UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

Σχετικά έγγραφα

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #


ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

2 SFI

Homomorphism in Intuitionistic Fuzzy Automata

þÿ ¹µ ½  ±À±³É³ À±¹ ¹Î½ º±Ä þÿ ͼ²±Ã Ä Â ³ Â Ä Å

ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ

ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ

Commutative Monoids in Intuitionistic Fuzzy Sets

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.

ƒê,.. ± É,.. Ëμ μ. ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ. ² μ Ê ² ² ±É Î É μ

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

v w = v = pr w v = v cos(v,w) = v w

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

þÿ¼ ½ ±Â : ÁÌ» Â Ä Å ÃÄ ²µ þÿä Å ÃÇ»¹º Í Á³ Å

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

Δυναμική διαχείριση μνήμης

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ZZ (*) 4l. H γ γ. Covered by LEP GeV

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

Ανώτερα Μαθηματικά ΙI

Approximation of distance between locations on earth given by latitude and longitude

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

F19MC2 Solutions 9 Complex Analysis

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

þÿ ɺÁ Ä ÅÂ, ±»Î¼ Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

p din,j = p tot,j p stat = ρ 2 v2 j,

ƒˆˆ-ˆœ œ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

Ó³ Ÿ , º 3(187).. 431Ä438. Š. ˆ. ±μ,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. μ² ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 4(181).. 501Ä510

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

ΟπτικόςΠρογραμματισ μός. ΙωάννηςΓºΤσ ούλος

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Example Sheet 3 Solutions

Ó³ Ÿ , º 3(194).. 673Ä677. Š Œ œ ƒˆˆ ˆ ˆŠ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ,ˆ..Š Ö, Ÿ. ʲ ±μ ±

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É

Downloaded from HEPHAESTUS Repository, Neapolis University institutional repository

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Κληρονομικότητα. ΙωάννηςΓºΤσ ούλος

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Pilloras, Panagiotis. Neapolis University. þÿ À¹ÃÄ ¼Î½, ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

P ²ÒÏ,.. μ μ Š ˆ ˆ Ÿ ˆ

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

ƒ Š ˆ ˆ ˆˆ. ƒ. Ê ÖÏμ a,.. Š Ê,.. Šμ²μ ÊÉμ a, ƒ..œ ÍÒ a,. ƒ. Œμ²μ± μ a,.. ± a a Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ACTA MATHEMATICAE APPLICATAE SINICA Sep., ( MR (2000) Õ È 32C17; 32F07; 35G30; 53C55

The k-α-exponential Function

P ˆŸ ˆ Œ Œ ˆ Šˆ. Š ˆ œ ˆ -2Œ

ƒ ˆŒ Œ ƒ ƒ ˆ ƒ ˆŠ ˆ -144

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

Georgiou, Styliani. Neapolis University. þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

SOME PROPERTIES OF FUZZY REAL NUMBERS

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä ƒ ² ± Ñ Ò É ÉÊÉ Ô É Î ± Ì Ö ÒÌ ² μ Å μ Ò Í μ ²Ó μ ± ³ ʱ ²μ Ê, Œ ±

Statistical Inference I Locally most powerful tests

Blowup of regular solutions for radial relativistic Euler equations with damping

Matrices and Determinants

þÿ ½ ÁÉÀ ºµ½ÄÁ¹º ÀÁ à ³³¹Ã Ä þÿ Á³±½Éù±º  ±»»±³  ¼ ÃÉ þÿà» Á Æ Á¹±º Í ÃÅÃÄ ¼±Ä Â.

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

þÿ½ ûµÅĹº Í ÀÁ ÃÉÀ¹º Í

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 7: Προσεγγιστική Λύση Εξισώσεων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

þÿ ±¾¹»Ì³ Ã Ä Â ±ÀÌ Ã Â Äɽ þÿ ¼ à ɽ ÅÀ±»»»É½ : ÀµÁ À þÿä »» ±Â

Isaak, Adriani. Neapolis University. þÿ À¹ÃÄ ¼Î½, ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

P Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É. ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U.

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

P ƒ Ê Î 1, 2,.. ƒê μ 1, 3,. ÉÓ±μ 2, O.M.ˆ μ 1,.. Œ É μë μ 1,.. μ μ 1,. ƒ. Ê±μ ± 1,.. ³ 1,.. ±Ê Éμ 1. ˆ ˆ ˆ ˆ Š ˆ Si- ˆ SiC- Š Š ˆ

Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection

þÿ ÀÍÁ Å, µ ÆÍı Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

Reverse Ball-Barthe inequality

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Transcript:

ß¼ 0384 9200852727 UDC Î ± À» An Integral Equation Problem With Shift of Several Complex Variables Û Ò ÖÞ Ô ²» Ý Õ Ø ³ÇÀ ¼ 2 0 º 4 Ñ ³ÇÙÐ 2 0 º Ñ Ä ¼ 2 0 º Ñ ÄÞ Ê Ã Ö 20 5 Â

Å ¾ º ½ É É Ç ¹ ¹Ý É ½ ÚÓÉ ÅÞ ¹Ý µ È É Æ ½ Ï Åµ ÀÊ ÀÊÉ Á Æ Ë

Å ¾ Æ É Çº Ø» ½ Û Å Å»± Ü Ù ÉÅ ÔÑ ½ ÊÎ Ã Å ½ µ ¹ ͱ ½ Í ß Ú Å ½ Ì Í ØÐ Ù Å ½ Ý Â Đ ½ Ð ÛÅ ½ Æ Ð Å 2 ³ Æ Â µ Þ Æ ÅÁ Ë Ë Á Ë Ë

¼ Á.... III Á.... IV ¼.... À Ã Ç ß ¼²....3 À Ã Ó W,S,WS... 5 2. Ò W,S,WS...5 2.2 Ò W,S,WS ÕÆ...5 ÀÎÃ Đ± ¼ É ¼ Ö ¼. 3..... 3.2» È».... 5 3.3» Õ»«È» Ñ. 7 3.4 Û» Ã.... 2 µ «...25 Ë....26 I

Contents Chinese Abstract... III English Abstract...IV Introduction...... Chapter. Preliminaries and basic lemma... 3 Chapter 2. The operators W,S,WS...5 2. The operators W,S,WS... 5 2.2 Estimates of the operators W,S,WS...5 Chapter 3. Singular integral equation with shift, corresponding equation set and adjoint equation.... 3. Basic definitions... 3.2 Relation of the solvability between the singular integral equation with shift and his corresponding equation set... 5 3.3 Relationship for the numbers of solutions of singular integral equation with shift,corresponding equation set and adjoint equation......7 3.4 Existence of solution for a concrete singular integral equation......2 References.......25 Acknowledgements....26 II

Á [] ÑÄ Ü Ö ¹Ë » [2-5] Å ¹Ë » ÆĐ ÈÊĐ Å Ö ¹Ë Â Æ ¹Ë ÂÍ Î ¼ «¾  À ÆÙ ²ÍÙ ± Ñ Å Ö ¹Ë  ÎÙ Æ Ì Ü Ìß Ü ĐÛ Ðµ Û µå Ù ²Í Û È» Ü Ì ÕÜ ¹Ë ½ ½ ¹Ë ½ Ò ÄÆ H µ (Γ) Ö ½ W,S,WS ±» ÌÖ Ñ ÈÊ Ü Ì ß ¹ ¹Ö Ü Ö Ñ ¹Ë ÂÍÎ ¼ «¾ ÂÙ ÀÆ Ñ Å Ö Ü Ö ¹Ë  Π¼ «ÆÙ Ñ ÔÑ ¹ Ë ÂÆÙ Æ º À Ü Ö²É ¹Ë  Π¾ ÂÍ ¼ «٠± ¾Ñ Ù Ã ¾Ñ Ü¹Ö Å Ö ¹Ë  ÎÙ Æ Å ¹Ë  ½ III

ABSTRACT For one complex variable case, singular integral equation and boundary value problem with shift had been introduced in[], while for several complex variables case, been studied in[2-5]. Based on it, we discuss singular integral equation with shift in several complex variables and generalizes the definitions of singular integral equation with shift, corresponding equation set and adjoint equation. Moreover we study the relation of the solvability and number of solutions among them, and prove existence of solution for a concrete singular integral equation. The paper is organized as follows: In chapter, we introduce some definitions and natations,including generalized polydisc,cauchy integral formulas on the generalized polydisc domains. Also some basic lemmas has been included. In chapter 2, we calculate the norm estimates of the operator W,S and WS in H µ (Γ). In chapter 3, we get the main results. The generalized definitions of singular integral equation with shift,corresponding equation set and adjoint equation are introduced in section. For section 2, we study the relation of the solvability between the singular integral equation with shift and the corresponding equation set. And then we obtain a relationship for the numbers of solutions of the singular integral equation with shift, corresponding equation set and adjoint equation. Finally, we prove existence of solution for a concrete singular integral equation. operators. Keywords: several complex variables; singular integral equation;shift; IV

¾ÔÕ ÕÏ Ê À Í ³ º ¾ ¼ » Æ ÝĐ ² Ë ÆÒ Ö µ ¼ Đ ÔÑ Ð Ë Û Þ Å «Ç - ² ÆÏ Â» ²ÍÉ Ù ÇÆ ÈÌ Hilbert Haseman ²Í Carleman»» ± A. Ƶ Ë È µ Ü Å Ì ¼«Û Ë [] ÑÄ Ü Ö ¹Ë » ß «Å ¹Ë  [2]» [3,4] Ô Ë ¹Ë  [5,6] ÕÞ Å Ö ¹Ë Â Æ ¹Ë ÂÍÎ ¼ «¾  À Æ Ù ²ÍÙ ± Ñ Â Å Ö ¹Ë  ÎÙ Æ Ì Ü Ìß Ü ĐÛ Ðµ Û µå µå Đ Cauchy Ë ¹Ë ½ ½ ²Í Û È» Ü ÌÆ H µ (Γ) Ö ½ W,S,WS ±» ÌÖ Ñ ÈÊ Ü Ì ß ¹ ¹Ö Ü Ö Ñ ¹Ë ÂÍÎ ¼ «¾ ÂÙ ÀÆ Ñ Å Ö Ü Ö ¹Ë ÂÆÙ Æ º À Î ¼ «ÆÙ Ü Ö²É ¹Ë  Π¾ ÂÍ ¼ «٠± n, n 2, n ¾Ñ

¾ÔÕ ÕÏ Ê À 2 n = n + n 2 Ü¹Ö Å Ö ¹Ë  ÎÙ Æ a(ζ)ϕ(ζ) + b(ζ)wϕ(ζ) + c(ζ)sϕ(ζ) + e(ζ)wsϕ(ζ) = g(ζ)f(ζ, ϕ(ζ), Wϕ(ζ), Sϕ(ζ), WSϕ(ζ)) ()

¾ÔÕ ÕÏ Ê À 3 Á Ä È ¾ ÕÜ Đе ²Í Û È» Ä. [7] D k ± z k (k =, 2, n) É Û z, z 2,, z n ¾Û Æ D, D 2,, D n ĐÆ ±«(z, z 2,, z n ) Ð º C n Ö µå ² (D, D 2,, D n ) Ï (D, D 2,, D n ) = D D 2 D n Đ µå (D, D 2,, D n ) n É D, D 2,, D n ÈË Ë C 2 Ö ² D = D D 2 D k»û Γ k ¹ Ù (k =, 2) Γ = Γ Γ 2 Ä.2 [2] ± ϕ(ζ) Æ Γ Đ Hölder À Û ξ, ζ Γ ϕ(ζ) ϕ(ξ) C ζ ξ µ, ÎÖ 0 < µ < C ± ζ ξ = ( 2 ζ k ξ k ) 2. Û µ = Æ ϕ(ζ) Æ Γ Đ Lipschitz À H µ (Γ) Æ Γ Đ ± µ Hölder À ±º е H µ (Γ) Ö ± k= ϕ(ζ) ϕ(ξ) ϕ µ = max ϕ(ζ) + sup, ζ Γ ζ ξ µ É H µ (Γ) º Banach ζ,ξ Γ ϕ + ϕ 2 µ ϕ + ϕ 2, ϕ ϕ 2 µ C ϕ ϕ 2 (.) ÎÖ C ± ± еÆÔ ϕ(ζ) ϕ(ξ) ϕ µ ζ ξ µ. Ä.3 [] L ¹ Ù d(z) Ù L Ñ Â à  à d(z) : L L Ô ± d(z) Ö ÃÇÎ

¾ÔÕ ÕÏ Ê À 4 ±Å Ù L Ý ÇÎ Ú Ý» ¹Ë Â Ò Ò Ñ α k Γ k (k =, 2) Ñ ζ, ξ Γ Lipschitz À α k (ζ k ) α k (ξ k ) M k ζ k ξ k, ÎÖ k =, 2; M k ± α(ζ) = (α (ζ ), α 2 (ζ 2 )), É α(ζ) Lipschitz À Đ α(ζ) α(ξ) = (α (ζ ), α 2 (ζ 2 )) (α (ξ ), α 2 (ξ 2 )) = [ α (ζ ) α (ξ ) 2 + α 2 (ζ 2 ) α 2 (ξ 2 ) 2 ] 2 [M 2 ζ ξ 2 + M 2 2 ζ 2 ξ 2 2 ] /2 [(max{m, M 2 }) 2 ( ζ ξ 2 + ζ 2 ξ 2 2 )] 2 = max{m, M 2 } ζ ξ C 2 ζ ξ (.2) [7] [8] ½³. D = (D, D 2 ) µå Î»Û Γ k (k =, 2) ØÅ ÚÒ Æ ¹ Ù«f(z) Æ (D, D 2 ) ÐÏ ÆÎ»Û É z D D 2 µå Cauchy f(z) = f(ζ, ζ 2 ) (2πi) 2 Γ Γ 2 (ζ z )(ζ 2 z 2 ) dζ dζ 2. ½³.2 ϕ(ζ) Æ Γ Đ É Cauchy Ë Φ(z) = ϕ(ζ, ζ 2 ) (2πi) 2 Γ Γ 2 (ζ z )(ζ 2 z 2 ) dζ dζ 2, (z k / Γ k ) z, z 2 Ù ± Φ(z, ) = Φ(, z 2 ) = Φ(, ) = 0. ºÉ [9] 2πi Γ k dζ k (ζ k ξ k ) = 2.(ξ k Γ k, k =, 2) (.3) ½³.3 [0] ¹ «Ï Ñ Ú ÎÑ

¾ÔÕ ÕÏ Ê À 5 Á Ä Ô W,S,WS ÌÑ Ü ß Í ¹Ë ½ ½ ¹Ë ½ Đ½ ±» ÒÈÊ 2. Ó W,S,WS Cauchy Ë ϕ(ξ, ξ 2 ) Φ(z) = (2πi) 2 (ξ z )(ξ 2 z 2 ) dξ dξ 2, z = (z, z 2 ) / Γ. ¹Ë ½ (Sϕ)(ζ) = Γ (πi) 2 Γ ϕ(ξ, ξ 2 ) (ξ ζ )(ξ 2 ζ 2 ) dξ dξ 2, ζ = (ζ, ζ 2 ) Γ. Ë Æ Cauchy ß µò Ù ± ϕ(ξ, ξ 2 ) H µ (Γ Γ 2 ).»Ü ½ (Wϕ)(ζ) = ϕ[α(ζ)] = ϕ(α (ζ ), α 2 (ζ 2 )), (WSϕ)(ζ) = ϕ(ξ, ξ 2 ) (πi) 2 [ξ α (ζ )][ξ 2 α 2 (ζ 2 )] dξ dξ 2. 2.2 Ó W,S,WS Ö Γ Ò Æ H µ (Γ) Ö ½ W,S,WS ±» Ü 2. α k (ζ):γ k Γ k (k =, 2) Lipschitz À ϕ H µ (Γ), É Æ ϕ ¾ ± C 3 Ô Æ ± е Wϕ µ = max ζ Γ Wϕ µ C 3 ϕ µ. (2.) Wϕ(ζ) Wϕ(ξ) Wϕ(ζ) + sup, ζ,ξ Γ ζ ξ µ

º α(ζ) ½ ² Ï ¾ÔÕ ÕÏ Ê À 6 max Wϕ(ζ) = max ϕ(α (ζ ), α 2 (ζ 2 )) = max ϕ(ζ) ζ Γ ζ Γ ζ Γ ϕ[α(ζ)] ϕ[α(ξ)] α(ζ) α(ξ) µ ϕ(ζ) ϕ(ξ) sup ζ,ξ Γ ζ ξ µ ϕ(ζ) ϕ(ξ) ϕ[α(ζ)] ϕ[α(ξ)] sup α(ζ) α(ξ) µ ζ ξ µ ζ,ξ Γ ² (.2) ξ, ζ Γ ² «Wϕ(ζ) Wϕ(ξ) = ϕ[α(ζ)] ϕ[α(ξ)] ϕ(ζ) ϕ(ξ) sup α(ζ) α(ξ) µ ζ ξ µ ζ,ξ Γ ϕ(ζ) ϕ(ξ) sup (C ζ ξ µ 2 ζ ξ ) µ ζ,ξ Γ Wϕ(ζ) Wϕ(ξ) ϕ(ζ) ϕ(ξ) sup sup C µ ζ ξ µ ζ ξ µ 2. ζ,ξ Γ ζ,ξ Γ Wϕ µ max ϕ(ζ) + ζ Γ Cµ 2 sup ϕ(ζ) ϕ(ξ) ζ ξ µ ζ,ξ Γ max{, C µ 2 }[max ϕ(ζ) ϕ(ξ) ϕ(ζ) + sup ] ζ Γ ζ ξ µ = max{, C µ 2 } ϕ µ C 3 ϕ µ ζ,ξ Γ

¾ÔÕ ÕÏ Ê À 7 Ü 2.2 [7] ϕ H µ (Γ), É Æ ϕ ¾ ± C 4 Ô Æ ± е Sϕ µ = max ζ Γ Ò Õ» Sϕ(ζ) Sϕ(η) ζ η µ Sϕ µ C 4 ϕ µ. (2.2) Sϕ(ζ) Sϕ(η) Sϕ(ζ) + sup, ζ,η Γ ζ η µ ζ η. ζ, η Γ, t = ζ η = ( ζ η 2 + ζ 2 η 2 2 ) 2 (t 2 + t 2 2) 2 ² ζ Ö ζ 3t O(ζ, 3t), Γ k O(ζ, 3t) Γ k0 Å Γ k.(k =, 2). º Γ Γ 2 = Γ (Γ 20 +Γ 2 ) = Γ Γ 20 +Γ Γ 2 = Γ Γ 20 +(Γ 0 +Γ ) Γ 2 = Γ Γ 20 + Γ 0 Γ 2 + Γ Γ 2. ² Sϕ(ζ) Sϕ(η) = (πi) 2( Γ Γ 20 + ϕ(ξ)dξ dξ 2 (ξ η )(ξ 2 η) ] Γ 0 Γ 2 + I Γ Γ 20 + I Γ0 Γ 2 + I Γ Γ 2. Γ Γ 2 )[ ϕ(ξ)dξ dξ 2 (ξ ζ )(ξ 2 ζ 2 ) «ϕ(ξ, ξ 2 )dξ dξ 2 I Γ Γ 20 = (πi) 2 Γ Γ 20 (ξ ζ )(ξ 2 ζ 2 ) ϕ(ξ, ξ 2 )dξ dξ 2 (πi) 2 Γ Γ 20 (ξ η )(ξ 2 η 2 ) ϕ(ξ, ξ 2 ) ϕ(ξ, ζ 2 ) = (πi) 2 Γ Γ 20 (ξ ζ )(ξ 2 ζ 2 ) dξ dξ 2 ϕ(ξ, ξ 2 ) ϕ(ξ, η 2 ) (πi) 2 Γ Γ 20 (ξ η )(ξ 2 η 2 ) dξ dξ 2 + ϕ(ξ, ζ 2 ) (πi) 2 Γ Γ 20 (ξ ζ )(ξ 2 ζ 2 ) dξ dξ 2 ϕ(ξ, η 2 ) (πi) 2 Γ Γ 20 (ξ η )(ξ 2 η 2 ) dξ dξ 2

(i) ± ÐµÆ ¾ÔÕ ÕÏ Ê À 8 ϕ(ξ, ξ 2 ) ϕ(ξ, ζ 2 ) (πi) 2 Γ Γ 20 (ξ ζ )(ξ 2 ζ 2 ) dξ dξ 2 ξ 2 ζ 2 ϕ µ (πi) Γ Γ20 µ 2 (ξ ζ )(ξ 2 ζ 2 ) dξ dξ 2 (2.3) º Γ 20 Γ 2 O(ζ, 3t) ² ξ 2 ζ 2 3t 2. «(ii) ± ÐµÆ (2.3) ϕ µ π 3t2 0 ξ 2 ζ 2 µ dξ 2 ϕ(ξ, ξ 2 ) ϕ(ξ, η 2 ) (πi) 2 Γ Γ 20 (ξ η )(ξ 2 η 2 ) dξ dξ 2 ξ 2 η 2 ϕ µ (πi) Γ Γ20 µ dξ 2 dξ 2 (2.4) ξ η º ξ 2 η 2 ξ 2 ζ 2 + ζ 2 η 2 3t 2 + t 2 = 4t 2. ² (.3) ÆÔ (2.4) ϕ µ π (iii) ϕ(ξ, ζ 2 ) ξ 2 ¾ ²  = = = 4t2 0 ξ 2 η 2 µ dξ 2 ϕ(ξ, ζ 2 ) (πi) 2 Γ Γ 20 (ξ ζ )(ξ 2 ζ 2 ) dξ dξ 2 ϕ(ξ, ζ 2 ) dξ 2 dξ πi Γ ξ ζ πi Γ 20 ξ 2 ζ 2 ϕ(ξ, ζ 2 ) dξ πi Γ ξ ζ ϕ(ξ, η 2 ) (πi) 2 Γ Γ 20 (ξ η )(ξ 2 η 2 ) dξ dξ 2 ϕ(ξ, η 2 ) dξ πi Γ ξ η

¾ÔÕ ÕÏ Ê À 9 (i)(ii)(iii) Æ 3t2 4t2 I Γ Γ 20 ϕ µ ξ 2 ζ 2 µ dξ 2 + ϕ µ ξ 2 η 2 µ dξ 2 π 0 π 0 + ϕ(ξ, η 2 ) dξ ϕ(ξ, η 2 ) dξ πi Γ ξ η πi Γ ξ η N ϕ µ t µ Â I Γ0 Γ 2 N 2 ϕ µ t µ I Γ Γ 2 = [ (πi) 2 Γ Γ 2 (ξ ζ )(ξ 2 ζ 2 ) (ξ η )(ξ 2 η 2 ) ]ϕ(ξ, ξ 2 )dξ dξ 2 ϕ(ξ, ξ 2 ) = (πi) 2 Γ Γ 2 (ξ ζ )(ξ 2 ζ 2 )(ξ η )(ξ 2 η 2 ) [(ξ η )(ξ 2 η 2 ) (ξ ζ )(ξ 2 ζ 2 )]dξ dξ 2 ϕ(ξ, ξ 2 ) = (πi) 2 Γ Γ 2 (ξ ζ )(ξ 2 ζ 2 )(ξ η )(ξ 2 η 2 ) {[(ξ ζ ) + (ζ η )] [(ξ 2 ζ 2 ) + (ζ 2 η 2 )] (ξ ζ )(ξ 2 ζ 2 )}dξ dξ 2 ϕ(ξ, ξ 2 ) = (πi) 2 Γ Γ 2 (ξ ζ )(ξ 2 ζ 2 )(ξ η )(ξ 2 η 2 ) [(ζ η )(ξ 2 ζ 2 ) +(ξ ζ )(ζ 2 η 2 ) + (ζ η )(ζ 2 η 2 )]dξ dξ 2 ϕ(ξ, ξ 2 ) = (πi) 2 Γ Γ 2 (ξ η )(ξ 2 η 2 ) [ζ η + ζ 2 η 2 ξ ζ ξ 2 ζ 2 + (ζ η )(ζ 2 η 2 ) (ξ ζ )(ξ 2 ζ 2 ) ]dξ dξ 2 dξ dξ 2 ϕ µ t Γ Γ 2 ξ η 2 ξ 2 η 2 + ϕ dξ dξ 2 µt 2 Γ Γ 2 ξ η ξ 2 η 2 2 dξ dξ 2 + ϕ µ t t 2 Γ Γ 2 ξ η 2 ξ 2 η 2 2 N 3 ϕ µ t µ ÎÖ Ù º Æ Γ k Đ ξ k η k 0, «ξ k η k Ë Û k =, 2.

Degree papers are in the Xiamen University Electronic Theses and Dissertations Database. Full texts are available in the following ways:. If your library is a CALIS member libraries, please log on http://etd.calis.edu.cn/ and submit requests online, or consult the interlibrary loan department in your library. 2. For users of non-calis member libraries, please mail to etd@xmu.edu.cn for delivery details.