισθητήρων Θερμικοί αισθητήρες. 1. Αισθητήρας Μέτρησης Ροής

! " #! $ %&! '( #)!' * +#, " -! %&! "!! ! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / # ' -. + &' (, % # , 2**.

means ) ( )- 4 ) ;2 2 , < =- >?6 2 AB )4 AB ) $17,495,00 IJ 0'7 (3- &' ( - KK9 ( ()G ( <). ('2) 100% )7 )!

Analytical Expression for Hessian

MAX4147ESD PART 14 SO TOP VIEW. Maxim Integrated Products 1 MAX4147 EVALUATION KIT AVAILABLE ; Rev 1; 11/96 V CC V EE OUT+ IN+ R t SENSE IN-

"BHFC8I7H=CB HC &CH=CB 5B8 &CA9BHIA


MICROMASTER Vector MIDIMASTER Vector

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Japanese Fuzzy String Matching in Cooking Recipes

! " #$% & '()()*+.,/0.

Ηρλνζηνηρεία (Απαξαίηεηα θαη Σνμηθά)

το περιεχόµενο των οποίων είναι διανεµηµένο µε τον εξής τρόπο: : κάθε πίστα περιέχει

AC 1 = AB + BC + CC 1, DD 1 = AA 1. D 1 C 1 = 1 D 1 F = 1. AF = 1 a + b + ( ( (((

m i N 1 F i = j i F ij + F x

8η Εργασία στο Μάθημα Γενική Φυσική ΙΙΙ - Τμήμα Τ1 Ασκήσεις 8 ου Κεφαλαίου

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Ax = b. 7x = 21. x = 21 7 = 3.


Part Numbering. Chip Ferrite Bead for Automotive. D q. (Part Number)

!! " # $%&'() * & +(&( 2010

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΙΟΙΚΗΣΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΙΠΛΩΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΕ. Ι..Ε.

ΘΕΩΡΗΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΟΠΙΚΗΣ ΚΑΤΑΝΟΜΗΣ ΕΝΤΑΣΗΣ ΣΕ ΧΑΛΥΒ ΙΝΑ ΕΛΑΣΜΑΤΑ ΛΟΓΩ ΑΝΗΡΤΗΜΕΝΩΝ ΦΟΡΤΙΩΝ

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n

Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Πανεπιστήμιο Δυτικής Αττικής - ΣΑΕΤ

..,..,.. ! " # $ % #! & %

ELE 3310 Tutorial 11. Reflection of plane waves Wave impedance of the total field

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Άλγεβρα Β Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: Γ. ΦΩΤΟΠΟΥΛΟΣ Σ. ΗΛΙΑΣΚΟΣ

( N m 2 /C 2 )( C)( C) J


IL - 13 /IL - 18 ELISA PCR RT - PCR. IL - 13 IL - 18 mrna. 13 IL - 18 mrna IL - 13 /IL Th1 /Th2

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

Transcript:

9 -!" 95 46 76 <; :7956(4 MHD/ $-$ %&' PSB @9(;=>?= $ '$ $ )' ( &#&" $ '!"# $ % $ ( / - )'!"# $ ' $ ( / - )' $ ' ' ' @ :> :(4( A B (? 56" 4 56" &7 9 /6 5# :7 ;% < # =>- 9? @ &% G# # K &4 &#I J4 < G H &#)' ( I dis C mɺ )& / BC / DE @ 6)/ Q) ( "% 4 G Q) N O ' ( P" & % E 6" 9 /6 9 H7 Q#" ( &' &7 /6 / S6B 9 $? @ &/ HE ( & "% = U WB N #< V D &7 9 4 56" G 4 U IV &7 Q) E 7 &G &7 XH % &YMUSC @ V "% OMUSC &N 5 / ka BC / 6 g s& / 7 / 6 cm W PSB #)'N )' &7 ( 5 / 67 ' & V # b cy N 9 U / < PN I E &7 a V / N% / /-B &N ( (dg# Y %6 9 &%N V V G 5 )' &7&N' & G 9 < # =>- G H /:$/$ Dvlopmnt and Validation of an MHD Cod fo Study of Agon plasma low Caactistics in t PSB ust M Aanga Dpatmnt of Aospac Engining aculty of Nw cnologis and Engining Said Bsti Univsity an Ian Ebaimi aculty of Aospac Engining K N oosi Univsity of cnology an Ian M Sams aculty of Aospac Engining K N oosi Univsity of cnology an Ian Abstact Applying o s scm to solv t MHD uations lads to duction of t numical viscosity and gowt of t accuacy By incasing I mɺ in MPD tust tat accompanis stong xpansion na t lctods tips o s scm as faild In t dis ons w nd mo numical viscosity ybidiing o s scm wit HE mtod povids a stabl solution and limits t numical viscosity in t ot ons o aciv a ig-solution mtod nw modification of MUSC tcniu as bn mployd is mtod is calld OMUSC tcniu wic as low dispsion and dissipation os o validation of dvlopd algoitm t Pinctonfull-scal bncmak tust wit catod lngt of 76cm mass flow at of 6g s and total discag cunt of 5kA as bn simulatd compaison of t pdictd sults of magntic fild and nclosd cunt wit t masud data sows good ualitativ and uantitativ agmnt calculatd tust is 567 N wic sowsabout6% diffnc compad wit masud valu utmo tis simulation poply pdicts t xpimntally xaust plum stuctu Kywods: Plasma flow Magntoydo dynamic (MHD) uations imann solv ust Numical Modl ing ( ) [-] "% 4 E -Y # N & &N )' ( ( & 99 W [] #& 6 k ("% &- W ( - D% = W =>- D 5#l - m4 =>- "% = < E- )' 5 ' G H )'N / )' &#)' J ("- N PSB S 5 gy #)'N ( MPD) < G H Mico-instabilitis Pincton ull-scal Bncmak (PSB) ust Magnto-Plasma-Dynamic m_aanga@sbuaci :

[]@9(?( (G PSB @9(-- 6 < # =>- 9 v9 5#l X# PSB )' G H / &N (MHD) /6 G 9 N O - 5 u" U ( & U &7 gu Y G#? O G @ N O &- 7 [7] - - 5 u" - S% % &N [] H & )' G [9] "v ( x6/ 7-5 W - - Y [9] P/ Y G# BC / V &N - &G H / &N @ % &Y 56" E ka N ' @ [] &- 5#l ' ( P" & &7 )'? @ (6)/ 9 HE O G u" 5 W G# HE ka BC / U H & @ - S% &N - 5 & HE @ [] "% 4 O - 5 &G &7 /6? @ &' &7 /6 9 5"-t> @ &7 &#& $/ U &7 /6 G x H @? @ N m [] P/ &7 /6 &? @ & 9 @ ( &7 &#& 9 $ % = G @ ); '" &#G V O E @ v9 5#l %? @ (6)/ HE P/ "% - 5 W G# n ' W/ U O [] n 4 9 & ; @ U XH BC / V & o - ) H % % / 5 kan 5 V &N )' ( 5 W [4] 5 G# ( &N = < ka BC / BC - & =>- 5#l 9 & "% U QE9 m4 %N (dg# O #C' O @ N =>- (G! G/ U @ &% 9 % N% 5 " &N & # - 5 W su =>- #& 6 k H- "% "% - = & )' MACH N O [5] W ( &N &- = ( & D #& 6 9 W- S7 =k 5#l ( / )' ( 4W [6] 5 G# )# ' "% 4 &N - 5 u" 5"-t> @ G U N S7 5"-t> @ ;% &#@ &' )G# 7 & l &# V :7 ( #C' O 5? @ #@ V 6 @ ( &7 /6 5 " &#5#l B ' / $ - 5 W N ") [] )' G 9 ( &#C' -Y & MHD =>- 9 E 7-6 Magntoydodynamic (MHD) Euations 7 Madan-admo Villani 9 Hatn ax van and Einfldt Slf-Consistnc Saa s Euilibium Ioniation Modl Multi-block Abitay Coodinat Hydo-magntic (MACH) Simulation ool 4 ax idics Mtod 5 o s Scm

tg N$ G# v )# &$ N = n k ν ω χ s B AN i i i i i= { N () (7) =>- G W =7 G7 4 N ( E ) V (9) # Q$ #' 6 S S =7 U 4 Q# G &#=7 # # # % # ( &y W Q$ ) m 6 (9) - N% 5 " N 9 &y Q$ #& 6 [9] P/ $ U }U &y - 9 S6B & (- ε ( ε p ) u ( ε p ) w t p p = N 5 kb ωi χi i i = p p k n ( ε p ) u u w η ( ) ρ ν i i k k M B [9] () ~ 4 N O ( ) / ); () - U G 6/ WV - G G H # ); ( n u) ( n u) ( n w) n i i i i = ɺ ωi ; i = 6 t ( ωɺ i ) G 6/ X (- () =7 U }U [] P/ mv dg# V &# mv U & SN> o # # % G H V % N% &G H 9 - l % Y (dg# x [9] P/ ' - )- &7 &N }N9 &#5#l # ' PSB )' &#@ N [4] P/ N #5#l ( N Sd# - &#%l N O #C' O 9 =O &#7 C' / MHD =>- #C'G N% =>- W =>- %N U &!" &#)' ( I dis 6" (4 V N mɺ )BG7 V P (l 56" V) 9 #& / U &# N MPD 6 5#l ( SE W ' ( [] # ' &7 &y Q$ 9H Idis - mɺ 56" [7] W )' H H H H PSB PSB % $ - )-K) I dis ( ka) 5 6 5 / &7 @?? HE HE 5"-t> HE-? 5 W - - - - - - P/ [7] [9] [] [] [6] 5#l v9 K- " < # =>- &U V =C # MPD )' G H 7- &#$/ S ) B =>- &- =>- &y YU $/ < B =>- # ) &y G U = S D S t [9] # 5G 4 N & V &#< U = ρ ρu ρw Bθ ε () - # 7- $/ // &# ' () N = Bθ Bθ = ρu ρu p ρuw ubθ u ε µ p µ () Bθ Bθ = ρw ρwu ρw p wbθ w ε µ p µ N Y N &y ); () Y p B γ µ θ ε = ρ ( u w ) =C =>- 7- =7 S () % # &U V Bθ Bθ S = ρ ρ ρ ε (4) u u wu u µ p µ (5) =>- m4 m 6 &no &# E E D = S = s E B k k θ = µ E B k k θ = µ (6) (5) (6) # (7) ()

max ( λ ) min ( λ ) b = max max V C b = min min V C min @ N # &l V (G (' λ &#O m G C C V V (5) max λ? (- 7 &#O / 7 HE @ / U WB N ˆ; (G (' $ #C' O &N /6 &? @ ( G G7 l V &' &7 O N &NE &#< V [] P/ U o Uvit = U t S D S b U o Uvit = U t S D S % o b (6)/ HE % (6) &7 9 Q) &#< V W 4 &#@ # V WB N W = ρ u w Bθ p p ni 9 4 56" &#@ N "% WB 6 V [5]MUSC @ N O &7 E &#WB #< V m9 &N &#< XH % &Y &V E S @ ( &% =H' P" D &#Y U & &7 $ MUSC @ N v9 5#l () O % x [6] o OMUSC S N ˆ; G &#< V ( = ɶ φ ( ) = ɶ φ ɶ φ φ ɶ φ φ % U N = U ( ( φ )) ( ( φ )) W = max min = 75 75 = max min = 75 75 = = l l l l WB (7) # () &#O N # V Š" o ; 7 l N% / ) & N 56" () Y < ou # K E 9 &4 I c4 56" 9 ( '/ &y V D % BC ƒ &y Q$ '" V o ( U ( % O &y N '/ <? @ C' O &# 9 &#/ G7 # Q &7 /6 & &#@ 6/ % ( K) 6" 9 E V Y ( V I E #& G 56" I dis mɺ &7 /6 &U V I % U &#WB "% D% &#5#l "% &7 &#@ - G &#@ V N m [ &' &7 /6 & 6] P/ W GO P/ O HE 5"-t> &#@ &#@ V &' &7 /6 & [ ] &#5#l H7 #? @ #C' O &#& G B$ & [5 ] P/ "% = O 7 /6 N &7 v9 5#l () I ( X $/ @ U? @ &% // -? o G V 9 V O9 (G! XH &#C' O x N = // U? =>- = U U A ( U ) U o A = M Λ Λ M n n n n x [7] P/ Idis mɺ Λ n n M [] () () &#t I o N V &N &#/? @ ' ( P" &#@ N 6" 9 E &7 /6 &? @ m N O &[] ( $ / o @ v9 5#l ( ( &' ( x MHD =>- (6)/ N &' &7 /6 9 HE U N = @ ( %? @ b U = b - b b - b b - ( ) b ( U ) HE - b ( U U ) [4] (4) &#C' -Y & MHD =>- 9 E 7-4

tg N$ G# v )# &$ Y ( BC / V ( ' & 9 % WG7 / ); & N E &#WB ( % U < =V' N E &7 9 & &#% &y Q$ ( H7 % U '" V N &# () Y < ( P" & % O & N E U &#WB 6 N # BC / V ' I dis $ V E 56" & 7 gy G7 O V ( / ma Ž'" =Ž7 N (Ž Ž O # =7 V ( p = p B θ / µ ) Ž ) m N N & ) '" O // &# u" 5#l ( [9] 9 D G7 W & G# & (- [5] "% O N & G # % WV - 9 S6B # gy # 9 N %d 56" :7 Jv ( mb G# v9 5#l ( N b/ $/ # gy & V V 5C n &#5#l "% # bn & N G V V U & & ' E N ( p ) Ž'" =7 N OŽ 7-Ž 7 O 6 7- // =7 V N 9 N &6 o & '" u7 % WV 7- % / S7 ) & QV Q G# V o%g = N ( u" ( O 6 < U & N Y ~ - 4 m N O 4Bθ / = = µ W / =G &G7 % [4] &U / / &#N () "% O < G# @6< S7 I N 7 < & c7 } N & N ( N &7 &% 5 V (dg# O N ( & Ž n SN> "% O [4] k (ψ = B θ )Ž/ PŽ - &7 Q) I = U m 5G G &6 XH @ &no &N % & B g @ N &' $/ (dg# su S N S% (- & O < N S% N &#V W MHD =>- & 9 & ( / O N S% # N V (; τ W = ħ ϑ λ [7] N 7 N &#V "% max : (- N V τ = µ ħ η :< no N V MD τ = n k ħ k HC B ( 7 ϑ { } t = min τ τ τ W MD HC :9 no N V { } ħ = min o ( N = N S% < no N V W MHD =>- & -9 - N V V < k (9) N 9 }N ) N V N %6 >G- (- - - / 5 ϑ &N ( % 4 k "% k ' / MPD &#)' B # &!" ; c N o U ' & N N &B ; B" $ % c6 E N G H / 6 D G Qy J N G H / KN 9 ( # N 7 MHD =>- I =v" 4 MHD =>- D 9 W / ( u" KN > ( N " [4] &N N 9 9 &G H / "% N " 9 & & SN> / % W-" 5 " ( 9 ) 7 ( Ma = w a = ) o U C' in in in γ k w = Z m [9] U N = & in B Zff in in ff in in in C' (dg# kœ 5 gy Z ff () - N O & / ); & / V mɺ ρin = w π ( ) in a c C' J- m (- ) c a () 6/ x6/ '" $ - G G H 6/ ); & '" # PG/9 N U N & < ~ 4 &% [4] B θ in µ I = π dis W9 4 N Y () 5

-Y & MHD =>- 9 E 7 - ([7] N?( 5?4) 56 @9( :-- ) =>- &# G4 N =< ' &y < &U 7- S )G# 9 " 9H Y G# -9 #U @ " N & # G4 BC / U ( ( 7 / 65 5 4 k t~ 5 / 4 ka V &#C' - - siduals - -4-5 -6-7 - -9 Dnsity adial momntum Axial momntum Magntic fild Engy E6 E6 im stp ' - (@: )-4- ' 5 k < IY PN IY V cy a 9H Y G# # ' &%N 5# < = V J- W 56" o U / &#N U K Š H / V &N IY #)'N o 9 ( 6 % / Y?% > /% M ) 5( (-- %&' '?%-4 5N )' " - U E 7 OU - N &N [7] o ' # J- W N G# )' O - N 5#l ( 5C U &# N J ( &#U / = [9 6-4] B4 &#5#l G# K C G4 N (dg# N mv gy ;~ = ( " / )' ( "% N% ' & / 5 / 7 / 6 W ka& BC 6 g s% 6

B" N ) Q V 4 / ); V A-II O E =- Y [7] " % = S ) 4 W B 5C )' / / m B 5C (9 ) " " ' % ' 6 A-II 5 )# & $ G# v tg N $ J - 5 6" 9 $ &N 5# / 9 % ' 6 G / o G O Q# N / B 4 6 & 7 &N E O = #' ( 5 7 5 ( ) S ;( P6Q N? -5 - ); P N G U A-II a " ' = #' c Y A-II = E / B 9 ); E V 9 ' & / K 5# V J - 5 6" N / o N O / B 9 6E ) [7] (4) Y N I nclosd = =?( ( ;( O P6Q N?-6 - U / I Y P N ' 7 π Bθ (4) µ E a Q( ( W " ( : 4 A-II ; [7]@9 ( W S V & -9 - )Q ; Q) Out flow 6 CG# N 9 / I Y " # K / = O K x g v H 4 Y G# C N ( S N m V gy Y # K Y G# " # y " N v 9 5# l = E y " k g v [9] P/ Q$ & # = < $ K # Stamlin Inn flow 4E E4 6E5 E6 E7 5E E9 4E9 7 5 A-II ; N? - - ( ka ) 7 ( 7 & U O = < 7 " ' V U B /5 9/5 9 N K N & B " XH K N & 5 B " < k & 7 a ( N - G E & 7 V ( ' 5 & %N V N ' B7 K N & 9 B " XH C K v 9 &N ( Jv ( & 5( ; P6Q N? -7 - K 7 [7] =?( ( ; P6Q N?- -

( 5 / 67 U ' & V V (dg# XH %6 / [7] ( 56 / E V N Y N l v Isp = (6) mg ɺ 96 &%N V V k 95 Y %6 / 7) [7] k 4N-5 -O) G @ ( & 5#l ( - &G H / &7 &N $/ (O U & ( "% MPD )' 4 O HE? &#@ MHD =>- // PSB )' - Q) N "% / < IY PN V &N b cy N 9 E a U O =#' &7 &N # ' " &QV E A-II E =-Y N 9 / B 9 / N% / V U &U 7 " G 5 / 5 / 5 9 N K N & 5 B" E a CG# < k B / 7- =< V ( H7 ( # O G &%N N 9 &%N V 5# / 9 I J- 56" < m l v ' & ( H7 V V k 95 ( 5 / 67 XH %7 N G &%N :7 Jv ( "% X gy = ( 7 V c4 (- Y (& ZQ) ;E (&( Y' -)-- / 5 ()( PE) [7] N 4 V&) B" / 7- =< 5G ( ) N N & / 9 / N J- 56" 9H Y G# ( J4 5# / 55 ( kg m s) / 47 9 N / 9 G 9 J- 56" ( ); V N I @C / / / 6 N ); 5# 6 & 5# = E " ( $ ' I Y 7 56" / 5# &#C' -Y & MHD =>- 9 E 7 - / t ( ) < = &no ) G H P/ ) ( Vm // ( N ) '& 9 / ( m s ) n/ b ( ka) BC / ( s) l v ( Am ) / ); - - / ( JK ) (6 k V &#< WV t/ ( m ) G 6/ =n - ); ( Pa) '" -9 / 6 ( C) 9 l &# t :-6 A B D E g I dis I sp k B M n p 4 V&) (& ZQ) 9' /(-- )4 \6?( & & / 5" ()( PE) [] N ' & / N & (5) W) U > B θ = v( ρv da) p µ da [9] U 4 (5)

tg N$ G# v )# &$ MHD =>- 9" N$ tg v G# &$ )# [7] #C' O &> @ N O $ '#l GB7 BE "< G H )' &N 9 O 4- UO 4 G [] Villani D D Engy oss Mcanisms in a Magnto plasma dynamic Act PD sis Pincton Univsity Pincton Nw Jsy 9 [9] Aanga M Ebaimi Sams M Numical simulation of non-uilibium plasma flow in a cylindical MPD tust using a ig-od flux-diffnc splitting mtod Acta Astonautica Vol No pp 9-4 4 # =>- 9 N$ tg v G# &$ )# [] G H )' &N $/ HE @ N O < 9!"# 5 ' ' "D< / &7 &N N$ tg v G# &$ )# [] '#l GB7 BE < G H )' - &G H 9-9 UO G 4 # #N [] Janunn P A positiv consvativ mtod fo magntoydodynamics basd on H and o mtods Jounal of Computational Pysics Vol 6 pp 649-66 [] any C B Computational gasdynamics Cambigd Univsity Pss Nw Yok 99 [4] Einfldt t al On godunov-typ mtods na low dnsitis Jounal of Computational Pysics Vol 9 pp 7-95 99 [5] Van B owads t ultimat consvativ diffnc scm II monoticity and consvation combind in a scond-od scm Jounal of Computational Pysics Vol 4 pp 6 7 974 [6] Yan t al Optimiation of t MUSC scm by dispsion and dissipation Scinc Cina Pysics Mcanics and Astonomy Vol 55 Iss 5 pp 44-5 [7] Boyl M J Acclation pocsss in t uasi-stady magnto plasma dynamic discag PD sis Pincton Univsity Pincton Nw Jsy 974 [] Coy J S Mass Momntum and Engy low fom an MPD Acclato PD sis Pincton Univsity Pincton Nw Jsy 97 =7 ( K ) ) 7 7- O V &#< ) 7 ) 7 &U O &#< ( Jm )&y ); ( Om m) G H k V ) l V O l V &Y4 t -7 4 π ( N A l % ) < &DnO ( s ) #& 6 5% t " ( kg m ) ); ( J) 6 &y ) G 5 =7 (#Q #) () =n # & N U WB t V 7- $/ &U $/ YU $/ Λ S u U v w W ε η λ Λ γ µ ν AN i ρ χ ωɺ B?-7 i in n θ B4- U WB N ˆ; G U WB N G N(-9 [] ow Jaskowsky W Clak K and Jan Eosion masumnts on uasi-stady magnto plasma dynamic tusts J Spaccaft Vol 9 No 4 pp 49-5 9 [] Uibai Onst voltag as and anod spots in uasistady magnto plasma dynamic tusts PD sis Pincton Univsity [] Caldo G and Couii E Y Numical fluid simulation of an MPD tust wit al gomtyin d Intnational Elctic Populsion Confnc Sattl WA USA 99 [4] Sankaan K Couii E Y and Jadin S C Compaison of simulatd magnto plasma dynamic tust flow filds to xpimntal masumnts Jounal of Populsion and Pow Vol No pp 9-5 [5] Pama B J -dimnsional modling and analysis of magnto plasma dynamic acclation MSc sis Aiona Stat Univsity / &7 &N N$ tg v G# &$ )# [6] t O (!" {' < U G H W ( / - )' $ t< 9 &9- $ 9