EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

Σχετικά έγγραφα


Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

Delta Inconel 718 δ» ¼

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

Ανώτερα Μαθηματικά ΙI

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

2 SFI

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

v w = v = pr w v = v cos(v,w) = v w

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

BEHAVIOR OF MARTENSITE REVERSE TRANSFORMA- TION IN 18Mn TRIP STEEL DURING WARM DEFORMATION

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

SYNTHESIS KINETICS OF (Y, Gd) 2 O 3 Eu 3+ NANO POWDERS DURING PROCESS OF PREPARATION

MICROSEGREGATION OF SOLUTE ELEMENTS IN SOLIDIFYING MUSHY ZONE OF STEEL AND ITS EFFECT ON LONGITUDINAL SURFACE CRACKS OF CONTINUOUS CASTING STRAND

MODEL RESEARCH BASED ON LIQUID/SOLID TWO PHANSE FLOWS IN METALLURGY STIRRED TUBULAR REACTOR

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

BEHAVIOUR AND MECHANISM OF STRAIN HARDEN- ING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION

p din,j = p tot,j p stat = ρ 2 v2 j,

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: SPLINES. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

P ƒ Ê Î 1, 2,.. ƒê μ 1, 3,. ÉÓ±μ 2, O.M.ˆ μ 1,.. Œ É μë μ 1,.. μ μ 1,. ƒ. Ê±μ ± 1,.. ³ 1,.. ±Ê Éμ 1. ˆ ˆ ˆ ˆ Š ˆ Si- ˆ SiC- Š Š ˆ

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 7: Προσεγγιστική Λύση Εξισώσεων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA HIGH STRENGTH LOW ALLOY STEEL

AN INVESTIGATION ON THE CREEP BEHAVIOR OF PURE Mg

EFFECT OF LOADING MODES ON MECHANICAL PROPERTY AND STRAIN INDUCED MARTENSITE TRANSFORMATION OF AUSTENITIC STAINLESS STEELS

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾

STRUCTURE AND MAGNETIC BEHAVIOR OF Zn 1 x Co x O CRYSTAL POWDERS PREPARED BY SOL GEL TECHNIQUE

P ,.. ³,. Š. ³. ˆ ˆŸ Œˆ ˆŸ ˆ ˆ ˆ Š ˆ 9 3 ˆ Œ NiÄNb. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö. Õ³ Ó, μ Ö

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

EXPERIMENTAL RESEARCH ON MELTING SURFACE BEHAVIOR IN MOLD UNDER COMPOUND MAGNETIC FIELD

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

49 Ö 6 Đ Vol.49 No ACTA METALLURGICA SINICA Jun pp

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

S i L L I OUT. i IN =i S. i C. i D + V V OUT

DISCONTINUOUS YIELDING BEHAVIOR OF β PHASE CONTAINING TiAl ALLOY DURING HIGH TEMPERATURE DEFORMATION PROCESS

EFFECTS OF B ON THE MICROSTRUCTURE AND HYDROGEN RESISTANCE PERFORMANCE OF Fe Ni BASE ALLOY

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

Im{z} 3π 4 π 4. Re{z}

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA

Å/ ÅÃ... YD/ kod

Š Šˆ ATLAS: ˆ ˆŸ ˆ Šˆ, Œ ˆ Œ ˆ.. ƒê ±μ,. ƒ ² Ï ², ƒ.. Š ± ²,. Œ. Ò,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. Ê ±μ Î,.. ±μ,. Œ. μ

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

Ó³ Ÿ , º 7(205) Ä1486 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ³ μ 1, ƒ. μ μë,. μ,. ŠÊ² ±μ,. Œ ² μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

WAFER LEVEL ELECTRODEPOSION OF Fe Ni NOVEL UBM FILMS

Supporting Information. Enhanced energy storage density and high efficiency of lead-free

Blowup of regular solutions for radial relativistic Euler equations with damping

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

DtN ² *1) May, 2016 MATHEMATICA NUMERICA SINICA Vol.38, No.2. ˱ Helmholtz µå ű Dirichlet-to-Neumann. u = g, Γ, (1.1) r iku = o(r 1 2 ), r,

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο. Επίδοση Υπολογιστικών Συστημάτων. Α.-Γ. Σταφυλοπάτης.

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

P Î,.. Š ²³Ò±μ, Œ.. Œ ϱ,.. ʳ ˆ ˆ ˆ ˆŸ ˆŠ Š Š ˆ Ÿ -200

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

ˆ ˆŸ ˆ ˆŸ ˆ ˆŒ ˆˆ Ÿ Œˆ 10 B

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Supporting Information

ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ

3D PHASE FIELD SIMULATION OF MECHATRONIC COUPLE FOR PZT FERROELECTRIC CERAMICS

Transcript:

48 8 Vol.48 No.8 2012 8 1011 1017 ACTA METALLURGICA SINICA Aug. 2012 pp.1011 1017 Hf Ä Ì ÀÚÈÏ γ ß Ó Ð 1,2) 1) 3) 1) ˲ Å ², 100083 2) ± ² Â, 100081 3) ˲² ² ², 100083 ¹ Hf ÍÆ Ð Ø ¾ γ Æ ¾Ä. Ý : Ð Ø ¾ γ «, Đ Õ «Ì³Æ, «Ì³Æ É Æ «, Í ÖÔ Æ. Hf ÈÓØ Đ Ä, γ ÌÊÃÄ ±ÃÆ «Ï à 2 ÛÚ, γ Á Ç Þ Ü Æ ÄÛ Ç. ÂÍ Æ Ð, Ni 3(Al, Ti), γ ÆÖÔ Æ TG113.12 ÜÞ½Ñ A ÜÅ¼Æ 0412 1961(2012)08 1011 07 EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY ZHANG Yiwen 1,2), WANG Fuming 1), HU Benfu 3) 1) School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 2) High Temperature Material Institute, Central Iron and Steel Research Institute, Beijing 100081 3) School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 Correspondent: ZHANG Yiwen, professor, Tel: (010)62186736, E-mail: yiwen64@126.com Supported by National Key Basic Research Program of China (No.2010CB631204) and Sino Russian Intergovernmental Cooperation in Science and Technology Project (No.CR14 20) Manuscript received 2012 03 14, in revised form 2012 05 19 ABSTRACT The cubic γ particle morphologyevolution wasstudied during long time agingprocess in a powder metallurgy (P/M) Ni based superalloy with Hf addition. The results show that, during long time aging process, the cubic γ particle splits into a doublet of plantes or an octet of cubes. The octet of cubes with low energy is a preferred shape, it splits no longer. The γ/γ lattice misfit varies with different Hf contents. The growth or coarsening process of γ precipitate can be roughly divided into interface controlling and strain controlling stages, the γ precipitate morphology is greatly influenced by the elastic interaction energy between γ particles. KEY WORDS powder metallurgy superalloy, Ni 3 (Al, Ti), γ phase morphology stability Î Ñ Æ ßÅ ÐÅ Û Ni 3 (Al, Ti) γ, Æ Á γ Æ Ý γ, ÌÊÀ ÑßÙ. γ Ý Í Ç Çß Ì ÆÅ, Á, º γ Ç Ú Å ½Ï, ߵŠγ Ý Ê Ì,»³ º غ * Í ¹ Ò Ã«2010CB631204 ÐÐ «CR14 20 Ø : 2012 03 14, Ø : 2012 05 19 Ñ : Õ Ó,, 1964, Ø µ, DOI: 10.3724/SP.J.1037.2012.00136 ÐØË [1 3]. ¹ 70 Ï, º [4 7], Î Ñ ÆÎ Hf ß γ ÈÅÛÌ ÍÆ Å. Î Ñ B 1900 Alloy, 713 LC, Udimet700 M M246 ÆÎ 1.3% 2.0%(«, Ð ) Hf Æ Î MC ÈÅÛÆ, Hf ÈÅÛ ÎÈÅÛ±, ±, ÆÎ Hf ² MC ÈÅÛ Ç ß MC È ÅÛ, Ì ÎÆ»Ç ÕÌ Ó, Á Ê ÆÑßÙ [4,5]. ¹, Î Ñ ÆÎ 0.2% 0.8% Hf, ͱ Hf γ γ ßÅ, Ê

1012 ± 48 γ ßÑÙ, γ/γ Ð Ô [8]. Æ Ä ¼ ÈÐ, Æ γ ² Ö (doublet of plantes) Í Ç (octet of cubes), γ Ç Í, dz γ [9 11]. º Hf Ñ Ñ Ù± Æ γ Ç Í± Ç Õ, Á ¾ Ö Â È Ù ß¼. 1 Ð ³ È FGH97 Î Ñ, ÚÅ («, %) : Co 15.75, Cr 9.0, W 5.55, Mo 3.85, Al 5.05, Ti 1.8, Nb 2.6, C 0.04, B 0.012, Zr 0.015; ÆÎ Hf («, %) 0, 0.16, 0.3, 0.58 0.89, Ni Ï. µè ½ Ò Å, Ù 50 150 µm, 5 Å. µè (HIP) ¼Þ, ÅÙ 1200, 4 h, AC+ ±, µ ± ÅÙ 700, 15 20 h, AC. Ñ Ù± ÅÙ : ± ÑÙ 550, 650, 750 850, ± ±Ð 500, 1000 5000 h. Hf FGH97 ¾ ( Ç 8 mm, 8 mm) Æ 1200, 2 h, AC ¼. ¼ ³ ±, ¾ 1200, Ñ 10 min, 0.01 3 /s ¼ ż 500 ³ ¼ ½Ñ. È JSM 6480Lu Ò (SEM) ZEISS Sup RA 55 ¼ Ò (FEG SEM) ¾º. SEM ¾ µèòßò Òß ²Å, Ò ßÒ ÅÙ : 20%H 2 SO 4 +80%CH 3 OH(Í ) Òß, Ò 25 30 V, ±Ð 15 20 s; Òß ²Å Ù 170 ml H 3 PO 4 + 10 ml H 2 SO 4 +15 g CrO 3 Òß, Ò 3 5 V, ±Ð 3 5 s. γ ÇµÈ Image pro Plus 6.0 Ô. µèòå º γ, ÈÅ Ý Õ Hf FGH97 Æ γ, γ º 1%» +1% ÐÍ, ÑÙ 5, ÒÁÎÙ 0.025 0.03 A/cm 2. ß ¾ ( Ç 10 mm, 1 mm), È D/max 2500H X ½ (XRD) ¹ Õ. È Origin8.0 Ô Î PEM ß Æ γ γ ½ ½, ¹À γ γ «¾, µè δ = 2(a γ aγ) a γ +a γ, À «ÉÔÙ (Ú Æ, δ ÉÔÙ, a γ a γ γ γ «¾ ). 2 Ð Îà 2.1 FGH97 É Á Ê ÝÙ «1 ± 0.3%Hf FGH97 Æ 1200, Ø 1 0.3%Hf FGH97» ¾ γ É Fig.1 Morphology of γ precipitates in the FGH97 alloy with 0.3%Hf after solution treatment 4 h, AC ¼ γ Ê. ², Æ ¼, «Ý Í Ð γ ( Ç 100 200 nm). 2.2 Ò Ö Hf Å FGH97 É γ 2 ± ¼ ÅÐ Hf FGH97 γ Ê. ²Ó, 3 /s ¼ Ð, Hf Ʋ¾º ÎÙ γ, ( 2a); Î 0.3%Hf Æ, γ Ð Ñ, Ç Í ( 2c); 0.89%Hf Æ, Ñ γ ³, Ç ÌÃÑÍ ( 2e). Ù 3 /s ¼ Ð, Hf γ ÇÙ, Ù»Á Æ Í± γ ÇËÊ Ð Ç,, Æ Ã. ¼ Å 0.01 /s ±, Æ γ Ê Å. Hf Æ γ ÇÑÍ, Ð, Å Ö, À γ ÚÐÝ ( 2b); 0%Hf, 0.3%Hf γ ( 2d), ËÎ γ Æ À γ Í Å, Ð, ²»Á γ {100} 4 º µ; Hf 0.89% Æ, Í Ç γ, Ñ Í γ Ç, γ ( 2f). ²Ó, ¼ ÅÙ ±, Á Hf Ñ, Æ γ Í Ð Ç±, γ Í Ê Ç. 2.3 Ö Hf Å FGH97 É γ Ë Ç Æ¼ + À±, Hf 0, 0.3% 0.8% FGH97 Æ, γ Å (Ni 0.852 - Co 0.148 ) 3 (Al 0.783 Ti 0.129 Nb 0.088 ), (Ni 0.855 Co 0.145 ) 3 - (Al 0.778 Ti 0.129 Nb 0.088 Hf 0.005 ) (Ni 0.857 Co 0.143 ) 3 - (Al 0.767 Ti 0.129 Nb 0.088 Hf 0.016 ). 3 γ Æ Nb Ti ËÌ Å, Co Æ Ni, ²

j8s pend : Hf ;;yit ka t!z << γ MaM 1013 B f!z/dl b Q 2 Hf FGH97 γ Fig.2 Morphologies of γ precipitates in the FGH97 alloys with different Hf contents at different cooling rates (a) 0%Hf, 3 /s (b) 0%Hf, 0.01 /s (c) 0.3%Hf, 3 /s (d) 0.3%Hf, 0.01 /s (e) 0.89%Hf, 3 /s (f) 0.89%Hf, 0.01 /s A P Ni Al Æ Ni. I!C Æ Hf ==mj, γ Æ Hf = = mj, Al = = n, [ Hf & P Al, Hf 7 _ γ Æ. ^ 3 %A?"[ Hf == FGH97 C Æ0 E3 `% G γ R. &A A, "[ Hf == C Æ γ RT[ "[. u Hf C Æ, γ A5l6 h, ^ 3a K+, γ +A =q mb., γ VuU, =Ou, bh 250 nm. \C Æ Hf ==h 0.3% %, γ =OuU, bh 450 nm, 2._ U=O6 γ B A, )! D S % 6 D, A mb6 6 U γ (^ 3b). ~ = 0.89%Hf C Æ, γ =O[ n, 6 γ B ia [,b,, ua[ γ 3? 6 D 8 6 U, p [12] 9A [? u= l. 3I Hf ==S 0 mj 0.89%, γ = >S 61.9% m 62.7%, Y γ = > mj "[, ^ γ D : ; " N γ = >. ;z8 [, e=\c Hf Vj[ M γ O"sq, ~ γ 'l # O. M 0.3%Hf = FGH97 QXY3rw>5hk R= γ p h?. "[% mu} γ DGNg OQ y, $P= 0.3%Hf C 550, 650 750 }4 u% E3. ^ 4 %A? 0.3%Hf C Æ0 + `% "[mu}æ 5000 h 4u% γ R. ^ 4a h= 0.3%Hf C 0 + `% G γ 2.4

7 % 1014 j 48 t 3!Z Hf << FGH97 B D2Fb γ Q Fig.3 Morphologies of γ precipitates in the FGH97 alloys with 0%Hf (a), 0.3%Hf (b) and 0.89%Hf (c) after solution and aging treatment t 4 < 0.3%Hf b FGH97 B 3t$ Fb γ Q Fig.4 Morphologies of γ precipitates in the FGH97 alloy with 0.3%Hf after solution and tertiary aging treatment (a), and after 5000 h aging at 550 (b), 650 (c) and 750 (d)

8 Ô Ò : Hf Ý Ì γ Å Å 1015 Ç. ÞÃ, ± γ Ð, γ º, γ, ± γ Ñ. Æ 550 Ù ±, Í Ç γ ¼ {100}, γ dz Ð, À γ Í Ý ÆÅ, γ Ç ( 4b). 650 ± Ð γ Í, γ, Ñ Í Ç γ {100}«( 4c). 750 ± γ, γ Ç Ê Ç (preferred shape) Â Í Ç µ LSW(Lifshitz Slyozov Wagher) ÄÅ [13], γ, Ç Ò, À γ ÄÅ ( 4d). 2.5 Ö Hf Å FGH97 É ĐÊ ÝÙ «5 ± Hf FGH97 Æ 850, 1000 h Ù± γ Ê. ²Ó, Ù Hf Æ γ, Í Ç, 100 Đ Ñ ( 5a); 0.3%Hf Æ γ Ç ÄÅ ( 5b), Ù Ù Hf, 0.3%Hf γ ±Ð³, LSW Ä Å ÇÜÛ [13] ; Hf Ñ 0.89%, Æ Ç γ Đ ÅË, Ù γ µ Ç γ ß Í Ç γ Í, γ ÇÒ, γ ßÍ Ú Ç, À γ ÄÅ ( 5c). Ë Þ ² : 850 Ù± Æ, Hf γ ±Ð, Á Hf Ñ ²Ù LSW ÄÅ ÇĐÔ. 1 ± 850, 1000 h ± Þ, Hf FGH97 Æ γ γ «¾ γ /γ ÐÜÉÔ Ù. ²Ó, ± ÞÁ Æ Hf Ñ, Hf γ Æ, «¾ Ñ, γ /γ ÉÔÙ ß ÕÒ, Æ 850 ѱ, ÉÔÙ ß Å Ã, Ù Î γ /γ ÐÜÉÔÙ»Ë Å Õ,, α Æ TCP Ë À γ Ý ¾ 1 Hf FGH97 850, 1000 h Ý γ γ Å ½ γ /γ ÛÈÓØ Table 1 Lattice constants of γ and γ (a γ and a γ ) and lattice mismatch of γ and γ (δ) in the alloys with different Hf contents before and after 1000 h aging at 850 Hf content, % Condition a γ, nm a γ, nm δ, % 0 Before 1000 h 0.359706 0.359281 0.118 0.3 aging 0.359706 0.359438 0.075 0.89 0.359706 0.359533 0.048 0 After 1000 h 0.359290 0.358962 0.092 0.3 aging 0.359380 0.359053 0.091 0.89 0.359610 0.359325 0.080 Ø 5 Hf FGH97 850, 1000 h γ É Fig.5 Morphologies of γ precipitates in the FGH97 alloys with 0%Hf (a), 0.3%Hf (b) and 0.89%Hf (c) after 1000 h aging at 850

1016 ± 48 ¹ Ä ÑÍ, µ γ Ðܾ ÑÍ. 3 Õ Á ³ Þ ², ßÎ Hf FGH97, γ ÄÅ ÆÊ РDZ, γ. Hf, γ µ± Ð. γ, γ Í Ç Ê Ç. Á Ù± ±Ð», Ç Ê Ç, Ý Ð µå ÜÛ. ÜÛ, Â Í γ Ç ßÍ, γ ÄÅ Ã LSW ÄÅ Ç. 3.1 γ Ô (splitting) Ñ Ù± γ, ÐÁ FGH97 Æ Hf Ñ, γ. γ ÉÔÙÎ ½, Á Hf Ñ, ÉÔÙ ß δ Ö, 0.89%Hf, ËÎ γ Ðܾ ÑÍ, 0.3%Hf δ Ò ( 1), Á, 0.89%Hf ³ [12]. ½Î γ, Ô [14 16] ÌÇ, ÆËÌÊ Ð¹ Ú ß¼ ÄÏ, ÌÔ γ»áý Æ µ Ó. ¹, Í ³, γ» Í γ {100}«4 º Æ, Ä ÆµÍ µ γ ÎÍ, Ã Æ ¾»Á ºÆÐ µ [17]. Qiu [18] Cha [19] ² À Đ«Æ¹ ÉÔÙÍ, Þ É Ò ½ ¼ Ú À : γ {100}«º ÆÐ Ä ¼µß, Ý, 110 «Å Ö ÙÍ, Ú Í Ù ßÚÄ«³, γ {100}«Ì ÅÆ (ËÅ ), γ 100 «º ÆÐ Å, Ä Æ, Å Å γ ß, ¼ 100 Õ γ. Á ÅÆ ÑÍ, γ Å Ó,  γ Ü, 2, 4 Ë 8 Ö Ñ γ Ç. Ç Õ γ Ý Æ ÜµÐ. ³, Hf ß γ {100}«4 100 «º ÆÐ ±Å ÙÌ ÆÅ, Å» γ ÜÐ. Á Æ Hf Ñ, γ Å ÅÆ ÑÍ, Å Ä ¼ Ñß, «Â ÈÑÍ, Å Ù Ó, γ Ù. Ë ², Á Æ Hf Ñ, γ Ðܾ ÑÍ ÐÜ Ä ¼Ñß, «γ, γ, Ù²» ÆÎ Hf Å γ ßÅ, ij Ê Ç Á. 3.2 γ Ô (preferred shape) Miyazaki [20] Doi [21] º, Á Ý ÄÅ, Ý Ç ÅÆ Ê Ç Å, ¾º γ Ç»Ë 8 Í ( Ð){100}«, Ä»Ë 8 Í ( 3b). ÐÁ Æ Hf Ñ, Å Ê Ç Å ( 3b c). Á³ Þ ², ± Ù γ ÐÑ, ÎÍ ¹ ½Þ, Ä Ù. Á Ñ Ù± ±Ð», Í Ç γ, µ Í γ Ç, γ ÎÍÉÔÙÖ, Ò. Ù±, γ ÄÅ Ù ÇÈ, Õ Ç. ² Ô [14] À Ç γ ß Ä E Þ : 0.709, 0.558, Ñ Í 0.483, Í 0.436. Ë À Þ ² : γ Á Ñ Í Í Å, Ä»ÐÖ, Ú»Ñ, à µ Ê ÇÄ» Ä µ ± Õ Ç. Æ, Ñ Ù±, Ë̾º Í Ç, Á, Í Ç»Æ ÜÛ µ Õ Ç, Ô [9] Æ Ê Ç²Ò ÎÍÐÜ. ÎÑ γ Ç» ßÍ Ç, ÎÝ Û Ç,» Ý ÄÅ Æ»Û. 3.3 Æ γ Ë (coarsening) ßÎ Ì ÕÉÔÙ Ñ, γ Ç ÕÎ Ä Þ Ó. ¼Ç Ý ¾ µ ÆÑ LSW ÄÅ Ç, Ñ Ù± ±, ÁÑÙ ±Ð», Ý É Í (ÄÅ), Ö Ú²Ð. ÄÅ» ß Í Í, Ý ²Í, ¹ Ý ÄÅÉ ßÙÖ. ³, γ Þ, γ Ê Õ Ç±, Á ± ÑÙ ±Ð», γ ÇÑ, ÎÙÒ. γ Ê Ð Ç, γ Í Ç±, Ù Ê ÇÁ ѱ ±Ð», γ ÇÑ Å¾ÇÈ, Ð LSW ÄÅ Ç. Ã, ÄÈ LSW ÄÅ ±, ÂÝ Ç Õ, Ð Õ, LSW ÄÅ ÇËÌ ¹ Í Ç Ý Ë Í Ç ÄÅ (reverse coarsening). ³ ÄÅ ² 2 ÜÛ [14], Ý Ç ± (a r 0, r 0 = σ/e 1 ³ ÉÝ Ù, ÚÆ σ γ/γ

8 Ô Ò : Hf Ý Ì γ Å Å 1017 Ð, E 1 ³ ¾ ), ÄÅ»Ë Ö Ú Í, ÜĐÔ È», Ë Ð µå ÜÛ Ý Ì Ç, LSW Ç ºÄÈ. Ý Ç ³ ÉÝ Ù ± (a r 0 ), Ä Ð Ü È±, ÄÅ Ä µå ÜÛ, Ý ÄÅ, ³ Â Ç ( Ë Í Ç), Ù Ê Ç Ö (quasi equilibrium) Ç, Ý ÄÅÀ¾ÇÈ, Ñ ßÅ Õ, Ùß Ó Ñ Ì. 4 Î (1) Á FGH97 Æ Hf Ñ, Å Í Ç γ, Ç Í γ Ç, Ä γ Ê Ç, ÄŠžÇÈ. (2) Á Æ Hf Ñ, γ Ðܾ ÑÍ, ÐÜ Ä ¼Ñß, Ì Î «Î γ Å, γ, Ù» ÆÎ Hf ² Å γ Ê Ç Á. (3) Á Æ Hf Ñ, γ ÄÅ Ä µå ÜÛ, Å γ ÄÅ. ÜÞ [1] Maniar G N, Bridge J E. Metall Trans, 1971; 2: 95 [2] Muzyka D R. Met Eng Q, 1971; 11: 12 [3] Hu B F, Liu G Q, Wu K, Tian G F. Acta Metall Sin, 2012; 48: 257 (À ¹, À, Ú, Ï. ³, 2012; 48: 257) [4] Kotval P S, Venables J D, Calder R W. Metall Trans, 1972; 3: 453 [5] Duhl D N, Sullivan C P. J Met, 1971; 23: 38 [6] Dahl J M, Danesi W F, Dunn R G. Metall Trans, 1973; 4: 1087 [7] Maslenkov S B, Burova N N, Khangulov V V. Met Sci Heat Treat, 1980; 22: 283 [8] Miner R V. Metall Trans, 1977; 8A: 259 [9] Khachaturyan A G, Airapetyan V M. Phys Status Solidi, 1974; 26: 611 [10] Qiu Y Y. Acta Mater, 1996; 44: 4969 [11] Yoo Y S. Scr Mater, 2005; 53: 81 [12] Zhang Y W, Wang F M, Hu B F. Acta Metall Sin, 2012; 48: 187 (Õ Ó,, À ¹. ³, 2012; 48: 187) [13] Lifshitz I M, Slyozov V V. J Phys Chem Solids, 1961; 19: 35 [14] Khachaturyan A G, Semenovskaya S V, Morris Jr J W. Acta Metall, 1988; 36: 1563 [15] Kaufman M J, Voorhees P W, Johnson W C, Biancaniello F S. Metall Mater Trans, 1989; 20A: 2171 [16] Grosdidier T, Hazotte A, Simon A. Mater Sci Eng, 1998; A256: 183 [17] Banerjee D, Banerjee R, Wang Y. Scr Mater, 1999; 41: 1023 [18] Qiu Y Y. J Alloys Compd, 1998; 270: 145 [19] Cha P R, Yeon D H, Chung S H. Scr Mater, 2005; 52: 1241 [20] Miyazaki T, Imamura H, Kozakai T. Mater Sci Eng, 1982; 54: 9 [21] Doi M, Miyazaki T, Wakatsuki T. Mater Sci Eng, 1984; 67: 247 ( : )