Rectangular Polar/Cylindrical Spherical Parametric Vector Matrix

Σχετικά έγγραφα
Rectangular Polar Parametric

Rectangular Polar Parametric

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

Homework 8 Model Solution Section

Chapter 7b, Torsion. τ = 0. τ T. T τ D'' A'' C'' B'' 180 -rotation around axis C'' B'' D'' A'' A'' D'' 180 -rotation upside-down C'' B''

Trigonometric Formula Sheet

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Areas and Lengths in Polar Coordinates

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Parametrized Surfaces

THE UNIVERSITY OF MALTA DEPARTMENT OF MATHEMATICS MATHEMATICAL FORMULAE

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

Spherical Coordinates

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

ECE 468: Digital Image Processing. Lecture 8

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Areas and Lengths in Polar Coordinates

Quantitative Aptitude 1 Algebraic Identities Answers and Explanations

is like multiplying by the conversion factor of. Dividing by 2π gives you the

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

d 2 y dt 2 xdy dt + d2 x

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3


11.4 Graphing in Polar Coordinates Polar Symmetries

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Differential equations

L A TEX 2ε. mathematica 5.2

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Geodesic Equations for the Wormhole Metric

CRASH COURSE IN PRECALCULUS

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Answer sheet: Third Midterm for Math 2339

Review Exercises for Chapter 7

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

If we restrict the domain of y = sin x to [ π 2, π 2

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

Double Integrals, Iterated Integrals, Cross-sections

Reminders: linear functions

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Oscillatory integrals

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Section 9.2 Polar Equations and Graphs

Lifting Entry (continued)

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Math221: HW# 1 solutions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

List MF20. List of Formulae and Statistical Tables. Cambridge Pre-U Mathematics (9794) and Further Mathematics (9795)

Electromagnetic Waves I

Επίλυση Δ.Ε. με Laplace

Probability and Random Processes (Part II)

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Solution to Review Problems for Midterm III

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Solutions to Exercise Sheet 5

Derivations of Useful Trigonometric Identities

MATH 150 Pre-Calculus

Review of Essential Skills- Part 1. Practice 1.4, page 38. Practise, Apply, Solve 1.7, page 57. Practise, Apply, Solve 1.

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Section 8.2 Graphs of Polar Equations

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Σήματα και Συστήματα. Διάλεξη 13: Μελέτη ΓΧΑ Συστημάτων με τον Μετασχηματισμό Laplace. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής

CURVILINEAR COORDINATES

x(t) = (x 1 (t), x 1 (t),..., x n (t)) R n R [a, b] t 1:1 c 2 : x(t) = (x(t), y(t)) = (cos t, sin t), t 0, π ]

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017

Κλασσική Θεωρία Ελέγχου

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Second Order Partial Differential Equations

f (x + h) f (x) h f (x) = lim h 0 f (z) f (x) z x df (x) dx, df dy dx,

Physics/Astronomy 226, Problem set 5, Due 2/17 Solutions

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Inverse trigonometric functions & General Solution of Trigonometric Equations

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

X(f) E(ft) df x[i] = 1 F. x(t) E( ft) dt X(f) = x[i] = 1 F

) = ( 2 ) = ( -2 ) = ( -3 ) = ( 0. Solutions Key Spatial Reasoning. 225 Holt McDougal Geometry ARE YOU READY? PAGE 651

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Ολοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ολοκληρώματα. τεχνικές. 108 ασκήσεις. εκδόσεις.

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

C.S. 430 Assignment 6, Sample Solutions

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

ECE 222b Applied Electromagnetics Notes Set 4c

σ (9) = i + j + 3 k, σ (9) = 1 6 k.

ΚΕΦΑΛΑΙΟ 2. Περιγραφή της Κίνησης. 2.1 Κίνηση στο Επίπεδο

PARTIAL NOTES for 6.1 Trigonometric Identities

1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Transcript:

Hrold s Clculus 3 ulti-cordinte System Chet Sheet 15 Octoer 017 Point Rectngulr Polr/Cylindricl Sphericl Prmetric Vector trix -D f(x) y (x, y) (, ) 3-D f(x, y) z (x, y, z) 4-D f(x, y, z) w (x, y, z, w) Slope-Intercept Form: y mx + (r, θ) or r θ x r cos θ y r sin θ z z r x + y r ± x + y tn θ ( y x ) θ tn 1 ( y x ) (ρ, θ, φ) x ρ sin φ cos θ y ρ sin φ sin θ z ρ cos φ ρ r + z ρ x + y + z tn θ ( y x ) φ cos 1 z ( x + y + z ) φ cos 1 ( z ρ ) Point (,) in Rectngulr : x(t) y(t) t 3 rd vrile, usully time, with 1 degree of freedom (df) r x 0, y 0, z 0 [] [x] [] Point-Slope Form: y y 0 m (x x 0 ) Line Generl Form: Ax + By + C 0 where A nd B 0 Clculus Form: f(x) f () x + f(0) where m f () x x 0 3-D: y y 0 z z 0 c < x, y > < x 0, y 0 > + t <, > < x, y > < x 0 + t, y 0 + t > where <, > < x x 1, y y 1 > x(t) x 0 + t y(t) y 0 + t m y x y y 1 x x 1 r r 0 + t v x 0, y 0, z 0 + t,, c [ ] [ x y ] [c] [ c d ] [x y ] [e f ] Copyright 011-017 y Hrold Toomey, WyzAnt Tutor 1

Rectngulr Polr/Cylindricl Sphericl Prmetric Vector trix Plne (x x 0 ) + (y y 0 ) + c(z z 0 ) 0 x + y + cz d where d x 0 + y 0 + cz 0 f(x, y) Ax + By + C (vrile, constnt, constnt) where ρ tkes on ll vlues in the domin (0 ρ < ) r r 0 + sv + tw where: s nd t rnge over ll rel numers v nd w re given vectors defining the plne r 0 is the vector representing the position of n ritrry (ut fixed) point on the plne n (r r 0 ) 0 Conics Generl Eqution for All Conics: Ax + Bxy + Cy + Dx + Ey + F 0 where Line: A B C 0 Circle: A C nd B 0 Ellipse: AC > 0 or B 4AC < 0 Prol: AC 0 or B 4AC 0 Hyperol: AC < 0 or B 4AC > 0 ote: If A + C 0, squre hyperol Rottion: If B 0, then rotte coordinte system: cot θ A C B x x cos θ y sin θ y y cos θ + x sin θ ew (x, y ), Old (x, y) rottes through ngle θ from x- xis Generl Eqution for All Conics: Verticl Axis of Symmetry: p r 1 e cos θ Horizontl Axis of Symmetry: p r 1 e sin θ (1 e ) 0 e < 1 where p { d for { e 1 (e 1) e > 1 p semi-ltus rectum or the line segment running from the focus to the curve in direction prllel to the directrix Eccentricity: Circle e 0 Ellipse 0 e < 1 Prol e 1 Hyperol e > 1 Copyright 011-017 y Hrold Toomey, WyzAnt Tutor

Rectngulr Polr/Cylindricl Sphericl Prmetric Vector trix x + y r (x h) + (y k) r Centered t Origin: r (constnt) θ θ [0, π] or [0, 360 ] Circle Generl Form: Ax + Bxy + Cy + Dx + Ey + F 0 where A C nd B 0 Focus nd Center: (h, k) Centered t (r 0, φ): r + r 0 rr 0 cos(θ φ) R Hint: Lw of Cosines or r r 0 cos(θ φ) + r 0 sin (θ φ) ρ constnt θ θ [0, π] φ constnt 0 x(t) r cos(t) + h y(t) r sin(t) + k [t min, t mx ] [0, π) (h, k) center of circle (h, k) Sphere x + y + z r (x h) + (y k) + (z l) r Focus nd center: (h, k, l) Generl Form: Ax + By + Cz + Dxy + Eyz + Fxz + Gx + Hy + Iz + J 0 where A B C > 0 Cylindricl to Rectngulr: x r cos (θ) y r sin (θ) z z Sphericl to Rectngulr: x r sin θ cos φ y r sin θ sin φ z r cos θ Rectngulr to Cylindricl: r x + y Sphericl to Cylindricl: ρ r sin (θ) φ φ z r cos (θ) ρ constnt θ θ [0, π] φ φ [0, π] Rectngulr to Sphericl: r x + y + z θ rccos ( z r ) φ rctn ( y x ) Cylindricl to Sphericl: r ρ + z θ rctn ( ρ z ) rccos (z r ) φ φ Rectngulr: x r [ y] z Cylindricl: r cos (θ) r [ r sin (θ)] z Sphericl: r sin θ cos φ r [ r sin θ sin φ] r cos θ Copyright 011-017 y Hrold Toomey, WyzAnt Tutor 3

Ellipse Rectngulr Polr/Cylindricl Sphericl Prmetric Vector trix (x h) (y k) + 1 Generl Form: Ax + Bxy + Cy + Dx + Ey +F 0 where B 4AC < 0 or AC > 0 Center: (h, k) Vertices: (h ±, k) nd (h, k ± ) Foci: (h ± c, k) Focus length, c, from center: c Eccentricity: e c If B 0, then rotte coordinte system: A C cot θ B x x cos θ y sin θ y y cos θ + x sin θ Verticl Axis of Symmetry: r (1 e ) 1 ± e cos θ Horizontl Axis of Symmetry: r (1 e ) 1 ± e sin θ Eccentricity: 0 < e < 1 r(θ) ( cos θ) + ( sin θ) reltive to center (h,k) Interesting ote: The sum of the distnces from ech focus to point on the curve is constnt. d 1 + d k x(t) cos(t) + h y(t) sin(t) + k [t min, t mx ] [0, π] (h, k) center of ellipse Rotted Ellipse: x(t) cos t cos θ sin t sin θ + h y(t) cos t sin θ + sin t cos θ + k θ the ngle etween the x-xis nd the mjor xis of the ellipse Ellipsoid ew (x, y ), Old (x, y) rottes through ngle θ from x- xis (x h) (y k) + 1 (z l) + c r cos θ + r sin θ + z c 1 r cos θ sin φ + r sin θ sin φ + r cos φ c 1 x(t, u) cos(t) cos(u) + h y(t, u) cos(t) sin(u) + k z(t, u) c sin(t) + l [t min, t mx ] [ π, π ] [u min, u mx ] [ π, π] (h, k, l) center of ellipsoid (x v) T A 1 (x v) 1 Centered t vector v Copyright 011-017 y Hrold Toomey, WyzAnt Tutor 4

Prol ose Cone Rectngulr Polr/Cylindricl Sphericl Prmetric Vector trix Verticl Axis of Symmetry: x 4 py (x h) 4p(y k) Vertex: (h, k) Focus: (h, k + p) Directrix: y k p Horizontl Axis of Symmetry: y 4 px (y k) 4p(x h) Vertex: (h, k) Focus: (h + p, k) Directrix: x h p Generl Form: Ax + Bxy + Cy + Dx + Ey + F 0 where B 4AC 0 or AC 0 If B 0, then rotte coordinte system: A C cot θ B x x cos θ y sin θ y y cos θ + x sin θ ew (x, y ), Old (x, y) rottes through ngle θ from x- xis (x h) (y k) (z l) + c Verticl Axis of Symmetry: ed r 1 ± e cos θ Horizontl Axis of Symmetry: ed r 1 ± e sin θ Eccentricity: e 1 where d p Verticl xis of symmetry: x(t) pt + h y(t) pt + k (opens upwrds) or y(t) pt + k (opens downwrds) [t min, t mx ] [ c, c] (h, k) vertex of prol Horizontl xis of symmetry: x(t) pt + h y(t) pt + k (opens right) or y(t) pt + k (opens left) [t min, t mx ] [ c, c] Projectile otion: x(t) x 0 + v x t y(t) y 0 + v y t 16t feet y(t) y 0 + v y t 4.9t meters v x v cos θ v y v sin θ Generl Form: x At + Bt + C y Lt + t + where A nd L hve the sme sign Copyright 011-017 y Hrold Toomey, WyzAnt Tutor 5

Hyperol Rectngulr Polr/Cylindricl Sphericl Prmetric Vector trix (x h) (y k) 1 Generl Form: Ax + Bxy + Cy + Dx + Ey + F 0 where B 4AC > 0 or AC < 0 If A + C 0, squre hyperol Center: (h, k) Vertices: (h ±, k) Foci: (h ± c, k) Focus length, c, from center: c + Eccentricity: e c + sec θ 3-D (x h) (y k) + (x h) 1 (y k) 1 (z l) c (z l) + c If B 0, then rotte coordinte system: A C cot θ B x x cos θ y sin θ y y cos θ + x sin θ ew (x, y ), Old (x, y) rottes through ngle θ from x- xis Verticl Axis of Symmetry: r (e 1) 1 ± e cos θ Horizontl Axis of Symmetry: r (e 1) 1 ± e sin θ Eccentricity: e > 1 where e c + sec θ > 1 reltive to center (h,k) cos 1 ( 1 e ) < θ < cos 1 ( 1 e ) p semi-ltus rectum or the line segment running from the focus to the curve in the directions θ ± π Interesting ote: The difference etween the distnces from ech focus to point on the curve is constnt. d 1 d k Left-Right Opening Hyperol: x(t) sec(t) + h y(t) tn(t) + k [t min, t mx ] [ c, c] (h, k) vertex of hyperol Alternte Form: x(t) ± cosh(t) + h y(t) sinh(t) + k Up-Down Opening Hyperol: x(t) tn(t) + h y(t) sec(t) + k Alternte Form: x(t) sinh(t) + h y(t) ± cosh(t) + k Generl Form: x(t) At + Bt + C y(t) Dt + Et + F where A nd D hve different signs Copyright 011-017 y Hrold Toomey, WyzAnt Tutor 6

Rectngulr Polr/Cylindricl Sphericl Prmetric Vector trix Limit lim f(x) L x c 1 st Derivtive nd Derivtive f f(x + h) f(x) (x) lim h 0 h f f(x) f(c) (c) lim x c x c f (x) dy y D x f (x) d (dy ) d y y dy dy dr sin θ + r cos θ dr cos θ r sin θ Hint: Use Product Rule for y r sin θ x r cos θ d y d (dy ) d (dy ) dy dy, provided 0 d y d (dy ) Riemnn Sum: n d (dy ) S f(y i )(x i x i 1 ) i 1 d (r ) r Unit tngent vector T (t) r (t) r (t) where r (t) 0 Unit norml vector (t) T (t) T (t) where T (t) 0 Left Sum: Integrl F(x) f(x) F() F() S ( 1 n ) [ f() + f ( + 1 n ) + f ( + n ) + + f( 1 n ) ] iddle Sum: S ( 1 1 3 ) [f ( + ) + f ( + n n n ) + + f( 1 n )] r (t) f(t), g(t), h(t) Right Sum: S ( 1 n ) [f ( + 1 n ) + f ( + n ) + + f()] Doule Integrl d(y) f(x, y) dy c(y) Sme s rectngulr, ut f(x, y) f(ρ cos φ, ρ sin φ) Copyright 011-017 y Hrold Toomey, WyzAnt Tutor 7

Triple Integrl Inverse Functions Arc Length Curvture Perimeter d(z) Rectngulr Polr/Cylindricl Sphericl Prmetric Vector trix g(y,z) f(x, y, z) dy dz c(z) e(y,z) If f(x) y, then f 1 (y) x Inverse Function Theorem: f 1 1 () f () where f () L 1 + [f (x)] Proof: s (x x 0 ) + (y y 0 ) s ( x) + ( y) ds + dy ds + dy ( ) ds + ( dy ) ds (1 + ( dy ) ) ds 1 + ( dy ) κ L ds Sme s rectngulr, ut f(x, y, z) f(ρ cos φ, ρ sin φ, z) if y sin θ if y cos θ if y tn θ if y csc θ if y sec θ if y cot θ then θ sin 1 y then θ cos 1 y then θ tn 1 y then θ csc 1 y then θ sec 1 y then θ cot 1 y Polr: L r + ( dr ) Where r f(θ) Circle: L s rθ Proof: L (frction of circumference) π (dimeter) L ( θ ) π (r) rθ π y κ(θ) r + r rr (1 + y ) 3 (r + r ) 3 Squre: P 4s Rectngle: P l + w Tringle : P + + c for r(θ) Circle: C πd πr Ellipse: C π( + ) π Ellipse: C 4 1 ( c ) sin θ 0 Sme s rectngulr, ut f(x, y, z) f(ρ cos θ sin φ, ρ sin θ sin φ, ρ cos φ) θ rcsin y θ rccos y θ rctn y θ rccsc y θ rcsec y θ rccot y C πd πr Rectngulr D: L ( L ( t L ( dr t t 1 ( dρ ) t 1 κ + ( dy Rectngulr 3D: + ( dy + ( dz Cylindricl: + r ( + ( dz Sphericl: L + ρ sin φ ( + ρ ( dφ (z y y z ) + (x z z x ) + (y x x y ) (x + y + z ) 3 where f(t) (x(t), y(t), z(t)) L r (t) t s(t) r (u) 0 κ d T ds κ T (t) r (t) du κ r (t) r (t) r (t) 3 (See Wikipedi : Curvture) Circle: C πr Copyright 011-017 y Hrold Toomey, WyzAnt Tutor 8

Are Lterl Surfce Are Totl Surfce Are Surfce of Revolution Rectngulr Polr/Cylindricl Sphericl Prmetric Vector trix Squre: A s² Rectngle: A lw Rhomus: A ½ Prllelogrm: A h Trpezoid: A ( 1+ ) h Kite: A d 1 d Tringle: A ½ h Tringle: A ½ sin(c) Tringle: A s(s )(s )(s c), where s ++c Equilterl Tringle: A ¼ 3s Frustum: A 1 3 ( 1+ ) h Circle: A πr² Circulr Sector: A ½ r²θ Ellipse: A π Cylinder: S πrh Cone: S πrl S π f(x) 1 + [f (x)] Cue: S 6s² Rectngulr Box: S lw + wh + hl Regulr Tetrhedron: S h Cylinder: S πr (r + h) Cone: S πr² + πrl πr (r + l) Sphere: S 4πr² For revolution out the x-xis: A π f(x) 1 + ( dy ) For revolution out the y-xis: A π x 1 + ( dy ) dy A 1 [f(θ)] where r f(θ) Proof: Are of sector: A s dr r θ dr 1 r θ where rc length s r θ For rottion out the x-xis: S πy ds For rottion out the y-xis: S πx ds ds r + ( dr ) r f(θ), θ Ellipsoid: S 1 p 4π ( p p + p c p + p c p ) 3 Where p 1.6075, E 1.061% (Knud Thomsen s Formul) For revolution out the x-xis: A π r cos θ r + ( dr ) For revolution out the y-xis: A π r sin θ r + ( dr ) Sphere: S 4πr² Sphere: S 4πr² Ellipsoid: S A g(t) f (t) where f(t) x nd g(t) y or x(t) f(t) nd y(t) g(t) Simplified: A y(t) (t) Proof: f(x) y f(x) g(t) df(t) f (t) For rottion out the x-xis: S πy ds For rottion out the y-xis: S πx ds ds ( ) + ( dy ) if x f(t), y g(t), t where For revolution out the x-xis: A x π y(t) ( + ( dy For revolution out the y-xis: A y π x(t) ( + ( dy A r u r du dv v D Copyright 011-017 y Hrold Toomey, WyzAnt Tutor 9

Volume Rectngulr Polr/Cylindricl Sphericl Prmetric Vector trix Cue: V s³ Rectngulr Prism: V lwh Cylinder: V πr²h Tringulr Prism: V Bh Tetrhedron: V ⅓ h Pyrmid: V ⅓ Bh Sphere: V 4 3 πr3 Ellipsoid: V 4 3 πc Cone: V ⅓ h ⅓ πr²h f(r cos θ, r sin θ, z)r dz dr ρ sin φ cos θ, f ( ρ sin φ sin θ,) ρ cos φ ρ sin φ dρ dφ Ellipsoid: V 4 3 π det(a 1 ) f(x, y, z) dy dz Disc ethod - Rottion out the x-xis: V π [f(x)] Disc ethod: Cylindricl Shell ethod: Wsher ethod - Rottion out the x-xis: Volume of Revolution V π { [f(x)] [g(x)] } Cylinder ethod - Rottion out the y-xis: V πx f(x) (circumference) (hight) oments of Inerti Center of ss I m i r i m r dr 0 R 1 m i r i where m i 1-D for Discrete: x cm m 1x 1 + m x m 1 + m -D for Discrete: y m i x i x m i y i x y, y x 3-D for Discrete: x cm x 1 m i x i y cm y 1 m i y i z cm z 1 m i z i 3-D for Continuous: x 1 x dm 0 y 1 y dm 0 z 1 z dm where dm 0 nd dm ρ dz dy 0 I ρ(r) d(r) dv(r) V R 1 r dm R 1 ρ(r) r dv V Where r is distnce from the xis of rottion, not origin. (see Wikipedi) Copyright 011-017 y Hrold Toomey, WyzAnt Tutor 10

Rectngulr Polr/Cylindricl Sphericl Prmetric Vector trix Grdient ƒ f x f f ƒ(ρ, ϕ, z) i + j + y z k f ρ e ρ + 1 f ρ ϕ e ϕ + f z e z ƒ(r, θ, ϕ) f r e r + 1 f r θ e θ + 1 f r sin θ ϕ e ϕ ( ƒ(x)) v D v f(x) ƒ f i x j e i e j where ƒ (ƒ 1, ƒ, ƒ 3 ) Line Integrl f ds C f(r(t)) r (t) F(r) dr C F(r(t)) r (t) f ds S f(x(s, t)) T x s x ds t v ds S Surfce Integrl where x(s, t) (x(s, t), y(s, t), z(s, t)) nd ( x s x t ) (y, z) (z, x) (x, y) (,, (s, t) (s, t) (s, t) ) (v n) ds S v(x(s, t)) T ( x s x ) ds t Copyright 011-017 y Hrold Toomey, WyzAnt Tutor 11