Quantitative Finance and Investment Core Formula Sheet. Spring 2017

Σχετικά έγγραφα
Quantitative Finance and Investments Core Formula Sheet. Spring 2016

Quantitative Finance and Investments Advanced Formula Sheet. Fall 2013/Spring 2014

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

Parts Manual. Trio Mobile Surgery Platform. Model 1033

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

TeSys contactors a.c. coils for 3-pole contactors LC1-D

Χρονοσειρές Μάθημα 3

Pricing Asian option under mixed jump-fraction process

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Homework 8 Model Solution Section

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009

m i N 1 F i = j i F ij + F x

Homework for 1/27 Due 2/5

The Student s t and F Distributions Page 1

HONDA. Έτος κατασκευής

Vulnerable European option pricing with the time-dependent for double jump-diffusion process

Quantitative Finance and Investments Advanced Formula Sheet. Fall 2014/Spring 2015

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

(1) P(Ω) = 1. i=1 A i) = i=1 P(A i)

Matrices and Determinants

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

Solution Series 9. i=1 x i and i=1 x i.

Solutions to Exercise Sheet 5

ΑΠΟΣΗΜΖΖ ΠΑΡΑΓΩΓΩΝ ΔΤΡΩΠΑΗΚΟΤ ΣΤΠΟΤ (CURRENCY OPTIONS, BINARY OPTIONS, COMPOUND OPTIONS, CHOOSER OPTIONS, LOOKBACK OPTIONS, ASIAN OPTIONS)

Statistical Inference I Locally most powerful tests

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1


2 Composition. Invertible Mappings

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

& Risk Management , A.T.E.I.

Financial Risk Management

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

DOI /J. 1SSN

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

Jeux d inondation dans les graphes

Lifting Entry (continued)

The one-dimensional periodic Schrödinger equation

Math221: HW# 1 solutions

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

4.6 Autoregressive Moving Average Model ARMA(1,1)

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Homework 3 Solutions

Inverse trigonometric functions & General Solution of Trigonometric Equations

Second Order Partial Differential Equations

Calculating the propagation delay of coaxial cable

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Galatia SIL Keyboard Information

5.4 The Poisson Distribution.


Approximation of distance between locations on earth given by latitude and longitude

Other Test Constructions: Likelihood Ratio & Bayes Tests

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

ECE 468: Digital Image Processing. Lecture 8

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Commutative Monoids in Intuitionistic Fuzzy Sets

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

The ε-pseudospectrum of a Matrix

Second Order RLC Filters

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Advanced Subsidiary Unit 1: Understanding and Written Response

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Geodesic Equations for the Wormhole Metric

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques

On the Galois Group of Linear Difference-Differential Equations

Example Sheet 3 Solutions

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

An Inventory of Continuous Distributions

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

Probability and Random Processes (Part II)

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx

Key Formulas From Larson/Farber Elementary Statistics: Picturing the World, Second Edition 2002 Prentice Hall

C.S. 430 Assignment 6, Sample Solutions

Mean-Variance Analysis

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

m 1, m 2 F 12, F 21 F12 = F 21

Instruction Execution Times

Trigonometric Formula Sheet

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

Strain gauge and rosettes

Lecture 12 Modulation and Sampling

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Transcript:

Quaniaive Finance and Invesmen Core Formula Shee Spring 7 Morning and afernoon exam bookles will include a formula package idenical o he one aached o his sudy noe. The exam commiee believe ha by providing many key formulas, candidaes will be able o focus more of heir exam preparaion ime on he applicaion of he formulas and conceps o demonsrae heir undersanding of he syllabus maerial and less ime on he memorizaion of he formulas. The formula shee was developed sequenially by reviewing he syllabus maerial for each major syllabus opic. Candidaes should be able o follow he flow of he formula package easily. We recommend ha candidaes use he formula package concurrenly wih he syllabus maerial. No every formula in he syllabus is in he formula package. Candidaes are responsible for all formulas on he syllabus, including hose no on he formula shee. Candidaes should carefully observe he someimes suble differences in formulas and heir applicaion o slighly differen siuaions. For example, here are several versions of he Black-Scholes-Meron opion pricing formula o differeniae beween insrumens paying dividends, ied o an index, ec. Candidaes will be expeced o recognize he correc formula o apply in a specific siuaion of an exam quesion. Candidaes will noe ha he formula package does no generally provide names or definiions of he formula or symbols used in he formula. Wih he wide variey of references and auhors of he syllabus, candidaes should recognize ha he leer convenions and use of symbols may vary from one par of he syllabus o anoher and hus from one formula o anoher. We rus ha you will find he inclusion of he formula package o be a valuable sudy aide ha will allow for more of your preparaion ime o be spen on masering he learning objecives and learning oucomes. In sources where some equaions are numbered and ohers are no nn denoes ha here is no number assigned o ha paricular equaion. A new ex Problems and Soluions in Mahemaical Finance: Sochasic Calculus The Wiley Finance Series by Eric Chin, Dian Nel and Sverrir Olafsson has been added o he syllabus among oher changes, bu formulas from his are no on he formula shee.

An Inroducion o he Mahemaics of Financial Derivaives, 3rd Ediion, A. Hirsa and S. Nefci Chaper. S C = + r + r S + S + C + C + ψ ψ Q up S + σ + Q down S σ.66 S = + r.67 C = + r.7 S = + d S u Q up + S d Q down + r.7 C = + r page 6 Chaper 3 3.37 3.49 E Q C+ C n i + i f Chaper 4 Qup C up + + Q downc+ down C u Q up + C d Q down gsdfs + r i i fsds n i + i g f i f i 4.4 df = F s ds + F r dr + F d + F ssds + F rrdr + F sr ds dr Chaper 5 5. ES I u = S fs I u ds, 5.8 P F = +a = p 5.9 P F = a = p u < 5.44 P X +s x +s x,..., x = P X +s x +s x 5.45 r + r = Er + r I + σi, W 5.48 dr = µr, d + σr, dw r+ α r 5.49 = + β R σ W + + R + α r + β R σ W+ Chaper 6 6.3 E S T = ES T I, < T 6.4 E S < 6.5 E S T = S, for all < T

6.9 E Q e ru B +u = B, < u < T 6. E Q e ru S +u = S, < u 6. M = N G N B 6.6 P N G = λ G > P N B = λ B 6.7 E M λ G λ B > 6.44 X Nµ, σ 6.46 X +T = X + 6.5 Z = X µ +T 6.54 E Z +T = X µ 6.55 E Z +T = Z 6.56 S N, σ 6.57 S = 6.58 Z = S dx u 6.6 E Z +T σ T + = Z σ 6.64 I I + I T I T 6.65 M = E P Y T I 6.66 E P M +s I = M 6.7 G T = fs T 6.7 B T = e rsds 6.7 M = E P GT B T I 6.6 M k = M + 6.8 E M k = M 6. C T = C + Chaper 7 k H i Z i Z i D s ds + gc s dm s 7.3 W k = S k S k E k S k S k 7.6 W k = k W i 7.8 E k W k = W k 7.9 V k = E W k n 7.3 V = E W k = k= n k= V k 3

7.3 V > A > 7.33 V < A < 7.34 V max = max k Vk, k =,..., n 7.35 V k V max > A 3, < A 3 < 7.36 E W k = σ kh 7.56 S k S k = E k S k S k + σ k W k Chaper 8 8.7 dn = 8.8 M = N λ 8.9 EM = { wih probabiliy λd wih probabiliy λd 8.5 Ee iux = expφu 8.6 φu = iγu σ u + 8.8 X = r q + ω + Z page 9 dνy = kydy + 8.9 ky = e λpy νy I y> + e λn y ν y θ nn λ p = σ 4 + σ θ ν σ nn λ n = θ σ 4 + σ ν 8. σ k W k = + θ σ e iuy iuyi { y } dνy I y< ω wih probabiliy p ω wih probabiliy p. ω m 8. Eσ k W k = σkh m 8.3 p i ωi = σkh 8.8 ω i h = ω i h ri 8.9 p i h = p i h qi 8.33 q i + r i = 8.34 c i = ω i p i 8.58 J = N λ. wih probabiliy p m 8.6 ds = as, d + σ S, dw + σ S, dj 8.75 = < < < n = T 8.76 n = T 4

8.77 S i = S i, i =,,..., n { ui S 8.78 S i+ = i wih probabiliy p i d i S i wih probabiliy p i 8.79 u i = e σ, for all i 8.8 d i = e σ, for all i 8.8 p i = + µ, for all i σ 8.89 S i+n S i 8.9 log S i+n S i 8.9 log S i+n S i = Z log u + n Z log d = Z log u d + n log d Chaper 9 9.37 lim n E n k= T σs k, k W k W k σs u, udw u = 9.38 S k S k = as k, kh + σs k, kw k W k, k =,,..., n T 9.39 E 9.4 9.73 σs, d < n σs k, kw k W k k= 9.74 lim n E 9.76 If 9.77 9.78 x dx = n x T T x i+ T = i= dx exiss, hen d = T dx = 9.79 dw = d 9.85 E s σ u dw u = d s lim E n σ u dw u, σs, dw n x i+ i= < s < dx = T T 9.3 E fw, dw gw, dw = E fw, gw, d T T 9.33 E fw, dw = E fw, d 5

Chaper page 7 ds = a d + σ dw,.36 df = F S ds + F.37 df =.64 d + F σ d S F a + F S + F σ S F s ds u = F S, F S, d + F σ dw S F u + F ssσu du.69 df = F d + F s ds + F s ds + Fss ds + F ss ds + F ss ds ds n.79 Y = N i P i.8 dy = n N i dp i + n n dn i P i + dn i dp i.8 ds = a d + σ dw + dj,.8 E J = k.83 J = N λ h a i p i k.84 a = α + λ a i p i k.85 df S, = F + λ F S + a i, F S, p i + F ssσ d + F s ds + dj F k.86 dj F = F S, F S, λ F S + a i, F S, p i d.87 S = lim s S s, s < Chaper.4 ds = µs d + σs dw,,.3 S = S e {a σ +σw }.34 ds = rs d + σs dw,,.38 S T = S e r σ T e σw T.4 Z = e σw.5 x = EZ = e σ.55 S = e rt E S T 6

.7 ds = µs d + σ S dw,,.74 ds = λµ S d + σs dw.78 ds = µs d + σdw.79 ds = µd + σ dw page 9 dσ = λσ σ d + ασ dw { wih probabiliy λd page 93 dn = wih probabiliy λd.83 ds S = µ λκd + σdw + e J dn.84 page 94 ds S = µ λ κ d + σd W + e J dn S = S e r q+ω+x;σ,ν,θ page 94 fx; σ, ν, θ = σ πg exp x θg g /ν e g/ν σ g ν /ν Γ/ν dg Chaper.3 P = θ F S, + θ S.4 dp = θ df + θ ds.5 ds = as, d + σs, dw,,.6 df = F d + F ssσ d + F s ds.7 df = F s a + F ssσ + F d + F s σ dw. θ =. θ = F s. dp = F d + F ssσ d.6 rf S, F s S = F + F ssσ.7 rf + rf s S + F + F ssσ =, S, T.3 P = F S, F s S, S.4 dp = df S, F s ds S df s df s S, ds.6 dp = df S, F s ds S F s + F ss µs + F sssσ S d + F ss σs dw F ss σ S d.8 dp = df S, F s ds S F ss µ rs d F ss σs dw 7

page dw = σdw + µ rd.9 a F + a F s S + a F + a 3 F ss =, S, T.3 F S T, T = GS T, T.3 F + F s =, S, T.33 F S, = αs α + β.44 F S, = e αs α.46.3f ss + F =.47 F S, = αs S +.3 α + β.53 F S, = S 4 3,, S Chaper 3 3. as, = µs 3. σs, = σs,, 3.3 rf + rf s S + F + σ F ss S =, S, T 3.4 F T = maxs T K, 3.6 F S, = S Nd Ke rt Nd 3.7 d = ln S K + r + σ T σ T 3.8 d = d σ T 3.9 Nd = d 3. as, = µs π e x dx 3.3 σs, = σs, S,, 3.4 rf + rf s S + F + σs, F ss S =, S, T 3.5 F T = maxs T K, 3.34 rf rf s S δ F F ssσ = 3.35 F S T, S T, T = max, maxs T, S T K muli-asse opion 3.36 F S T, S T, T = max, S T S T K spread call opion 3.37 F S T, S T, T = max, θ S T + θ S T K porfolio call opion 3.38 F S T, S T, T = max, S T K, S T K dual srike call opion 3.47 F + rs F S + σ S F S rf 8

F 3.48 F ij F i,j 3.49 rs F S rs F ij F i,j j S 3.5 rs F F i+,j F ij 3.5 S rs j S Fi+,j F ij S F S Chaper 4 F ij F i,j S S 4.6 dp z = P z dz < z < z + dz 4.7 4.8 Ez = dpz = 4.9 E z Ez = z dpz 4.9 E S + = S + R 4.3 E Q S + = S + r 4.4 z N, 4.4 dpz = π e z dz 4.43 ξz = e zµ µ z Ez dpz 4.44 dpz ξz = π e z +µz µ dz 4.45 dqz = π e z µ dz 4.47 dqz = ξz dpz 4.48 ξz dqz = dpz 9

4.53 fz, z = π Ω e σ 4.54 Ω = σ σ σ z µ, z µ Ω z µ z µ 4.55 Ω = σ σ σ 4.56 dpz, z = fz, z dz dz { 4.57 ξz, z = exp z, z Ω 4.58 dqz, z = ξz, z dpz, z 4.59 dqz, z = 4.6 ξz = e z Ω µ+ µ Ω µ 4.69 dqz dpz = ξz 4.74 dqz = ξz dpz π Ω e z, z 4.75 dpz = ξz dqz 4.76 ξ = e XudWu du X u,, T 4.77 E e Xdu u <,, T u 4.83 E ξ s X s dw s I u = ξ s X s dw s 4.84 W = W 4.85 QA = E P A ξ T 4.86 dw = dw X d 4.93 dq = ξ T dp X u du,, T 4. A A A n = Ω 4.3 A + A +... An = Ω 4.7 E P Z Ai = QA i 4.38 E P gx = gxfxdx µ page 48 gx = Z hx 4.4 E P gx = hx fxdx = E Q hx Ω Ω µ + µ, µ Ω µ µ Ω z z dz dz }

Chaper 5 5. Y Nµ, σ 5.4 Mλ = Ee Yλ 5. Mλ = e λµ+ σ λ 5.5 S = S e Y,, 5.5 ES S u, u < = S u e µ s+ σ s 5.3 Z = e r S 5.3 E Q e r S S u, u < = e ru S u 5.3 E Q Z Z u, u < = Z u 5.38 E Q e r u S S u, u < = S u e r u e ρ u+ σ u where under Q, Y Nρ, σ 5.39 ρ = r σ 5.4 E Q e r S S u, u < = e ru S u 5.5 ds = rs d + σs dw 5.58 C = E Q e rt max{s T K, } 5.88 ds = µ d + σ dw 5.9 de r S = e r µ rs d + e r σ dw 5.9 dw = dx + dw µ rs 5.97 dx = d σ 5.98 de r S = e r σ dw 5. d e r F S, = e r σ F s dw Chaper 7 page 8 R = + r page 8 R = + r page 8 B s = B, 3 page 8 B = B, T page 8 B s 3 = B 3, T 7.6 B s B = B uu 3 C R R u R R u R R d R R d F L u F L u F L d F L d C uu 3 B ud 3 C ud 3 B du 3 C du 3 B dd 3 C dd 3 ψ uu ψ ud ψ du ψ dd

7.3 = R R u ψ uu + R R u ψ ud + R R d ψ du + R R d ψ dd 7.4 Q ij = + r + r i ψ ij 7.5 = Q uu + Q ud + Q du + Q dd 7.6 Q ij > 7.8 B s = E Q + r + r 7. B = E Q B 3 + r + r 7. = E Q + r + r F L 7.3 C = E Q + r + r C 3 7.3 F = E Q L E Q + r + r +r +r 7.36 B s = ψ uu + ψ ud + ψ du + ψ dd 7.38 π ij = B s ψ ij 7.39 = π uu + π ud + π du + π dd 7.46 F = E π L 7.5 C 3 = N maxl K, 7.53 C = E Q + r + r maxl K, 7.55 C = B s E π maxl K, C 7.56 = E S CT S S T CK 7.57 = E S ST K + S S T ST page 9 y = log K page 9 CK S = 7.63 F ; T, S = S T F ye y dy P, T P, S 7.64 = T < T < T < < T M 7.65 i = T i+ T i, i =,,,..., M 7.66 L n = P, T n P, T n+ n P, T n+ n 7.7 P T i, T n+ = + j L j T i j=

n 7.7 P, T n = P, T l + j L j T i, T l < T l j=l l 7.75 B = P, T l + j L j T j 7.77 D n = j= n j=l +δ jl j l j= + jl j T J 7.78 dl n = µ n L n d + L n σndw τ, T n, n =,,..., M n j L j σ 7.3 µ n = nσ τ j + j L j j=l 7.5 V = E Q e T +δ r udu F L T Nδ 7. V = E π B, T + δf L T Nδ 7. V = B, T + δe π F L T Nδ 7. F = E π L T page 96 C T = maxl T δ K, 7.3 C = E Q e T +δ r udu L T δ K, Chaper 8 8.3 B, T = e RT,T, < T 8. B, T = E Q e rsds log E Q e T rsds 8. R, T = T 8.33 B, T = e F,sds 8.4 log B, T log B, T + F, T = lim page 3 log B, T log B, U F, T, U = U T Chaper 9 9.4 db = µ, T, B B d + σ, T, B B dv T 9.5 db = r B d + σ, T, B B dw T σ, T, B, T 9. df, T = σ, T, B, T d T 9. df, T = af, T, d + bf, T, dw 9.5 r = F, σ, T, B, T T dw 3

page 35 F, T = F, T + 9.6 r = F, + 9.33 df, T = b T d + bdw T bs, T bs, udu ds + bs, bs, udu ds + s 9.34 db, T = r B, T d bt B, T dw 9.35 r = F, + b + bw 9.36 dr = F, + b d + bdw 9.37 F, = F, s bs, dw s bs, T dw s Paul Wilmo Inroduces Quaniaive Finance, nd Ediion, P. Wilmo Chaper 6 6.6 6.7 6.8 6.9 6. Chaper 8 V + σ S V V + rs S S rv = V + σ S V V + r DS S S rv = V + σ S V S + r r f S V S rv = V + σ S V V + r + qs S S rv = V + σ F V F + rv = e rt 8.7 V S, = σ πt Call opion value Se DT Nd Ee rt Nd d = logs/e+r D+ σ T σ T d = logs/e+r D σ T σ T = d σ T e logs/s +r σ T /σ T PayoffS ds S Pu opion value Se DT N d + Ee rt N d Binary call opion value e rt Nd Binary pu opion value e rt Nd 4

Dela of common conracs Call e DT Nd Pu e DT Nd Binary call e rt N d σs T Binary pu e rt N d σs T N x = π e x Gamma of common conracs Call Pu e DT N d σs T e DT N d σs T Binary call e rt d N d Binary Pu σ S T e rt d N d σ S T Theas of common conracs Call σse DT N d + DSNd T e DT ree rt Nd Pu σse DT N d DSN d T e DT + ree rt N d Binary call re rt Nd + e rt N d d Binary pu re rt Nd e rt N d T r D σ T d T r D σ T Speed of common conracs Call e DT N d σ S T d + σ T Pu e DT N d σ S T d + σ T Binary call e rt N d σ S 3 T d + dd σ T Binary pu e rt N d σ S 3 T d + dd σ T Vegas of common conracs Call S T e DT N d Pu S T e DT N d Binary call e rt N d d σ Binary pu e rt N d d σ Rhos of common conracs Call ET e rt Nd Pu ET e rt N d Binary call T e rt Nd + T σ e rt N d Binary pu T e rt Nd T σ e rt N d Sensiiviy o dividend for common conracs Call T Se DT Nd Pu T Se DT N d Binary call Binary pu T σ e rt N d T σ e rt N d 5

Chaper 9 This maerial was removed from he syllabus for 6. Chaper Secion.4, one ime sep mark-o-marke profi using Black-Scholes wih σ = σ = σ σ S Γ i d + i a µ r + DSd + σsdx Secion.5, mark-o-marke profi from oday o omorrow = σ σ S Γ i d Chaper 4 4. V = P e yt + Chaper 6 6.4 V + w V r N C i e yi + u λw V r rv = 6.5 dv rv d = w V dx + λd r 6.6 NAMED MODELS 6.6. Vasicek dr = η γrd + β / dx A;T rb;t The value of a zero coupon bond is given by e B = γ e γt A = γ B; T T + ηγ βb; T β 4γ 6.6. Cox, Ingersoll & Ross dr = η γrd + αrdx A;T rb;t The value of a zero coupon bond is given by e α A = aψ loga B + ψ b logb + b/b aψ log a e ψt B; T = γ + ψ e ψt + ψ ψ = γ + α and ψ = η a + b b, a = ±γ + γ + α α 6

6.6.3 Ho & Lee dr = ηd + β / dx A;T rb;t The value of a zero coupon bond is given by e B = T A = ηst sds + βt 3 6 η = log Z M ; + β Secion 6.7 Forward price = S Z Z + w Z r wih Zr, T = Secion 6.8 + u λw Z r rz = Fuures price F S, r, = S pr, p p + w p r + µ λw p rp w + pσβ p r r q r = wih pr, T = Chaper 7 Secion 7. Ho & Lee dr = ηd + cdx A;T rt Zr, : T = e A; T = log ZM ; T Z M ; T logz M ; c T Secion 7.3 The Exended Vasicek Model of Hull & Whie dr = η γrd + cdx dr = η γrd + cdx A;T rb;t Zr, : T = e B; T = γt e γ ZM ; T A; T = log Z M B; T ; logz M ; c 4γ 3 e γt e γ e γ 7

Chaper 8 Secion 8.3. Bond Opions - Marke Pracice Call opion price: e rt F Nd ENd Pu opion price: e rt EN d F N d d = logf/e + σ T σ T d = d σ T Secion 8.4.3 Caps and Floors - Marke Pracice Caple price: e r i F, i, i Nd r c Nd Floorle price: e r i F, i, i N d + r c N d d = logf/r c + σ i σ i d = d σ i Secion 8.6. Swapions, Capions and Floorions - Marke Pracice Price of a payer swapion: e rt + Ts T F F F Nd ENd Price of a receiver swapion: e rt + Ts T F F EN d F N d d = logf/e + σ T σ T d = d σ T Chaper 9 9. Z; T = e F ;sds 9. dz; T = µ, T Z; T d + σ, T Z; T dx nn F ; T = log Z; T T 8

9.3 df ; T = T σ, T µ, T T 9.5 df ; T = ν, T ν, sds d σ, T dx T d + ν, T dx N T N 9.6 df ; T = ν i, T ν i, sds d + ν i, T dx i i 9.7 dz i = rz i d + Z i a ij dx j j= i 9.8 dz i = + τf i dz i+ + τz i+ df i + τσ i F i Z i+ a i+,j ρ ij d i 9.9 df i = j= σ j F j τρ ij + τf j σ i F i d + σ i F i dx i FAQ s in Opion Pricing Theory, P. Carr 38 β T = V S, ; σ h V S, ; σ i e rt + S T f S T fs T + e rt σ σh S 39 N T = f S T 4 P &L T N T S T β T fs T = V S, ; σ i V S, ; σ h e rt + The Handbook of Fixed Income Securiies, 8h ed., F. Fabozzi j= e rt σ h σ S S V S, ; σ h d S V S, ; σ h d Page Y d = F P F 36 Managing Invesmen Porfolios, a dynamic process, Maginn, e al Chaper 5 5- U m = ER m.5r A σ m 5- SFRaio = ER P R L 5-3 σ P ER new R F σ new > ERp R F 5-4 U ALM m = ESR m.5r A σ SR m σ p CorrR new, R p 9

Modern Invesmen Managemen: QFIC 6-3 Chaper An Equilibrium Approach, B. Lierman. R L, R f, = βr B, R f, + ε. SR i = µ i R f σ i.3 S A L.4 F A /L.6 RACS = E A + R A,+ L + R L,+ A L + R f σ A + R A,+ L + R L,+.8.9 σ S + A β L A σ B ρσ Bσ E σ E + σ B ρσ Bσ E. µ B β L + L R f β A A µ E µ B. A + = A + R A,+ pl + R L,+ and L + = L + R L,+ p.3 E R x,+ = E F + p + p F + E Rx + E Rx p.4 E F = F + p p E R x + p.a..a..a.4 R L, R f, = β R B, R f, + ε rt V = Ce dv V.A.4 α = = dc C T dr + rd β L A σ B ρσ Eσ B σ E + σ B ρσ Eσ B.A.6 α =.A. E F = µ B β L + L R f β + η A A µ E µ B + µx F + p p + µx p µ x + p

Analysis of Financial Time Series, hird ediion, R. Tsay QFIC -3 Chaper 3 3. µ = Er F, σ = V arr F = Er µ F p q 3.3 r = µ + a, µ = φ i y i θ i a i, y = r φ 3.4 σ = V arr F = V ara F p4 p4 a = α + α a + + α m a m + e. = m +,..., T F = SSR SSR /m SSR /T m 3.5 a = σ ɛ, σ = α + α a + + α m a m p7 a = σ ɛ, σ = α + α a p8 Ea 4 = p 3α + α α 3α =m+ k β i x i fa,..., a T α = fa T F T fa T F T fa m+ F m fa,..., a m α T = exp a πσ σ fa,..., a m α p la m+,..., a T α, α,..., α m = Γv + / 3.7 fɛ v = Γv/ v π 3.8 la m+,..., a T α, A m = + ɛ T =m+ T =m+ v v + p la m+,..., a T α, υ, A m = T m lnσ + v+/, v > ln + { ln Γ υ + }.5 lnυ π + la m+,..., a T α, A m ξ + ϱfξϱɛ + ω v if ɛ < ω/ϱ ξ 3.9 gɛ ξ, v = ξ + ϱfϱɛ + ω/ξ v if ɛ ω/ϱ ξ a a σ v σ + lnσ υ ln Γ

p ϖ = Γυ / υ ξ, ϱ = ξ + ξ πγυ/ ξ ϖ 3. fx = v exp x/λ v, < x <, < v λ +/v Γ/v m 3. σhl = α + α i σhl i. where σhl i = a h+l i if l i 3.4 GARCHm, s : a = σ ɛ, σ = α + m α i a i + maxm,s 3.5 GARCHm, s : a = α + α i + β i a i + η p3 Ea 4 Ea = 3 α + β α + β α > 3 3.7 σ hl = α + α + β σ hl, l > p33 σ hl = α α + β l α β + α + β l σ h 3. σ hl = σ h + l α, l s β j σ j j= s β j η j 3.3 GARCH, M : r = µ + cσ + a, a = σ ɛ, σ = α + α a + β σ 3.4 gɛ = θɛ + γ ɛ E ɛ { θ + γɛ γe ɛ p43 gɛ = if ɛ θ γɛ γe ɛ if ɛ < p43 E ɛ = υ Γυ + / υ Γυ/ π 3.5 EGARCHm, s : a = σ ɛ, lnσ = α + + β B + + β s B s α B α m B m gɛ 3.6 a = σ ɛ, αb lnσ = αα + gɛ j= { 3.7 αb lnσ α + γ + θɛ = if ɛ α + γ θ ɛ = if ɛ < exp γ + θ a if a p44 σ = σ α σ expα exp γ θ a if a < σ p48 p48 p48 σh+ = σ α h exp α α expgɛ h+ E{expgɛ} = exp γ /π e θ+γ/ Φθ + γ + e θ γ/ Φγ θ ˆσ hj = ˆσ α h j expω { expθ + γ /Φθ + γ + expθ γ /Φγ θ }

Frequenly Asked Quesions in Quanaive Finance, P. Wilmo Q3 - Jensen s Inequaliy 3-5 If he payoff is a convex funcion, EP S T P ES T EfS = E f S + ɛ = E f S + ɛf S + ɛ f S + f S + f SEɛ = fes + f ESEɛ The LHS is greaer han he RHS by approximaely f ESEɛ Q6 - Girsanov s Theorem 3-5 The Theorem is: Le W be a Brownian moion wih measure P and sample space Ω. If γ is a previsible process saisfying T he consrain E P exp γ < hen here exiss an equivalen measure Q on Ω such ha W = W + γ sds is a Brownian moion. Chaper 6 - The Mos Popular Probabiliy Disribuions Normal or Guassian: fx = x a exp πb b, < x <, µ = a, σ = b Lognormal: fx = Poisson: πbx exp lnx a b px = e a a x, x =,,..., µ = a, σ = a x!, x >, µ = exp a + b, σ = exp a + b expb Chi square noe ha his is a generalizaion of he usual chi-square disribuion: fx = e x+a/ v/ i= x i +v/ a i i j!γi + v/, x, µ = v + a, σ = v + a Gumbel: fx = b exp a x b exp e a x b, < x <, µ = a + γb, σ = 6 π b whereγ =.5776... Weibull: fx = c c c x a x a c + c + c + exp, x > a, µ = a+bγ, σ = b Γ Γ b b b c c c Suden s : fx = Γ c+ b πcγ c + x a b c c+, < x <, µ = a for c >, σ = 3 c b for c >. c

Pareo: fx = bab, x a, µ = ab xb+ Uniform: a for b >, σ = fx = b a, a < x < b, µ = a + b, b σ a = a b b b for b > Inverse normal: b fx = πx 3 exp b x a, x >, µ = a, σ = a3 x a b Gamma: fx = bγc c x a a x exp b b, x a, µ = a + bc, σ = b c Logisic fx = exp x a b b + exp x a, < x <, µ = a, σ = 3 π b b Laplace: fx = b exp x a, < x <, µ = a, σ = b b Cauchy: fx = πb + x a, < x <, momens do no exis b Bea: fx = Exponenial: Γc + d ΓcΓdb a c+d x ac b x d ad + bc, a x b, µ = c + d, cdb a σ = c + d + c + d fx = b exp a x b Lévy:, x a, µ = a + b, σ = b no closed form for densiy funcion, µ = µ, variance is infinie unless α =, when i is σ = v 4

Risk Managemen and Financial Insiuions, second ediion, J. Hull Chaper 9-Volailiy 9. Probυ > x = Kx α 9.5 σ n = page 86 m α i u n i m α i = 9.6 σ n = γv L + 9.7 σ n = ω + m α i u n i m α i u n i 9.8 σ n = λσ n + λu n 9.9 σ n = γv L + αu n + βσ n 9. σ n = ω + αu n + βσ n 9.4 Eσn+ = V L + α + β σn V L 9.5 σt = 5 {V L + } e at V V L at 9.6 σt σ e at σ at σt 5