Одређивање остатака триазинских и уреа хербицида у води канала Дунав Тиса Дунав. Мастер рад

Σχετικά έγγραφα
налазе се у диелектрику, релативне диелектричне константе ε r = 2, на међусобном растојању 2 a ( a =1cm

УРЕДБУ О ГРАНИЧНИМ ВРЕДНОСТИМА ПРИОРИТЕТНИХ И ПРИОРИТЕТНИХ ХАЗАРДНИХ СУПСТАНЦИ КОЈЕ ЗАГАЂУЈУ ПОВРШИНСКЕ ВОДЕ И РОКОВИМА ЗА ЊИХОВО ДОСТИЗАЊЕ

Извештај о мониторингу земљишта на територији града Смедерева у 2015.години

Анализа Петријевих мрежа

Количина топлоте и топлотна равнотежа

1.2. Сличност троуглова

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА МАТЕМАТИКА ТЕСТ

Tестирање хипотеза. 5.час. 30. март Боjана Тодић Статистички софтвер март / 10

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

2. Наставни колоквијум Задаци за вежбање ОЈЛЕРОВА МЕТОДА

Теорија електричних кола

Теорија електричних кола

ПРОГРАМ ПРАЋЕЊА КВАЛИТЕТА ПОВРШИНСКИХ ВОДА НА ТЕРИТОРИЈИ ГРАДА НИША ЗА 2015/2016. ГОДИНУ

г) страница aa и пречник 2RR описаног круга правилног шестоугла јесте рац. бр. јесу самерљиве

7. ЈЕДНОСТАВНИЈЕ КВАДРАТНЕ ДИОФАНТОВE ЈЕДНАЧИНЕ

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

ОГРАНИЧЕЊА И ЗАБРАНЕ ЗА ДУГОТРАЈНЕ ОРГАНСКЕ ЗАГАЂУЈУЋЕ СУПСТАНЦЕ (РОРѕ)

Закони термодинамике

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

b) Израз за угиб дате плоче, ако се користи само први члан реда усвојеног решења, је:

У к у п н о :

8.2 ЛАБОРАТОРИЈСКА ВЕЖБА 2 Задатак вежбе: Израчунавање фактора појачања мотора напонским управљањем у отвореној повратној спрези

ИЗВОД ИЗ ИЗВЕШТАЈА О ЦЕНАМА КОМУНАЛНИХ УСЛУГА - УДРУЖЕЊЕ ЗА КОМУНАЛНЕ ДЕЛАТНОСТИ -

Универзитет у Крагујевцу Факултет за машинство и грађевинарство у Краљеву Катедра за основне машинске конструкције и технологије материјала

МОНИТОРИНГ КВАЛИТЕТА ПОВРШИНСКИХ ВОДА НА ПОДРУЧЈУ ГРАДА НОВОГ САДА

предмет МЕХАНИКА 1 Студијски програми ИНДУСТРИЈСКО ИНЖЕЊЕРСТВО ДРУМСКИ САОБРАЋАЈ II ПРЕДАВАЊЕ УСЛОВИ РАВНОТЕЖЕ СИСТЕМА СУЧЕЉНИХ СИЛА

Писмени испит из Теорије површинских носача. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.

Положај сваке тачке кружне плоче је одређен са поларним координатама r и ϕ.

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

СИСТЕМ ЛИНЕАРНИХ ЈЕДНАЧИНА С ДВЕ НЕПОЗНАТЕ

МОНИТОРИНГ КВАЛИТЕТА ПОВРШИНСКИХ ВОДА НА ПОДРУЧЈУ ГРАДА НОВОГ САДА

Драган Д. Мариновић НОВИ КВАНТИТАТИВНИ КРИТЕРИЈУМИ ПРОЦЕНЕ СТЕПЕНА ЗАГAЂEЊА ЖИВОТНЕ СРЕДИНЕ ВОДАМА СА ОРГАНОХЛОРНИМ ИНСЕКТИЦИДИМА

Градска Управа за пољопривреду и заштиту животне средине. Трг Светог Димитрија 13. Сремска Митровица. Broj: Datum: год.

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

I Наставни план - ЗЛАТАР

УПУТСТВО ЗА ОДРЕЂИВАЊЕ ВРСТЕ ДОКУМЕНАТА КОЈЕ ИЗРАЂУЈЕ ОПЕРАТЕР СЕВЕСО ПОСТРОЈЕЊА. август 2010.

Предмет: Задатак 4: Слика 1.0

10.3. Запремина праве купе

Динамика. Описује везу између кретања објекта и сила које делују на њега. Закони класичне динамике важе:

ЗАШТИТА ПОДАТАКА Шифровање јавним кључем и хеш функције. Diffie-Hellman размена кључева

Упутство за избор домаћих задатака

Градска Управа за пољопривреду и заштиту животне средине. Трг Светог Димитрија 13. Сремска Митровица. Broj: Datum: год.

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Аксиоме припадања. Никола Томовић 152/2011

МОНИТОРИНГ КВАЛИТЕТА ПОВРШИНСКИХ ВОДА НА ПОДРУЧЈУ ГРАДА НОВОГ САДА

ТРАПЕЗ РЕГИОНАЛНИ ЦЕНТАР ИЗ ПРИРОДНИХ И ТЕХНИЧКИХ НАУКА У ВРАЊУ. Аутор :Петар Спасић, ученик 8. разреда ОШ 8. Октобар, Власотинце

Слика бр.1 Површина лежишта

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Универзитет у Београду, Саобраћајни факултет Предмет: Паркирање. 1. вежба

6.2. Симетрала дужи. Примена

КРУГ. У свом делу Мерење круга, Архимед је први у историји математике одрeдио приближну вред ност броја π а тиме и дужину кружнице.

Могућности и планови ЕПС на пољу напонско реактивне подршке. Излагач: Милан Ђорђевић, мастер.ел.тех.и рачунар. ЈП ЕПС Производња енергије

ОБЛАСТИ: 1) Тачка 2) Права 3) Криве другог реда

ЗАВРШНИ РАД КЛИНИЧКА МЕДИЦИНА 5. школска 2016/2017. ШЕСТА ГОДИНА СТУДИЈА

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

КВАЛИТЕТ ВОДЕ РЕКЕ ЂЕТИЊЕ

2. EЛЕМЕНТАРНЕ ДИОФАНТОВЕ ЈЕДНАЧИНЕ

6.5 Површина круга и његових делова

Тест за 7. разред. Шифра ученика

ЛАБОРАТОРИЈСКЕ ВЕЖБЕ ИЗ ФИЗИКЕ ПРВИ КОЛОКВИЈУМ I група

4.4. Паралелне праве, сечица. Углови које оне одређују. Углови са паралелним крацима

ПОВРШИНа ЧЕТВОРОУГЛОВА И ТРОУГЛОВА

НИВОИ НЕЈОНИЗУЈУЋИХ ЗРАЧЕЊА У ОКОЛИНИ ТРАНСФОРМАТОРСКИХ СТАНИЦА 110/X kv

Први корак у дефинисању случајне променљиве је. дефинисање и исписивање свих могућих eлементарних догађаја.

7.3. Површина правилне пирамиде. Површина правилне четворостране пирамиде

МОБИЛНЕ МАШИНЕ I. ttl. хидростатички системи, хидростатичке компоненте: вентили, главни разводници, командни разводници.

ВИШЕКРИТЕРИЈУМСКА АНАЛИЗА КВАЛИТЕТА ЗЕМЉИШТА ЧАЧАНСКЕ КОТЛИНЕ

ТЕСТ МАТЕМАТИКА УПУТСТВО ЗА ПРЕГЛЕДАЊЕ

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА ТЕСТ МАТЕМАТИКА

МАШИНЕ НЕПРЕКИДНОГ ТРАНСПОРТА. ttl. тракасти транспортери, капацитет - учинак, главни отпори кретања. Машине непрекидног транспорта. предавање 2.

Ваљак. cm, а површина осног пресека 180 cm. 252π, 540π,... ТРЕБА ЗНАТИ: ВАЉАК P=2B + M V= B H B= r 2 p M=2rp H Pосн.пресека = 2r H ЗАДАЦИ:

3.1. Однос тачке и праве, тачке и равни. Одређеност праве и равни

РЈЕШЕЊА ЗАДАТАКА СА ТАКМИЧЕЊА ИЗ ЕЛЕКТРИЧНИХ МАШИНА Електријада 2004

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

Факултет организационих наука Центар за пословно одлучивање. PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluation)

Хомогена диференцијална једначина је она која може да се напише у облику: = t( x)

ПОГЛАВЉЕ 3: РАСПОДЕЛА РЕЗУЛТАТА МЕРЕЊА

8. ПИТАГОРИНА ЈЕДНАЧИНА х 2 + у 2 = z 2

У н и в е р з и т е т у Б е о г р а д у Математички факултет. Семинарски рад. Методологија стручног и научног рада. Тема: НП-тешки проблеми паковања

ВИСОКА ТЕХНИЧКА ШКОЛА СТРУКОВНИХ СТУДИЈА У НИШУ

Вектори vs. скалари. Векторске величине се описују интензитетом и правцем. Примери: Померај, брзина, убрзање, сила.

Република Србија МИНИСТАРСТВО ПРОСВЕТЕ И НАУКЕ ЗАВОД ЗА ВРЕДНОВАЊЕ КВАЛИТЕТА ОБРАЗОВАЊА И ВАСПИТАЊА

3. Емпиријске формуле за израчунавање испаравања (4)

УНИВЕРЗИТЕТ У НОВОМ САДУ ПРИРОДНО-МАТЕМАТИЧКИ ФАКУЛТЕТ ДЕПАРТМАН ЗА МАТЕМАТИКУ И ИНФОРМАТИКУ. Томсонов ефекат. семинарски рад. Нови Сад, 2010.

НАЦИОНАЛНИ ПРОГРАМ ЗАШТИТЕ ЖИВОТНЕ СРЕДИНЕ

Слика 1. Слика 1.2 Слика 1.1

Семинарски рад из линеарне алгебре

ДИЈАГРАМИ И ТАБЛИЦЕ ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА ОДСЕК ЗА ПРОИЗВОДНО МАШИНСТВО ПРОЈЕКТОВАЊЕ ТЕХНОЛОГИЈЕ ТЕРМИЧКЕ ОБРАДЕ. Приредио: Александар Милетић

АНАЛОГНА ЕЛЕКТРОНИКА ЛАБОРАТОРИЈСКЕ ВЕЖБЕ

Температура. везана за топло и хладно ово није једнозначно у субјективном смислу

ПРОЦЕНА РИЗИКА ОД ПОПЛАВНИХ УНУТРАШЊИХ ВОДА И КАРТЕ УГРОЖЕНОСТИ НА ТЕРИТОРИЈИ АП ВОЈВОДИНЕ

РЕШЕЊА ЗАДАТАКА - IV РАЗЕД 1. Мањи број: : x,

6.1. Осна симетрија у равни. Симетричност двеју фигура у односу на праву. Осна симетрија фигуре

Школска 2010/2011 ДОКТОРСКЕ АКАДЕМСКЕ СТУДИЈЕ

Писмени испит из Теорије плоча и љуски. 1. За континуалну плочу приказану на слици одредити угиб и моменте савијања у означеним тачкама.

Погодност за одржавање, Расположивост, Марковљеви ланци

Осцилације система са једним степеном слободе кретања

1. Општи подаци о докторској дисертацији

ТРЕЋЕ ОТВОРЕНО ПРВЕНСТВО СРБИЈЕ У РЕШАВАЊУ ОПТИМИЗАТОРА 29. НОВЕМБАР ДЕЦЕМБАР ГОДИНЕ

ЛИНЕАРНА ФУНКЦИЈА. k, k 0), осна и централна симетрија и сл. 2, x 0. У претходном примеру неке функције су линеарне а неке то нису.

Transcript:

Кандидат Страхиња Миросављевић Ментор Проф. др Сања Лазић Одређивање остатака триазинских и уреа хербицида у води канала Дунав Тиса Дунав Нови Сад, 2015

КОМИСИЈА ЗА ОЦЕНУ И ОДБРАНУ МАСТЕР РАДА: др Сања Лазић, Редовни професор за ужу научну област Фитофармација, Пољопривредни факултет, Нови Сад Ментор др Маја Меселџија Доцент за ужу научну област Фитофармација, Пољопривредни факултет, Нови Сад Председник комисије др Бојан Константиновић Доцент за ужу научну област Хербологија, Пољопривредни факултет, Нови Сад Члан комисије 2

САДРЖАЈ САДРЖАЈ... 3 РЕЗИМЕ... 4 SUMMARY... 5 1. УВОД... 6 2. ПРЕГЛЕД ЛИТЕРАТУРЕ... 8 2.1. ЗАШТИТА ВОДА... 8 2.1.1. Хемијски статус подземних и површинских вода... 11 2.2. ПЕСТИЦИДИ КАО ЗАГАЂИВАЧИ ВОДА... 18 2.2.1. Доспевање пестицида у површинске воде... 19 2.2.2. Судбина пестицида у води... 21 2.2.2.1. Разградња пестицида у води... 22 2.3. КОРОВИ У КАНАЛУ ДУНАВ ТИСА ДУНАВ И ЊИХОВО СУЗБИЈАЊЕ23 2.3.1. Особине канала Дунав Тиса - Дунав... 23 2.3.2. Сузбијање корова на каналима хидросистема ДТД... 24 2.3.2.1. Механичке мере... 24 2.3.2.2. Физичке мере... 26 2.3.2.3. Биолошке мере... 26 2.3.2.4. Хемијске мере... 28 3. ЗАДАТАК И ЦИЉ РАДА... 29 4. МАТЕРИЈАЛ И МЕТОД РАДА... 30 4.1. МАТЕРИЈАЛ И ОПРЕМА... 30 4.2. МЕТОД РАДА... 31 5. РЕЗУЛТАТИ ИСТРАЖИВАЊА СА ДИСКУСИЈОМ... 35 6. ЗАКЉУЧАК... 42 7. ЛИТЕРАТУРА... 43 3

РЕЗИМЕ Интензивна примена пестицида последњих деценија довела је до акумулације њихових резидуа у животној средини. Посебно су угрожене водене површине, с обзиром да нам оне служе не само за наводњавање, већ и као извори пијаће воде. Присуство пестицида у води може довести и до смањења приноса уколико се користи вода за наводњавање са високим садржајем остатака пестицида, а може доћи и до губитка квалитета плодова. Због тога је неопходно вршити мониторинг пестицида у воденој средини. На локалитетима Челарево и Врбас на каналу Дунав Тиса Дунав, извршено је узорковање воде у циљу испитивања остатака триазинских и уреа херебицида. Циљани хербициди били су: хлоротолурон, димефурон, диурон, етудимурон, изопротурон, линурон, метабромурон, метабензтиазурон, атразин, деетилатразин, деизопропил-атразин цијаназин, пропазин, симазин, тербутилазин и метамитрон, од чега су код нас у примени тербутилазин, линурон и метамитрон. Као интерни стандарди кориштени су атразин-д5 и изопротурон-д6, док је екстракција узорака изведена OASIS HLB колонама. Добијени екстракти су анализирани, применом LC-MS/MS. Детектоване вредности наведених хербицида биле су испод максимално дозвољених концентрација (МДК) које су прописане Стандардом квалитета животне средине за хазардне супстанце у површинским водама Србије ( Сл. Гласник РС, бр. 24/2014). Деривати атразина су детектовани иако је он повучен из употребе 2008. године. Кључне речи: триазини, урее, OASIS, Дунав Тиса - Дунав 4

SUMMARY Intensive use of pesticides during the last few decades has brought the problem of accumulation of their residues in the environment. Water systems are especially endangered because of their use for irrigation and for drinking. Pesticide residues in water can lead to a lower yields if contaminated irrigation water is to be used, and it can also affect fruit quality. These are the reasons why we need to include monitoring of pesticides near rivers and canals. We took samles from the localities of Čelarevo and Vrbas on the banks of Danube Tisza Danube canal, in order to explore residues of different triazine and urea herbicides. Targeted herbicides were: chlorotoluron, dymefuron, diuron, etudymuron, isoprothuron, linuron, methabromuron, methabenstiazuron, atrazine, deetilatrazine, deisopropyl-atrazine, cianazine, propazine, simazine, terbuthylazine and methamithron, from which only terbuthylazine, linuron and methamithron are still in use in Serbia. Internal standards as atrazine D5, and isoprothuron D6 were used, while extraction was conducted with OASIS HLB colons. Extracts were analised with LC-MS/MS. Detected values of herbicides were all under maximum allowed concentrations (MAC) according to Environmental standards for hazardous substances in surface water of Serbia (Сл. Гласник РС, бр. 24/2014). Atrazine derivates were detected despite the fact it was banned in 2008. in Serbia. Key words: triazine, urea, OASIS, Danube Tisza - Danube 5

1. УВОД Због небриге светске популације о водама и неразвијене еколошке свести, данас постоји велики број загађених водотокова у свету. Загађење воде данас представља велики проблем јер мењање квалитета воде значи угрожавање живота свих бића која од ње зависе. Сваке године потрошња воде расте, а загађење поприма све веће размере. Пољопривредна производња је поред индустрије највећи загађивач животне средине (Лазић и сар., 2013). Неодговарајућа и прекомерна примена агрохемикалија, довели су до акумулације ових материја у води. Пестициди који се користе у пољопривредној производњи у контроли инсеката и корова, могу мигрирати у површинске и подземне воде, након апликације на биљке или земљиште (Ismail et al., 2012). Не ретко, пољопривредни произвођачи након завршеног прскања, бацају празну амбалажу у локалне канале или их остављају поред њиве, што представља још један извор загађења (Bursić et al., 2013). Такође се прање прскалица обавља у каналима омогућавајући директно изливање опасних хемикалија у воду. Уједно, пољопривреда је један од најзначајнијих корисника водних ресурса, с обзиром на то да се највећи проценат наводњавања гајених биљака обавља коришћењем каналске воде (Лазић и сар., 2013). На подручју Војводине, велики значај имају водопривредни канали који осим функције одвођења сувишне воде и одбране од поплава имају и функцију наводњавања пољопривредног земљишта. Један од главних водопривредних канала Војводине је Велики Бачки канал. Велики Бачки канал чини део система Дунав-Тиса-Дунав, дугачак је 118 km и повезује Дунав код Бездана са Тисом код Бечеја и скраћује пут између њих за 200 km. Просечна дубина канала је 3 m, корито је широко 17 m, а при врху ширина канала 6

износи 25 m. Канал је изграђен 1802. године, а у време изградње то је био највећи градитељски подухват у Аустро-уграској царевини. Копан је ручно, а количина ископане земље је била равна ископу Суецког канала. Касније у ХХ веку, Велики Бачки канал је постао окосница хидросистемма ДТД, једног од највећег хидросистема у Европи (http://www.gimnazijaso.edu.rs/gornje-podunavlje/hidrografija/veliki-backikanal.php). Пестициди су група селективно токсичних хемијских једињења која се примењују за сузбијање штетних биолошких агенаса у пољопривреди, шумарству, ветерини, сточарству, комуналној хигијени и у другим областима. Доспевају у воду директним путем у циљу контроле или уништавања вегетације у каналима, уништавањем алги у дренажним водама, ради потребе комуналне хигијене код уништавања комараца и у циљу сузбијања нежељене рибе. Индиректно доспевају уливањем отпадних и индустријских вода, спирањем са околног земљишта, ерозијом, дрифтом при третирању поља, кишом као и нехатом, а може и злонамерно (Шовљански и Лазић, 2007). Пољопривредна земљишта која су загађена агрохемикалијама, као и контаминиране површинске воде угрожавају подземне водотокове који служе у индистрији и за водоснабдевање становништва. Годишње се у води нађе око 200 различитих пестицида у ниским концентрацијама и то у површинским и подземним водама. Хербициди који се примењују на земљишту, се у највећој мери детектују у пролеће, током примене и након спирања или испирања после апликације. Примена добре пољопривредне праксе у коришћењу пестицида може да смањи количину и улазак хербицида у површинске воде. 7

2. ПРЕГЛЕД ЛИТЕРАТУРЕ 2.1. ЗАШТИТА ВОДА Вода је највеће природно богатство на свету. Она покрива 71% површине Земље. Има је око 1,4 109 км 3, али свега 2,5% чине слатке воде условно погодне за коришћење. Нагли пораст броја становништва у свету у последњих неколико деценија удвостручио је потрошњу воде и створио проблем питке воде. С друге стране, данас имамо све већи антропогени утицај (индустријализација, саобраћајнице, агрокултура) који доводи до загађења воде. С обзиром да је вода ограничен извор данас треба стремити њеном очувању да се не би угрозили интереси будућих генерација. Подземна вода је фундаментална основа живота и средство за живот људи. Око 50% популације користи је као примарни извор воде за пиће. Нажалост, у последњих година велики пораст становништва, индустријализација, урбанизација и напредак у технологији резултирају великом искоришћењу и контаминацији подземне воде. У контаминацији подземне воде велику улогу игра: испуштање отпадних вода из насеља и индустрија, одлагање штетног и опасног отпада, спирање загађења са пољопривредних површина и саобраћајница У највеће контаминанте подземне воде спадају: органохлорни пестициди, полихлоровани бифенили (PCB) и тешки метали. Пестициди у подземне воде доспевају спирањем земљишта. Нагла индустријализација проузрокује високу емисију полутаната 8

тешких метала у биосферу. Присуство тешких метала у води (и у површинској и у подземној) су озбиљан проблем који представља претњу за здравље људи, кроз контаминацију воде за пиће. За разлику од органских полутаната, тешки метали се не разлажу кроз биолошке процесе, што захтева њихово уклањање из воде. Због све већег загађења подземних вода пестицидима и тешким металима, данас се у свету спроводе мониторинзи ради утврђивања њиховог степена загађења. У надлежности Републике Србије је управљање водама. Оно мора бити такво да се задовоље тренутне потребе за водом, али да се не угрози задовољавање потреба будућих генерација. То значи да је коришћење вода засновано на дугорочној заштити расположивих водних ресурса. Морају се поштовати процеси у природи чија је значајна компонента вода, као и повезаност и међузависност акватичних и приобалних екосистема. У случају испољавања штетног дејства воде, потребно је пре свега заштитити становништво и његову имовину, али на тај начин да се заштите природне вредности. Постоји велики број загађивача вода, где предњаче велики индустријски комплекси. Због мањка еколошке свести, недостатка адекватних филтера и недовољног примењивања закона имамо ситуацију да овакви комплекси узрокују загађења. Уколико до тога дође, загађивач је законски обавезан да о свом трошку отклони загађење. Заштита вода је скуп мера и активности којима се квалитет површинских и подземних вода штити и унапређује, укључујући и заштиту од утицаја прекограничног загађења, ради: очувања живота и здравља људи; смањења загађења и спречавања даљег погоршања стања вода; обезбеђења нешкодљивог и несметаног коришћења вода уа различите намене; заштите водних и приобалних екосистема и постизања стандарда квалитета животне средине у складу са прописом којим се уређује заштита животне средине и циљеви животне средине ( Сл. Гласник РС, бр. 30/2010). Ради спречавања погоршања квалитета воде и животне средине, одређују се граничне вредности емисије за одређене групе или категорије загађујућих супстанци и то за: технолошке отпадне воде пре њиховог испуштања у јавну канализацију; технолошке и друге отпадне воде које се непосредно испуштају у реципијент; воде које се после пречишћавања испуштају из система јавне канализације у реципијент; отпадне воде које се испуштају у реципијент из септичке и сабирне јаме. 9

План заштите вода од загађивања садржи: мере за контролу, спречавање, прекидање и смањивање уношења у површинске и подземне воде хазардних супстанци; мере за спречавање уношења и одлагање отпадних и других материја на подручјима на којима то може утицати на погоршање квалитета вода; мере за пречишћавање отпадних вода; мере превенције и контроле уношења расутих загађења ради спречавања њиговог утицаја; мере заштите акватичних екосистема и других екосистема који непосредно зависе од акватичних екосистема од хазардних и приоритетних супстанци укључујући и приоритетне хазардне супстанце; начин спровођења интервентних мера у одређеним случајевима загађивања; органе и правна лица који су дужни спроводити поједине мере и радове; рокове за смањење загађивања воде; одговорности и овлашћења у вези са спровођењем заштите вода, изградње објеката, са пратећим уређајима за пречишћавање отпадних вода и друге мере потребне за заштиту и унапређење квалитета вода ( Сл. Гласник РС, бр. 30/2010). Ради заштите квалитета вода, забрањено је: уношење у површинске и подземне воде отпадних вода које садрже хазардне и загађујуће супстанце изнад прописаних граничних вредности емисије које могу довести до погоршања тренутног стања; испуштање отпадне воде у стајаће воде, ако је та вода у контакту са подземном водом, која може проузроковати угрожавање доброг еколошког или хемијског статуса стајаће воде; испуштање са пловних објеката или са обале загађујућих супстанци које директно или индиректно доспевају у воде, а потичу од било ког уређаја са брода или уређаја за пребацивање на брод или са брода; испуштање прекомерно термички загађене воде; коришћење ђубрива или средстава за заштиту биља у обалном појасу до 5 м; испуштање у јавну канализацију отпадних вода које садрже хазардне супстанце: - изнад прописаних вредности - које могу штетно деловати на могућност пречишћавања вода из канализације - које могу оштетити канализациони систем и постројење за пречишћавање вода 10

- које могу негативно утицати на здравље лица која одржавају канализациони систем коришћење напуштаних бунара као септичких јама остављање у кориту за велику воду природних и вештачких водотока и језера, као и на другом земљишту, материјала који могу загадити воде прање возила, машина, опреме и уређаја у површинским водама и водном земљишту ( Сл. Гласник РС, бр. 6/1991) 2.1.1. Хемијски статус подземних и површинских вода Параметри за одређивање хемијског статуса су све загађујуће супстанце које могу да доведу у ризик постизање циљева животне средине у погледу подземних вода. На основу мониторинга, хемијски статус се оцењује као добар или слаб. Подземне воде имају добар хемијски статус када: резултати праћења параметара статуса показују да је хемијски састав подземне воде такав да се ни на једном мерном месту на водном телу или групи водних тела не прелазе вредности граничне вредности концентрације загађујућих супстанци концентрације загађујућих супстанци не указују на продор високоминерализованих вода концентрације загађујућих супстанци не угрожавају еколошки и хемијски статус површинских вода повезаних са водним телом подземне воде не долази до негативних утицаја на копнене и акватичне екосистеме повезане са водним телом није значајно угрожена могућност коришћења водног тела за људску употребу Површинске воде имају слаб хемијски статус када нису испуњени критеријуми за постизање доброг хемијског статуса ( Сл. Гласник РС, бр. 74/2011). 11

Табела 1. Граничне вредности загађујућих материја у површинским водама Параметар Једини Граничне вредности ца мере Класа I Клас а II Кла са III Клас а IV Класа V ph 6,5-8,5 6,5-8,5 6,5-8,5 6,5-8,5 <6,5 или <8,5 Суспендоване материје mg/l 25 25 - - - Кисеонични режим Растворени кисеоник [mg O 2 /l] Засићеност кисеоником % - епилимнион (стратификована вода) - хиполимнион (стратификована вода) - (8) (или ПН) 90-110 70-90 50-70 70-90 70-50 30-50 - нестратификована вода 70-90 50-70 30-50 БПК5 ХПК (бихроматна метода) ХПК (перманганатна метода) Укупни органски угљеник (ТОС) [mg O 2 /l] [mg O 2 /l] [mg O 2 /l] - (8) (или ПН) 10 (или ПН) 5 (или ПН) [mg/l] - (8) (или ПН) - (8) 5 4 < 4 30-50 <30 10-30 <10 10-30 <10 - (8) 7 25 >25 15 30 125 >125 10 20 50 >50 - (8) 15 50 >50 Нутријенти Укупан азот [mg N/l] 1 (или 2 8 15 >15 ПН) Нитрати [mg N/l] - (8) - (8) 6 15 >15 (или ПН) Нитрити [mg N/l] 0,01 0.03 0,12 0,3 >0,3 (или ПН) Амонијум јон [mg N/l] - (8) - (8) 0,6 1,5 >1,5 (или ПН) Не-јонизовани амонијак [mg/l 0,005 0,025 - - - NH 3 ] Укупан фосфор [mg P/l] - (8) - (8) 0,4 1 >1 (или ПН) Ортофосфати [mg P/l] - (8) (или ПН) - (8) 0,2 0,5 >0,5 Салинитет 12

Хлориди [mg/l] 50 - (8) 150 250 >250 (или ПН) Укупни заостали хлор [mg/l 0,005 0,005 - - - HOCl] Сулфати [mg/l] 50 100 200 300 >300 (или ПН) Укупна минерализација [mg/l] <1000 1000 1300 1500 >1500 (или ПН) Електропроводљивост на [ms/cm] <1000 1000 1500 3000 >3000 20 C (или ПН) Метали Арсен [μg/l] <5 10 50 100 >100 (или ПН) Бор [μg/l] 300 (или ПН) 1000 1000 2500 >2500 Бакар [μg/l] 5 (Т=10) 22 (Т=50) 40 (Т=100) 112 (Т=300) Цинк [μg/l] 30 (Т=10) 200 (Т=50) 300 (Т=100) 500 (Т=500) Хром (укупни) [μg/l] 25 (или ПН) 5 (Т=10) 22 (Т=50) 40 (Т=100) 112 (Т=300) 500 1000 >1000 300 (Т=10) 700 (Т=50) 1000 (Т=100) 2000 (Т=500) 2000 5000 >5000 50 100 250 >250 Гвожђе (укупно) [μg/l] 200 500 1000 2000 >2000 Манган (укупни) [μg/l] 50 100 300 1000 >1000 Органске супстанце Фенолна једињења (као [μg/l] <1 1 20 50 >50 C 2 H 5 ОH) Нафтни угљоводоници (10) (10) - - - Површински активне [μg/l] 100 200 300 500 >500 материје (као лаурилсулфат) АОХ (адсорбујући органски халоген) [μg/l] 10 50 100 250 >250 13

Микробиолошки параметри Фекални колиформи Укупни колиформи Цревне ентерококе Број аеробних хетеротрофа (метода Кохл) cfu/100 ml cfu/100 ml cfu/100 ml cfu/100 ml 100 1000 1000 0 1000 00 500 10000 1000 1000 00 000 200 400 4000 4000 0 500 10000 1000 00 7500 00 >10000 0 >10000 00 >40000 >75000 0 Много година се сматрало да до загађења вода пестицидима не може доћи из разлога што се земљишни профил понаша као својеврсни филтер. Овом проблему није посвећивана довољна пажња из разлога што се највише бринуло о ДДТ-у, а он се није задржавао у води. Тек пре двадесетак година установљено је да се метаболити неких хербицида могу наћи како у површинским, тако и у подземним водама. Постављање граничних вредности је веома комплексно зато што треба обратити пажњу на више ствари. Потребно је прво установити за коју врсту воде је везана одређена гранична вредност да ли за пијаћу воду, воду за наводњавање, подземне воде, језера итд. Базирање граничних вредности на утицају на здравље као и на животну средину може довести до постављања таквих вредности које се у пракси тешко могу достићи. Граничне вредности могу бити засноване на: сигурности, доброј пракси, на LOQ и на закону (Hamilton et al., 2003.). Свака од ових биће објашњена посебно. Граничне вредности засноване на сигурности Упутство је базирано на токсикологији сваке компоненте. У прорачуну се претпоставило да човек дневно попије 2 l воде и да је 10 % од дозвољеног дневног уноса (ADI) дошло путем воде. Светска здравствена организација (СЗО) поставила је упуства за 9 хербицида у пијаћој води: алахлор, бентазон, МЦПА, метолахлор, пендиметалин, пропанил, пиридат, симазин и трифлуралин. За оне који се често користе код нас истиче се: 14

бентазон препоручена граница 25 µg/l, не би се требао користити на местима где постоји могућност контаминације пијаће воде путем површинских и подземних вода пендиметалин - препоручена граница 17 µg/l, приликом третирања воде угљеном у присуству нитрита, пендиметалин може N-нитрозне компоненте које су канцерогене У Аустралији су вредности подељене на препоручене вредности (ПВ) и здравствене вредности (ЗВ). Препоручене вредности користе надлежне институције за надзор. За пестициде који нису регистровани за употребу близу воде, препоручена вредност је иста или приближна лимиту детекције. Уколико је пестицид дозвољен за употребу близу водних тела, вредност је одређена искуствено, односно, гранична вредност је таква да не дође доризика за здравље потрошача у току његовог живота. Када се пређе ниво ПВ, сматра се да није угрожено јавно здравље већ да је дошло до нежељене контаминације пијаће воде. Здравствена вредност (ЗВ) је намењена за коришћење од стране здравствених институција у случају просипања или погрешне употребе пестицида. Ове вредности се рачунају из ADI (10%) за особу од 70 kg која пије 2 l воде дневно. Разлика између Аустралијских и граничних вредности СЗО је у томе што СЗО рачуна особу од 60 kg. За генотоксичне и канцерогене супстанце СЗО рачуна вредности које доводе до повећања појаве рака код више од 1 особе на 100.000 људи (Hamilton et al., 2003.). Табела 2. Разлика између ПВ и ЗВ код неких пестицида приказана је у табели. Пестицид ПВ (µgl) ЗВ (µg/l) дикамба 0 100 метрибузин 1 50 глифосат 10 1000 трифлуралин 0,1 50 У САД стандарде за остатке пестицида у води одређује Америчка агенција за заштиту животне средине ЕPА. САД прописују различите граничне вредности и дају различите препоруке. Разликујемо здравствену препоруку за пијаћу воду, једнодневну, десетодневну и дугорочну здравствену препоруку, доживотну здравствену препоруку итд. 15

Табела 3. МДК у пијаћој води у Аустралији Пестицид МДК (µg/l) бентазон 400 хлорпирифос 70 метрибузин 70 пендиметалин 20 трифлуралин 30 Јапанска агенција за заштиту животне средине одређује граничне вредности пестицида који се могу наћи у води у којој се гаји пиринач. Табела 4. МДК у води у којој се гаји пиринач, Јапан Пестицид МДК (µg/l) бентазон 2000 хлорпирифос 8 металаксил 500 прометрин 700 глифосат 4000 У Канади су препоручене МДК везане за врсту воде, па тако постоје МДК за воду за наводњавање, воду за појење стоке, пијаћу воду и текућу воду. Табела 5. МДК у водама Канаде Пестицид Вода за наводњавање Вода за стоку (µg/l) Пијаћа вода (µg/l) Текућа вода (µg/l) (µg/l) дикамба 0,006 122 метрибузин 0,5 80 1 метолахлор 28 50 7,8 МЦПА 0,025 25 2,6 4,2 Граничне вредности засноване на доброј пракси Када се пестицидом директно третира вода (сузбијање корова или комараца) могуће је поставити граничне вредности засноване на количини употребе у поређењу са 16

количином воде. У Аустралији је регистрован темефос за сузбијање комараца контролом из ваздуха. Примењује се као гранулиран (50 g/kg темефоса) у количини од 1-2 kg производа по хектару отворене водене површине, баре, мочваре итд. Међутим, не сме се употребити више од 6 g гранула на количину воде од 1000 l (Hamilton et al, 2003.). Граничне вредности засноване на закону У Европској унији, вода која се користи за људску потрошњу мора испунити минималне прописане услове који кажу да вода сме да садржи максимално 0,1 µg/l пестицида, 0,5 µg/l укупних пестицида и максимално 0,03 µg/l алдрина, диелдрина, хептахлора и хептахлор епоксида (Hamilton et al., 2003.). У Србији је на листи приоритетних полутаната воде 14 пестицида. Табела 6. Стандарди квалитета животне средине за хазардне супстанце у површинским водама ( Сл. Гласник РС, бр. 24/2014) Број Име супстанце Просечна годишња концентрација (µg/l) Максимално дозвољена концентрација (МДК) (µg/l) 1 Алахлор 0,3 0,7 2 Антрацен 0,1 0,1 3 Атразин 0,6 2 4 Кадмијум и његова једињења <0,08 (класа 1) 0,08 (класа 2) 0,09 (класа 3) 0,15 (класа 4) 0,25 (класа 5) <0,45 (класа 1) 0,45 (класа 2) 0,6 (класа 3) 0,9 (класа 4) 1,5 (класа 5) 5 Хлорфенвинфос 0,1 0,3 6 Хлорпирифос 0,03 0,1 7 Циклодиенски пестициди: Алдрин Диелдрин Ендрин Сума 0,01 / 17

Изодрин 8 Укупни ДДТ 0,025 / 9 Пара-пара ДДТ 0,01 / 10 Диурон 0,2 1,8 11 Ендосулфан 0,005 0,01 12 Флуорантен 0,0063 0,12 13 Хексахлорбензен 0,05 14 Хексахлорбутадиен 0,6 15 Хексахлорциклохекс 0,02 0,04 ани 16 Изопротурон 0,3 1 17 Олово и његова 1,2 14 једињења 18 Нафтален 2 130 19 Никл и његова 4 34 једињења 20 Нонилфеноли 0,3 2 21 Пентахлорбензен 0,007 / 22 Пентахлорфенол 0,4 1 23 Полиароматични / угљоводоници 24 Полихлоровани / бифенили 25 Симазин 1 4 26 Трифлуралин 0,03 / 27 Тербутрин 0,065 0,34 28 Циперметрин 8x10-5 6x10-4 2.2. ПЕСТИЦИДИ КАО ЗАГАЂИВАЧИ ВОДА Еколошки утицаји пестицида у води одређени су следећим критеријумима: Токсичност: токсичност према сисарима исказана је као LD 50 (Летална доза концентрација пестицида која ће усмртити 50% испитиваних организама у одређеном временском периоду). Што је нижа LD 50, већа је токсичност; вредности до 10 су екстремно токсичне. Токсични ефекат може бити акутни (смрт) или хронични (ефекат који не доводи до смрти, али на испитиваном организму може доћи до појаве рака, тумора, престанка раста, стерилитета итд) 18

Перзистентност: Перзистентност је способност задржавања пестицида у води. Зависи од биотичких и абиотичких процеса разградње. Биотички процеси разградње пестицида су биоразградња и метаболизам; абиотички процеси су хидролиза, фотолиза, оксидација. Модерни пестициди имају краће полу-време разградње, што ће рећи да контролишу штетни организам за кратко време након апликације. Деградација: Продукти деградације могу имати већу, једнаку или нижу токсичност од полазне супстанце. ДДТ се на пример разлаже на ДДД и ДДЕ Судбина (у животној средини): На судбину пестицида у животној средини утиче афинитет хемијске супстанце према неким од четири одељака животне средине: чврста материја (минералне материје и органски угљеник), вода (растворљивост у површинским и подземним водама), гас (волатизација) и биотоп. Додатни фактор може бити постојање нечистоћа у формулацији пестицида, а које нису део активне материје. Постоји пример пестицида ТФМ, ламприцида који се дуги низ година користио за контролу морских змијуљица (Lampetra fluviatilis) у Великим језерима. Продукти разградње ТФМ-а су били познати одавно, међутим истраживања су показала да се у формулацији ТФМ-а налазе нечистоће које утичу на хормонски систем риба и изазивају обољења јетре. 2.2.1. Доспевање пестицида у површинске воде Пестициди могу да доспевају у водотокове директно или индиректно. Директним путем ради сузбијања или контроле нежељене вегетације у каналима и рибњацима, уништавањем алги у дренажним системима, ради потребе комуналне хигијене профилаксе инфективних обољења, сузбијања комараца, те ради уништења нежељене рибе и змија (Шовљански и Лазић, 2007). Индиректно, пестициди доспевају из атмосфере заједно са падавинама, у облику производа активности животиња и људи, уливањем отпадних и индустријских вода градских и приградских насеља, спирањем после кише с околног земљишта, ерозијом и одводњавањем пољопривредног биотопа, заношењем при прскању пољопривредних култура у близини водотокова, усвајањем од стране аватичних организама у муљу, 19

седименту, преципитацијом, кишом, бацањем неутрошених течности намењених за прскање, концентрованих препарата, амбалаже, као и нехатом и злонамерно. Сматра се да су одводњавање и улив подземних вода главни извори постепеног загађења, док задесом или слично настају озбиљнија локализована тровања живог света (Шовљански и Лазић, 2007). Спирање и ерозија До испирања може доћи на практично било ком типу земљишта, чак и на скроз равном, али његова појава зависи превасходно од климе. До спирања долази када је капацитет инфилтрације и површински капацитет земљишта прекорачен количином падавина. Капацитет инфилтрације смањује се са повећањем садржаја глине и муља, а повећава се са присуством макроспора на површини. До спирања може доћи и у случају када је присутан висок ниво површинских вода и услед чега било која количина падавина моментално ишчезне. Заступљени су следећи облици ерозије: водена ерозија (значајна у хумидним подручјима и за време јаких падавина, као и за оне пестициде који су добро растворљиви у води); еолска ерозија (одношење ситних честица земљишта у којима се пестицид налази инкорпориран у хуминске материје заступљене у сушнијим пределима, сушним периодима и код липофилних пестицида; обрађено земљиште је подложније ерозији од необрађеног) До ерозије долази на два начина одвајањем земљишних честица од површине земље и њиховим кретањем наниже. До одвајања долази под утицајем падавина и абразивне моћи спирања. До водене ерозије долази најчешће на земљиштима богатим муљем и финим песком (Шовљански и Лазић, 2007). Корисна мера за спречавање доласка пестицида у површинске воде спирањем или ерозијом је кориштење тампон зона под вегетацијом на ивицама парцела и око водених површина. У САД се за заштиту од ерозије користе и затравњене површине које могу да смање доспевање пестицида у површинску воду. Остале корисне мере укључују смањену обраду, покривање земљишта вегетацијом, малчовање итд. Ово је и један од 20

разлога зашто се између редова у виноградима и воћњацима сеје трава. Примена пестицида у траке је такође корисна мера. Кориштење гранулисаних пестицида и инкорпорација сматрају се задовољавајућим, док је и време које протекне између пестицидног третмана и спирања такође критично. На крају, избегавање апликације када је сезона олуја и интензивних падавина може бити исто тако корисна мера (Reichenberger et al., 2007). 2.2.2. Судбина пестицида у води На судбину пестицида у води утичу абиотски фактори адсорпција, испраљивост, хидролиза, фотолиза, редокс потенцијал и биотски фактори биоконцентрација и биотрансформација. Судбина пестицида у води зависи од физичко-хемијских својстава воде и пестицида, карактеристике водене масе, транспортних процеса и процеса трансформације. Физичко-хемијска својства воде су: температура, мирис и укус воде, боја, мутноћа, растворене материје, транспарентнист, спроводљивост, биолошке карактеристике (Шовљански и Лазић, 2007). Физичко-хемијске карактеристике пестицида (од значаја за понашање у води) су: молска маса, тачка кључања и топљења, напон паре, растворљивост у води и подеони кефицијент између воде, седимента и природних липида у живом свету (Константиновић, 2011). Табела 7. Физичко хемијске карактеристике неких хербицида (Шовљански и Лазић, 2007) Пестицид Молекулска запремина (cm 3 mol) Растворљив ост у води (mol/m 3 ) log P оw Напон паре, P Pa 20 о C Атразин 250,6 4,99 2,4 0,00004 2,4 Д 209,8 50,27 1,0 0,55 Дихлобенил 148,9 1,9 2,9 1,27 Симазин 228,4 2,92 1,9 0,0010 На разградњу пестицида у води утичу: величина воденог система (река, језеро, канал, рибњак, базен) 21

да ли су воде стајаће или текуће ако су текуће, да ли је проток брз или спор и колики је степен аерације садржај седимента и хуминских материја ph вредност, садржај растворених материја биомаса метеоролошки утицаји (Шовљански и Лазић, 2007) 2.2.2.1. Разградња пестицида у води Разградња пестицида у води одвија се хемијски и ензиматски, а с површине воде испаравањем и фоторазградњом. Разградња у води укључује оксидацију, редукцију, хидролизу, дехлоринацију, десулфурацију, деалкилацију, сулфоксидацију, коњугацију итд. Хидролиза је цепање молекула у присуству воде. Пестициди присутни у води се веома брзо хидролизују и образују ниско токсична једињења, при чему брзина хидролизе зависи од температуре и ph воде. Нарочито се брзо хидролизују естри органофосфорних једињења. Триазини се, међутим, веома мало или нимало не хидролизују у води иако у извесним земљиштима и биљкама при киселим ph подлежу хидролизи (Шовљански и Лазић, 2007). Фоторазградња је разградња пестицида под утицајем сунчеве светлости или УВ зраења (таласне дужине 290-450 nm). Обухвата оксидацију, редукцију, декарбоксилацију, дехлоринацију, деалкилацију, циклизацију, дехидратацију, полимеризацију, изомеризацију итд. Пестициди који не апсорбују или апсорбују врло мало соларне енергије су између осталог: 2,4 Д, линурон, монурон, пропанил итд. Сулфонилуреје подлежу фоторазградњи. Процеси укључени су цепање моста, десулфурација, 0-деметилација метокси група и 0-деалкилација. Трифлуралин под утицајем УВ зрачења постепено губи пропилне групе и образује α, α, α трифлуор 2,6 динитро N пропил-п-толуидин, а затим α, α, α трифлуор 2,6 динитро-p-толуидин (Шовљански и Лазић, 2007). 22

2.3. КОРОВИ У КАНАЛУ ДУНАВ ТИСА ДУНАВ И ЊИХОВО СУЗБИЈАЊЕ 2.3.1. Особине канала Дунав Тиса - Дунав Хидросистем Дунав Тиса Дунав (Хс ДТД) је вишенаменски објекат кога чини мрежа старих, новоизграђених и реконструисаних канала на подручју Бачке и Баната. Преко централне европске пловне магистрале Мајна Рајна Дунав, повезује нашу земљу са западном и источном Европом, а исто тако чини део европског пловног пута од Северног до Црног мора. Слика 1. Основна каналска мрежа хидросистема Дунав Тиса - Дунав Основна каналска мрежа Хс ДТД уређена је тако да једноставно решава водопривредне проблеме Бачке и Баната. Његова вишеструка улога огледа се у: одводњавању, наводњавању, водоснабдевању индустрија и насеља, прихватању и одвођењу употребљених отпадних вода, рибарству, рекреацији, спорту и туризму. Дужина каналске мреже је 929 км, од чега је 508 км у Банату и 421 км у Бачкој. Пловно је 664 км канала (Љевнаић Машић, 2010). На каналској мрежи су изграђене 24 23

регулационе уставе (укључујући и брану на Тиси код Новог Бечеја), 5 сигуроносних устава, 16 бродских преводница, 6 црпних станица, 86 мостова итд. (Ликић, 2002). Каналску мрежу хидросистема ДТД одликује богатство биљних врста и заједница што је резултат различите старости канала, различите намене појединих деоница, присуства деоница са регулисаним и нерегулисаним коритом, различите ширине и дубине канала, диригованог водног режима (повремене велике и нагле промене нивоа воде, брзине протицаја и др.), начина водоснабдевања, квалитета воде канала итд (Љевнаић Машић, 2010). 2.3.2. Сузбијање корова на каналима хидросистема ДТД Ако се узму у обзир сви негативни ефекти закоровљености канала ДТД, сузбијање корова представља веома битну меру одржавања каналске мреже. Не само да се побољшава квалитет воде, већ и канал има бољу проходност, боље су нам могућности за наводњавање и одводњавање, а и риболов се интензивније развија. Од мера сузбијања корова разликујемо физичке и механичке методе, биолошке и хемијске методе. 2.3.2.1. Механичке мере Механичка контрола акватичних корова састоји се превасходно из уклањања корова физички из водене површине. Може се користити физичка снага која ће директно или индиректно смањити раст и развој коровске вегетације. Ово се може урадити ручно или користећи различите алате и енергију машина. Физичке методе са друге стране подразумевају мењање околине и ставрање услова који ће довести до престанка раста и развоја корова. Мана овог начина сузбијања јесте што ће многи корови поново да израсту из корена или ризома. Исто тако, приликом уништавања корова доћи ће до расејавања семена корова на нове површине. Од механичких мера сузбијања акватичних корова разликујемо: ручно уклањање, механичко сечење, сузбијање гвозденим ланцима, сузбијање косилицама и комбајнима, кошење, употреба пламена (Lancar and Krake, 2002). 24

a) Ручно уклањање На местима где је инфестација корова мала, они се могу уклонити ручно. За ово се често користе велики ножеви или мачете. На овај начин могу се сузбити емерзни корови као што су: Typha spp., Phragmites spp., Justicia spp. Уколико је ниво воде низак могу се чак уклонити и подводни репродуктивни органи, као што су ризоми. b) Механичко сечење Сечење се обавља употребом механичких коса. Овим начином могуће је сузбити корове као што су Phragmites spp., Chara spp., Typha spp., филаментозне алге и др. Могуће је посећи корове до 1,5 м дубине. c) Сузбијање гвозденим ланцима Сузбијање гвозденим ланцима одразумева употребу ланца који је закачен за два трактора и који они вуку кроз густо зарастао канал. Ланац кида корење корова и одваја их од земље. Овај метод је нашао примену у сузбијању емерзних и субмерзних корова. Поступак је потребно поновити неколико пута, не би ли повећала ефикасност. Основна мана ове методе је што канал мора бити исте ширине, мора постојати добар прилаз са обе стране за трактор и не сме бити дрвећа уз канал. d) Cузбијање воденим косилицама и комбајнима У већим каналима користе се водене косилице или комбајни. Водене косилице су најчешће закачене за мотор. Састоје се из јаких и оштрих ножева на осовини која се претежно налази испред мотора. Комбајни су машине које након што исеку траву, одмах је избацују на обалу конвејером. У Индији је произведено неколико машина које раде на овим принципима и способне су да очисте око 1,5 ха водене површине дневно од корова. e) кошење Кошење је метода која се код нас најчешће користила, али није толико економична. Потребно је операцију понављати неколико пута годишње из разлога што се коровске биљке ризомима поново размноже. Исто тако, долази до расејавања семена на нове површине. Пошто се у ризомима налазе резерве угљених хидрата биљке, потребно их је исцрпети сталним кошењем. Кошење је најбоље обавити када су резерве угљених хидрата најмање, а то је пред цветање биљака. 25

f) употреба пламена Акватична вегетација може се сузбити и употребом пламена. За ово нам служе бацачи пламена. Термална тачка на којој биљке вену је између 45-55 о С. Више температуре од ових доводе до коагулације ћелијске протоплазме која инактивира ензиматске процесе и доводи до смрти биљке (Константиновић, 1999). 2.3.2.2. Физичке мере a) Исушивање и контрола нивоа воде Ово је једноставан и брз начин контроле субмерзних корова. Већина акватичних корова брзо реагује на промену нивоа воде. Контрола се постиже било дехидратацијом вегетације или излагањем ниским температурама. Излагање сунцу спречава ретровегетацију неких корова у периоду и до чак шест месеци (Lancar and Krake, 2002). Ова мера није ефикасна у сузбијању емерзних корова. b) Промена светлости Сунчева светлост је есенцијална за раст и развој коровских биљака, поготово субмерзних. Уколико се прекине довод светлости на водену површину, то ће утицати и на раст коровске вегетације. Ово се може постићи на неколико начина. Постоје хемикалије за бојење воде које након што обоје воду, сунчева светлост више не доспева на биљке у довољној количини. Уколико се у канал дода минерално ђубриво, то ће резултирати размножавањем милиона ситних биљака које ће прекрити у потпуности површину воде и направити баријеру према сунцу (Helfrich et at., 2009). Ово не доводи до погоршања квалитета воде и не сматра се штетним. Препоручује се ђубриво формулације 8-8-8. Овим ће се засенити субмерзне коровске биљке и прекинуће се њихов развој (Lancar and Krake, 2002). 2.3.2.3. Биолошке мере Биолошка контрола акватичних корова подразумева употребу живих организама или продуката њиховог метаболизма ради спречавања раста и репродукције корова. 26

Организми који се копристе у биолошкој контроли су инсекти, патогени, нематоде, паразити, рибе итд. (Константиновић, 2011). Захваљујући расту свести о негативним ефектима употребе хербицида, поготово близу водених површина, биолошка контрола све више добија на значају. Она се сматра за најбезбеднију меру контроле. Неки од природних непријатеља који се разматрају у контроли акватичних корова су следећи. 1) Патогени Корови се могу контролисати патогенима као што су гљиве, бактерије и вируси. Најчешће се користе гљиве. Гљиве се могу јако брзо размножити, већина патогена биљака су гљиве, деструктивне су и могу се контролисати лако. Такви пестициди који у себи носе инокулум гљиве називају се микохербициди и на тражишту се налазе Дивајн и Колего. Од гљива се најчешће користе родови Alternaria i Fusarium (Константиновић, 2011). 2) Рибе Међу хербиворним рибама које се користе у контроли акватичних корова треба истаћи: Tilapia menaloplaura, T. zilli, T. nilotica, Puntiase gonianatus. T. zilli је велики потрошач корова Vallisneria, користили су га у Москви, али се показало да не преживљава ниске температуре. Са друге стране, Clenopharyngodon idella је риба која се највише користи у сузбијању акватичних корова данас. Успешно се користи у Кини, Мађарској и Јапану. Храни се многим коровима, међу којима су: Potamogeton, Lemna, Ceratophyllum, Elodea, Hydrocharis, Vallisneria, Myriophyllum итд. (Lancar and Krake, 2002). У Египту се са коришћењем Ц. иделла почело експериментисати средином осамдесетих. Показало се да је за две године овај начин контроле акватичних корова свео њихову бројност са 50% на 10%. Оно што је битно јесте да се пре пуштања рибе у канал корови очисте механички, да би толстолобик могао да се храни само младим биљкама (Кhattab and El-Gharablu, 1989). 3) Пужеви Обећавајући резултати добијени су употребом пужева Pomade canaliculata против акватичног корова Anachaares alensa у Бразилу и Marisa cornuarietis на Флориди. Неки корови су сузбијени комплетно као што је Ceratophyllum demersum, док су неки били само оштећени, али у довољној мери да им се смањи штетност (Lancar and Krake, 2002). 27

4) Инсекти Најраспрострањенија акватична коровска биљка на свету је Eichhornia crassipes. Шири се алармантно у Африци и Папуа Новој Гвинеји, а представља и огроман проблем у Индији и Југоисточној Азији. Истраживања су показала да пипa Neochetina bruchi има способност контроле ове коровске врсте скоро потпуно, 90%. Од осталих инсеката добро су се показали Euhrychiopsis lecontei, Neohydronmus affinis, Paulinia acuminata и др. (Lancar and Krake, 2002). 2.3.2.4. Хемијске мере Хемијско сузбијање акватичник корова у свету се обавља од 1963. године средствима на бази 2,4 Д, далапона, дихлобенила, амитрола и диквата. У Србији се хемијско сузбијање први пут почело користити на територији Војводине 1973. године. Већ од 1977. године у употреби се раширио хербицид глифосат који се због свог широког спектра деловања, али и мале перзистентности показао као одлично решење. Поред глифосата, одличну ефикасност на емрзне макрофите остварује и глуфосинатамонијум који се примењује у сувим каналима или повремено плављеним каналима у количини 5-7,5 l/ha. У примени се налази и хербицид сулфосат. Једно време користио се и хербицид имазапир, али се због високе перзистентности и могућности загађења водотока престао користити (Константиновић, 2011). 28

3. ЗАДАТАК И ЦИЉ РАДА Задатак рада је да се вода из канала хидросистема Дунав Тиса Дунав, на локалитетима Челарево и Врбас у периоду децембар 2012. новембар 2013. године, анализира на присуство хербицида: хлоротолурона, димефурона, диурона, етудимурона, изопротурона, линурона, метабромурона, метабензитиазурона, атразина, деетилатразина, деизопропил-атразина, цијаназина, пропазина, симазина, тербутилазина и метамитрона. Циљ рада је да се утврди да ли су детектоване вредности наведених хербицида у складу са стандардима квалитета животне средине за хазардне супстанце у површинским водама и да се стекне увид у њихово присуство у води. 29

4. МАТЕРИЈАЛ И МЕТОД РАДА Екстракција хербицида извршена је Лабораторији за биолошка испитивања и пестициде на Департману за фитомедицину и заштиту животне средине, Пољопривредног факултета у Новом Саду, док је хроматографско раздвајање на LC- MS/MS урађено у Институту за јавно здравље Београд у Београду 4.1. МАТЕРИЈАЛ И ОПРЕМА МАТЕРИЈАЛ: 1. Комерцијални микс стандарда NE7500 (LGC Standards ) 2. Аналитички стандард изопротурона- d6 (Supelco), масене концентрације 1 µg/ml 3. Аналитички стандард атразина-d5 (Supelco), масене концентрације 1 µg/ml 4. Метанол, HPLC чистоће (J.T. Baker, Holland) 5. Дихлорметан, HPLC чистоће (J.T. Baker, Holland) 6. Дејонизована вода 7. Азот 99.999% чистоће (Messer) 8. Supelco manifold 9. OASIS HLB, 3 cc (Waters Corporation, USA) 10. Најлонски мембрански филтери за шприцеве, Econofilter (Agilent Technology) 11. Шприцеви од 5 ml (Momina Krepost, Bulgaria) 12. Мензура од 250 ml 30

ОПРЕМА: 1. Течни хроматограф LC-MS/MS (Agilent 6410B QQQ) 2. Колона XBridge C18,150 x 3 mm, 3,5 µm (Waters Corporation, USA) 4.2. МЕТОД РАДА 1. Узорци за анализу воде узимани су једном месечно у периоду од децембра 2012. до новембра 2013. године из канала Дунав Тиса Дунав, са локалитета код насеља Челарево (45 16 06"N/19 31 19"E), и код Врбаса (45 34 10 N/19 38 16 E) ван зоне директног утицаја улива отпадних вода и притока. Локалитети су изабрани из разлога што се у њиховој непосредној близини налазе веће пољопривредне површине и то Пољопривредно предузеће Сава Ковачевић из Врбаса са својих 4.400 ha и Подунавље АД Челарево са 2300 ha. Слика 2. Локалитети са којих су узимани узорци Узорци воде су узимани према смерницама за узимање узорака површинских вода из река и потока СРПС ИСО 567-6. Приликом узорковања, водило се рачуна 31

да се не захвати седимент. Узорци су узети са дубине од 10 cm, 1 m од обале. Узет је по један узорак са сваког локалитета, у количини од 500 ml, што чини укупно 24 узорка воде. Узорци су донети у Лабораторију за биолошка истраживања и пестициде на Департману за фитомедицину и заштиту животне средине, Пољопривредног факултета у Новом Саду и чувани на температури 5 о С до момента анализе. Слика 3. Узимање узорака на локалитету Челарево 2. Припрема основних стандарда триазинских и уреа хербицида (хлоротолурона, димефурона, диурона, етудимурона, изопротурона, линурона, метабромурона, метабензтиазурона, атразин, деетил-атразин, деизопропил-атразин цијаназин, пропазин, симазин, тербутилазин и метамитрон). Припрема радног раствора мешавине испитиваних хербицида масене концентрације 10 µg/ml, мешањем одговарајућих запремина радног раствора. Kao интерни стандард (IS) кoристили су се атразин-д5 и изопротурон-д6, у масеној концентрацији од 10 µg/ml. 3. Екстракција узорака изведена је методом Милутиновић и сар. (2012) на OASIS колонама, које су активиране пропуштањем 5 ml метанола, а затим 5 ml воде. Након кондиционирања, пропуштено је 250 ml узорака воде у коју је додато 100 µl интерног стандарда, Елуирање аналита је извршено пропуштањем 5 ml дихлорметана. 32

4. Постављање aквизиционих пaрaметара мaсеног спектрометрa - одређивањe реaкције зa прaћење јонa (МRМ) и нaлажење енергије колизионе ћелије (CE), при којој ће одговор испитивaног пестицидa бити нaјвећи зa дaте услове. Према ранијим истраживањима Милутиновића и сар. (2012) постигнути лимити квантификације (LOQ) испитиваних пестицида су били 0,02 µg/l. Табела 8. МRM услови за QQQ и коефицијенти корелације са валидационим параметрима (Бурсић и сар., 2014) Хербицид MW MRM транзиција (m/2) Атразин 215 216 174 216 96 Деетил-атразин 187 188 146 188 104 Деизопропил 173 174 104 атразин 174 68 Цијаназин 240 241 214 241 104 Метамитрон 202 203 104 203 175 Пропазин 229 230 146 230 188 Симазин 201 202 132 202 96 Тербутилазин 229 230 174 230 104 Хлортолурон 212 213 46 213 72 Димефурон 338 339 256 339 140 Диурон 232 233 72 233 160 Етидимурон 464 265 208 265 161 Изопротурон 206 207 72 207 165 Линурон 248 249 160 249 182 Метабромурон 258 259 170 259 148 Метабензтиазурон 221 222 165 222 150 T R (min) R 2 Принос екстракције ± RSD (%) 16.724 1.000 82.93±5.77 6.165 0.9997 88.63±5.93 3.036 0.9999 76.43±6.73 10.912 0.9998 82.30±6.17 4.401 0.9998 72.00±4.63 22.054 0.9993 73.52±6.77 11.658 0.9999 83.93±5.23 22.499 0.9996 70.70±7.60 16.209 0.9998 85.83±4.90 22.103 0.9981 76.27±6.97 18.474 0.9999 76.57±3.97 3.628 0.9987 107.77±6.93 18.056 1.000 68.87±8.93 22.163 0.9998 74.37±6.57 16.469 0.9997 73.33±6.00 16.830 1.000 83.83±4.97 33

5. LC-MS/MS анализа екстракта узорака. Табела 9. Услови LC-MS/MS одређивања Инструмент Agilent 6410B QQQ Колона XBridge C18, 150 x 3.0 mm, 3.5 µm, Waters Јонски извор Multimod, MMI Тип јонизације +ESI Проток гаса у јонском извору 5 ml/min Tемпература гаса у јонском 325 C извору Температура испаривача 220 C Притисак распршивача 48 psi Напон капиларе 2000 V Аутосамплер h-als-sl+, model G1367D Запремина инјектовања Vinj=10 L узорака Тип инјектовања sa ispiranjem Бинарна пумпа BinPump-SL, model G1312B Проток 0,5 ml/min Мобилна фаза A:0,1% HCOOH u MeOH;B:0,1% HCOOH u vodi Однос мобилне фазе 0 min 70% B, 2 min 70%B, 15 min 50% B, 19 min 50% B, 20 min 30% B, 26 min 30% B Термостат и Т. колоне Column-Sl, Model G1316B, 40 C 34

5. РЕЗУЛТАТИ ИСТРАЖИВАЊА СА ДИСКУСИЈОМ LC-MS/MS aнализом прикупљених узорака каналске воде код Врбаса и Челарева, у периоду од децембра 2012. године, до новембра 2013. године, детектовани су следећи остаци: Табела 10. Детектоване концентрације хербицида у µg/l на локалитету Врбас у периоду децембар 2012. мај 2013. Децембар Јануар Фебруар Март Април Мај Десизопропилатразин 0.020 0.019 0.019 0.019 0.011 0.008 Метамитрон <LOD <LOD <LOD <LOD <LOD <LOD Десетилатразин 0.014 0.010 0.010 0.010 <LOQ 0.001 Хлоротолурон 0.020 0.018 0.018 0.018 0.018 <LOD Атразин <LOD <LOD <LOD <LOD <LOD 0.001 Пропазин 0.011 0.011 0.011 0.010 <LOD <LOD Тербутилазин <LOD <LOD <LOD <LOD <LOD <LOD Симазин <LOD <LOD <LOD <LOD <LOD <LOD Линурон 0.010 0.010 0.010 0.010 0.010 <LOD Димефурон <LOD <LOD <LOD <LOD <LOD <LOD Диурон 0.010 0.010 0.010 0.010 0.010 0.001 Етудимурон <LOD <LOD <LOD <LOD <LOD <LOD Изопротурон 0.017 0.017 0.017 0.016 0.016 <LOD Mетабромурон <LOD <LOD <LOD <LOD <LOD <LOD Mетабензтиазурон <LOD <LOD <LOD <LOD <LOD <LOD Цијаназин <LOD <LOD <LOD <LOD <LOD <LOD 35

Табела 11. Детектоване концентрације хербицида у µg/l на локалитету Врбас у периоду јун новембар 2013. Јун Јул Август Септембар Октобар Новембар Десизопропилатразин <LOD <LOD <LOD <LOD <LOD <LOD Метамитрон <LOD <LOD <LOD <LOD <LOD <LOD Десетилатразин 0.010 <LOD <LOD <LOD <LOD <LOD Хлоротолурон <LOD <LOD <LOD <LOD <LOD <LOD Атразин 0.010 0.001 <LOD <LOD 0.002 <LOD Пропазин <LOD <LOD <LOD <LOD <LOD <LOD Тербутилазин 0.020 0.080 0.040 0.040 0.050 0.050 Симазин <LOD <LOD <LOD <LOD <LOD <LOD Линурон <LOD <LOD <LOD <LOD <LOD 0.010 Димефурон <LOD <LOD <LOD <LOD <LOD <LOD Диурон 0.002 0.002 0.002 0.001 0.001 0.001 Етудимурон <LOD <LOD <LOD <LOD <LOD <LOD Изопротурон <LOD <LOD <LOD <LOD 0.017 0.017 Mетабромурон <LOD <LOD <LOD <LOD <LOD <LOD Mетабензтиазурон <LOD <LOD <LOD <LOD <LOD <LOD Цијаназин <LOD <LOD <LOD <LOD <LOD <LOD Слика 4. Детектоване концентрације хербицида у µg/l периоду децембар 2012. новембар 2013. на локалитету Врбас 36

У анализираним узорцима воде из канала Дунав-Тиса-Дунав на локалитету Челарево на присуство триазинских хербицида и њихових метаболита, као и на присуство уреа хербицида, нису детектовани остаци метамитрона, симазина, димефурона, етодимурона, метабромурона, метабензтиазурона и цијаназина. Детектовани остаци десизопропил-атразина били су од 0,008-0,020 µg/l, десетилатразина 0,001-0,014 µg/l, хлоротолурона 0,018-0,020 µg/l, атразина 0,001-0,010 µg/l, пропазина 0,010-0,011 µg/l, тербутилазина 0,020-0,080 µg/l, линурона 0,010 µg/l, диурона 0,001-0,010 µg/l, изопротурона 0,016-0,017 µg/l. Сви нађени остаци били су испод максимално дозвољених количина (МДК) прописаних Стандардом квалитета животне средине за хазардне супстанце у површинским водама ( Сл. Гласник РС, бр. 24/2014). Табела 12. Детектоване концентрације хербицида у µg/l на локалитету Челарево у периоду децембар 2012. мај 2013. године Децембар Јануар Фебруар Март Април Мај Десизопропилатразин 0.019 0.019 0.019 0.019 0.011 <LOD Метамитрон <LOD <LOD <LOD <LOD <LOD <LOD Десетилатразин 0.015 0.010 0.010 0.010 <LOD 0.001 Хлоротолурон 0.018 0.018 0.018 0.018 0.018 <LOD Атразин <LOD <LOD <LOD <LOD <LOD 0.013 Пропазин 0.017 0.017 0.017 0.017 0.012 <LOD Тербутилазин 0.019 0.019 0.019 0.019 0.014 0.010 Симазин <LOD <LOD <LOD <LOD <LOD <LOD Линурон 0.019 0.018 0.017 0.012 0.001 <LOD Димефурон <LOD <LOD <LOD <LOD <LOD <LOD Диурон <LOD <LOD <LOD <LOD <LOD <LOD Етудимурон <LOD <LOD <LOD <LOD <LOD <LOD Изопротурон <LOD <LOD <LOD <LOD <LOD <LOD Mетабромурон <LOD <LOD <LOD <LOD <LOD <LOD Mетабензтиазурон <LOD <LOD <LOD <LOD <LOD <LOD Цијаназин <LOD <LOD <LOD <LOD <LOD <LOD 37