A GENERALIZATION OF MITTAG-LEFFLER FUNCTION AND INTEGRAL OPERATOR ASSOCIATED WITH FRACTIONAL CALCULUS

Σχετικά έγγραφα
Oscillatory integrals

CHAPTER 3 MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS

Mittag-Leffler Functions and Fractional Calculus

INTEGRAL INEQUALITY REGARDING r-convex AND

Reccurence Relation of Generalized Mittag Lefer Function

The k-α-exponential Function

On the generalized fractional derivatives and their Caputo modification

2 Composition. Invertible Mappings

On the k-bessel Functions

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval

The k-fractional Hilfer Derivative

A summation formula ramified with hypergeometric function and involving recurrence relation

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Solutions_3. 1 Exercise Exercise January 26, 2017

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],*

4.6 Autoregressive Moving Average Model ARMA(1,1)

Homomorphism in Intuitionistic Fuzzy Automata

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Example Sheet 3 Solutions

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Normalization of the generalized K Mittag-Leffler function and ratio to its sequence of partial sums

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Uniform Convergence of Fourier Series Michael Taylor

A General Note on δ-quasi Monotone and Increasing Sequence

C.S. 430 Assignment 6, Sample Solutions

EXTENDED WRIGHT-BESSEL FUNCTION AND ITS PROPERTIES

Math221: HW# 1 solutions

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Research Article The Study of Triple Integral Equations with Generalized Legendre Functions

Section 8.3 Trigonometric Equations

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Concrete Mathematics Exercises from 30 September 2016

ST5224: Advanced Statistical Theory II

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Matrices and Determinants

On Generating Relations of Some Triple. Hypergeometric Functions

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS

Generalized fractional calculus of the multiindex Bessel function

Every set of first-order formulas is equivalent to an independent set

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

( y) Partial Differential Equations

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

EE512: Error Control Coding

Finite Field Problems: Solutions

Some definite integrals connected with Gauss s sums

ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS

CRASH COURSE IN PRECALCULUS

The k-bessel Function of the First Kind

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Congruence Classes of Invertible Matrices of Order 3 over F 2

Fractional Calculus of a Class of Univalent Functions With Negative Coefficients Defined By Hadamard Product With Rafid -Operator

Exercises to Statistics of Material Fatigue No. 5

w o = R 1 p. (1) R = p =. = 1

ON INTEGRAL MEANS FOR FRACTIONAL CALCULUS OPERATORS OF MULTIVALENT FUNCTIONS. S. Sümer Eker 1, H. Özlem Güney 2, Shigeyoshi Owa 3

Section 7.6 Double and Half Angle Formulas

M a t h e m a t i c a B a l k a n i c a. On Some Generalizations of Classical Integral Transforms. Nina Virchenko

Other Test Constructions: Likelihood Ratio & Bayes Tests

The Simply Typed Lambda Calculus

On a Subclass of k-uniformly Convex Functions with Negative Coefficients

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Characterization of non-differentiable points in a function by Fractional derivative of Jumarrie type

Lecture 5: Numerical Integration

Problem Set 3: Solutions

derivation of the Laplacian from rectangular to spherical coordinates

SPECIAL FUNCTIONS and POLYNOMIALS

Commutative Monoids in Intuitionistic Fuzzy Sets

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Solutions to Exercise Sheet 5

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Geodesic Equations for the Wormhole Metric

Areas and Lengths in Polar Coordinates

CERTAIN SUBCLASSES OF UNIFORMLY STARLIKE AND CONVEX FUNCTIONS DEFINED BY CONVOLUTION WITH NEGATIVE COEFFICIENTS

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Fractional Colorings and Zykov Products of graphs

Inverse trigonometric functions & General Solution of Trigonometric Equations

Areas and Lengths in Polar Coordinates

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Solution Series 9. i=1 x i and i=1 x i.

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

The k-mittag-leffler Function

Tridiagonal matrices. Gérard MEURANT. October, 2008

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type

Risk! " #$%&'() *!'+,'''## -. / # $

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

From the finite to the transfinite: Λµ-terms and streams

Transcript:

Journl of Frctionl Clculus nd Applictions, Vol. 3. July 212, No. 5, pp. 1-13. ISSN: 29-5858. http://www.fcj.webs.com/ A GENERALIZATION OF MITTAG-LEFFLER FUNCTION AND INTEGRAL OPERATOR ASSOCIATED WITH FRACTIONAL CALCULUS TARIQ O. SALIM, AHMAD W. FARAJ Abstrct. This pper is devoted for the study of new generlized function of Mittg-Leffler type. Its vrious properties including differentition, Lplce trnsform, Bet trnsform, Mellin trnsform, Whittker trnsform, generlized hypergeometric series form, Mellin-Brnes integrl representtion nd its reltionship with Fox s H-function nd Wright hypergeometric function re investigted nd estblished. Further properties of generlized Mittg- Leffler function ssocited with frctionl differentil nd integrl opertors re considered. Also n integrl opertor ssocited with frctionl clculus opertors is studied 1. Introduction The Swedish mthemticin Mittg-Leffler 5 introduced the function E α z defined s E α z Γαn + 1 where z C nd Γs is the Gmm function; α. The Mittg-Leffler function is direct generliztion of expz in which α 1. Mittg - Leffler function nturlly occurs s the solution of frctionl order differentil eqution or frctionl order integrl equtions. A generliztion of E α z ws studied by Wimn 14 where he defined the function E α,β z s E α,β z Γαn + β α, β C; Rα >, Rβ > which is lso known s Mittg-Leffler function or Wimn s function. Prbhkr 6 introduced the function E γ α,β z in the formsee lso Kilbs et l. 4 1 2 2 Mthemtics Subject Clssifiction. 33E12, 65R1, 26A33. Key words nd phrses. Generlized Mittg-Leffler function; frctionl clculus opertors; integrl trnsforms; integrl opertors. Submitted Jn. 3, 211. Published July 1, 211. 1

2 TARIQ O. SALIM, AHMAD W. FARAJ JFCA-212/3 E γ α,β z γ n Γαn + β n! α, β, γ C; Rα >, Rβ >, Rγ > Shukl nd Prjpti 1 see lso Srivstv nd Tomovski 13 defined nd investigted the function E γ,q α,β z s E γ,q α,β z γ qn Γαn + β n! where α, β, γ C; Rα >, Rβ >, Rγ >, q, 1 N nd γ qn Γγ+qn Γγ denotes the generlized Pochhmmer symbol which in prticulr reduces to q qn q γ+r 1 r1 q if q N n A new generliztion of Mittg-Leffler function ws defined by Slim 8 s E γ,δ α,β z γ n 3 4 5 Γαn + β δ n where α, β, γ, δ C; Rα >, Rβ >, Rγ >, Rδ > In this pper, we introduce new generliztion of Mittg-Leffler function defined s z γ qn 6 Γαn + β δ pn where α, β, γ, δ C; min{rα, Rβ, Rγ, Rδ} > ; p, q > nd q Rα + p 7 Eqution 6 is generliztion of equtions 1-5. Setting p q 1, it reduces to Eq. 5 defined by Slim 8. Setting δ p 1, it reduces to Eq. 4 defined by Shukl nd Prjpti 1, in ddition of tht if q 1, then we get Eq. 3 defined by Prbhkr 6. On putting γ δ p q 1 in 6 it reduces to Wimn s function, moreover if β 1, Mittg-Leffler function E α z will be the result. Some recurrence reltions, derivtion formuls, Lplce trnsform, Bet trnsform, Mellin-Brnes integrl of z will be estblished, lso its reltionship to Fox s H-function nd Wright hypergeometric function will be estblished. The integrl opertor defined by,w, + x x x t β 1 wx tα φtdt 8 which contins the generlized Mittg-Leffler function 6 in its kernel is investigted nd its boundedness is proved under certin conditions. Theorems of composition of frctionl clculus opertors I λ φ x 1 Γλ x x t λ 1 φtdt λ C, Rλ > 9

JFCA-212/3 A GENERALIZATION OF MITTAG-LEFFLER FUNCTION 3 nd D λ φ n d x I n λ φx n Rλ + 1 1 with integrl opertors defined in 8 re given nd proved. As mtter of fct if w, q 1 nd p 1, then the integrl opertor corresponds essentilly to the Riemnn-Liouville frctionl integrl opertor defined in 9. The generlized frctionl derivtive opertor D u,v φ known s Hilfer s frctionl derivtive see Hilfer 2 is written s D u,v φ x I v1 u d I 1 v1 u φ x 11 D u,v yields the clssicl Riemnn-Liouville frctionl derivtive D u when v ; lso if v 1 it reduces to Cputo frctionl derivtive. Throughout this pper, we need the following well-known fcts nd rules. Bet trnsform Sneddon 11 B{fz;, b} 1 Lplce trnsform Sneddon 11 z 1 1 z b 1 fzdz, R >, Rb > 12 L{fz; s} e sz fzdz, Rs > 13 Convolution theorem of Lplce trnsform Finney et l. 1 t L f g s L{ Mellin trnsform Sneddon 11 ft ξfξdξ} L f sl g s; L{ tn 1 Γn ; s} 1 s n, n > 14 M{fx; s} f s nd the inverse Mellin trnsform is given by fz M 1 {f s; z} 1 2πi c+i c i Confluent hypergeometric function Rinville 7 Φ, b, z 1 F 1, b, z z s 1 fzdz 15 z s f sds, c R 16 n b n n! 17

4 TARIQ O. SALIM, AHMAD W. FARAJ JFCA-212/3 Wright generlized hypergeometric function Srivstv nd Mnoch 12. p 1, A 1,..., p, A p Γ i + A i n pψ q b 1, B 1,..., b q, B q ; z i1 18 q n! Γb j + B j n Fox s H-function Kilbs nd Sigo 3 Hp,q m,n z 1, α 1,..., p, α p b 1, β 1,..., b q, β q m 1 Γb j + β j s n Γ1 j α j s j1 j1 z 2πi q p s ds 19 L Γ1 b j β j s Γ j + α j s jm+1 jn+1 The generlized hypergeometric function Rinville 7 p α i n i1 pf q α 1,..., α p ; β 1,..., β q ; z q zn n! β j n j1 j1 Whittker trnsform Whittker nd Wtson 15 e t/2 t v 1 W λ,µ tdt Γ 1 2 + µ + vγ 1 2 µ + v Γ1 λ + v where Rµ ± v > 1/2 nd W λ,µ t is the Whittker confluent hypergeometric function. Fubini s theorem Dirichlet formul Smko et l. 9 d b x x fx, tdt hx, tdt x b b dt t 2 21 fx, t; 22 hx, tdt + hx, x. 23 x 2. Bsic properties Theorem 2.1 The series in 6 is bsolutely convergent for ll vlues of z provided tht q < p + Rα. Moreover if q p + Rα, then z converges for z < 1. Proof. Rewriting z in the form of power series Eγ,δ,q z γ qn where b n Γαn + βδ pn Γz + nd pplying Γz + b b + b 1 1 z b 1 + + O 2z z 2, we get b n

JFCA-212/3 A GENERALIZATION OF MITTAG-LEFFLER FUNCTION 5 c n+1 c n γ qn+q δ pn Γαn + β γ qn δ pn+p Γαn + β + α nq q q2q + γ 1 1 1 + + O 2qn nq 2 np p p2δ + p 1 1 1 + + O 2pn np 2 αn α α2β + α 1 1 1 + + O 2αn αn 2 then c n+1 s n nd q < p + Rα, c n +1 z qq p p α α n q n p+α, which mens tht the function z converges for ll z provided tht q < p + Rα. Moreover if q p + Rα, then z converges for z < 1. Theorem 2.2 If the condition 7 is stisfied, then nd Proof. z Eγ,δ 1,q z zp 1 δ z Eγ,δ 1,q z γ qn Γδ zp 1 δ d dz Eγ,δ,q z; δ 1 24 z βeγ,δ,q α,β+1,p z + z d dz Eγ,δ,q α,β+1,p z 25 Γαn + β Γδ + pn d dz Eγ,δ,q z hence 24 is proved. z γ qn Γαn + βδ pn βγ qn + αn + βγαn + βδ pn β α,β+1,p z + z d dz Eγ,δ,q α,β+1,p z which is 25. γ qn 1 1 Γαn + β δ pn δ 1 pn pn zp 1 δ 1 δ γ qn n 1 Γαn + βδ pn γ qn Γαn + βδ pn αn + β αn + βγαn + β αγ qn αn + βγαn + βδ pn Theorem 2.3 If the condition 7 is stisfied, then for m N m d dz z γ qn γ + qm qn n + 1 m δ pn δ + pm pn Γαn + αm + β zn ; 26 Proof. m d z β 1 dz wzα z β m 1 α,β m,p wzα 27 m d γ qn dz Γαn + βδ pn Γγ + qn + qm Γδn + 1 m ΓγΓδ + pn + pm Γαn + αm + β zn

6 TARIQ O. SALIM, AHMAD W. FARAJ JFCA-212/3 γ qn δ pn γ + qm qn δ + pm pn n + 1 m Γαn + αm + β zn ; m d z β 1 dz wzα z α β 1 γ qn w n z α n Γαn + β mδ pn γ qn w n Theorem 2.4 If the condition 7 is stisfied, then 1 Γδ x t d dz zα+β 1 Γαn + βδ pn d dz zα+β 1 z β m 1 α,β m,p wzα. x s δ 1 s t β 1 λs tα ds x t δ+β 1 α,β+δ,p λs tα Proof. Let u s t x t, then 1 x x s δ 1 s t β 1 Γδ λs tα ds t 1 x x t δ 1 1 u δ 1 x t β 1 u β 1 x t Γδ t x tδ+β 1 γ qn λx t α n Γαn + βγδ Γδ Γαn + βδ pn Γαn + β + δ x t δ+β 1 α,β+δ,p λs tα. In prticulr, setting t nd x 1 in 28, we get 1 Γδ 1 u β 1 1 u δ 1 zuα ds α,β+δ,p z. 3. z in Terms of Other Functions 28 γ qn λ n x t αn u αn du Γαn + βδ pn In this section we write z in terms of Wright generlized function, generlized hypergeometric function, Mellin-Brnes integrl nd Fox s H-function. z γ qn Γαn + βδ pn Γγ + qn Γγ Γδ Γn + 1 Γδ + pn Γαn + β hence, we cn write z in terms of the Wright generlized function s Γδ z Γγ Γγ + qn Γδ + pn Γn + 1 Γαn + β n! n! Γδ γ, q, 1, 1 Γγ 2 Ψ 2 δ, p, β, α ; z Theorem 3.1 Let 7 be stisfied with α k N, then z cn be written in terms of the generlized hypergeometric function s z 1 Γβ. q+1f p+k 1, q, γ k, β, p, δ ; zq q p p k k 29, 3

JFCA-212/3 A GENERALIZATION OF MITTAG-LEFFLER FUNCTION 7 where k, n is k tuple n k, n + 1 k,..., n + k 1. k Proof. Let α k N, then z γ qn 1 γ qn Γαn + βδ pn Γβ β αn δ pn 1 q qn q γ + i 1 1 n i1 q n Γβ p δ + j 1 p pn k j1 p kn k β + r 1 n! n r1 k n 1 Γβ. 1, q, γ q+1f p+k k, β, p, δ ; zq q p p k k. Now in order to write z s Mellin-Brnes type integrl z in terms of Fox s H-function, we first express Theorem 3.2 Let 7 be stisfied, then z is represented in the Mellin- Brnes type integrl s z 1 2πi L ΓsΓ1 sγγ qs z s ds, 31 Γβ αsγδ ps where rgz < π; the contour of integrtion begins t i nd ending t i, nd intended to seprte the poles of the integrnd t s n for ll n N to the left from those t s n + 1 nd t s γ + n for ll n N {} to the right. q Proof. Simply, by writing the Wright generlized function in 29 in terms of Mellin-Brnes integrl, we get Γδ z Γγ Γγ + qn Γδ + pn 1 Γδ 2πi Γγ Γδ Γγ H1,2 2,3 L z Γn + 1 Γαn + β n! Γδ γ, q, 1, 1 Γγ 2 Ψ 2 δ, p, β, α ; z ΓsΓ1 sγγ qs z s ds Γβ αsγδ ps, 1, 1 γ, q, 1, 1 β, α, 1 δ, p. 32 The lst eqution is just representtion of z in terms of Fox s H-function. 4. Integrl Trnsforms of z In this section, the imge of z under Bet, Lplce, Mellin nd Whittker trnsforms with some specil cses re proved in the following theorems Theorem 4.1 Bet Trnsform { } B xzσ ;, b ΓbΓδ. 3 Ψ 3 Γγ where 7 is stisfied nd R >, Rb >. Proof. γ, q,, σ, 1, 1 β, α, δ, p, + b, σ ; z, 33

8 TARIQ O. SALIM, AHMAD W. FARAJ JFCA-212/3 { } B xzσ ;, b ΓbΓδ Γγ 1 z 1 1 z b 1 xzσ dz γ qn x n B + σn, b Γαn + βδ pn. 3 Ψ 3 γ, q,, σ, 1, 1 β, α, δ, p, + b, σ ; x γ qn x n Γ + σnγb Γαn + βδ pn Γ + σn + b. Theorem 4.2 Lplce Trnsform { } L z 1 xzσ ; s Γδs γ, q,, σ, 1, 1. 3 Ψ 2 Γγ β, α, δ, p ; x s σ 34 Proof. { } L z 1 xzσ ; s z 1 e sz xzσ dz γ qn x n z +σn 1 e sz dz Γαn + βδ pn γ qn x n { } Γ + σn z +σn 1 L Γαn + βδ pn Γ + σn ; s Γδs γ, q,, σ, 1, 1. 3 Ψ 2 Γγ β, α, δ, p Theorem 4.3 Mellin Trnsform { } M wz; s Γδ ΓsΓ1 sγγ qs Γγ Γβ αsγδ ps w s 35 ; x s σ. Proof. According to Theorem 3.2 nd using 31, wz cn be written s wz 1 Γδ ΓsΓ1 sγγ qs 2πi Γγ Γβ αsγδ ps wz s ds 1 Γδ f sz s ds 2πi Γγ L where f ΓsΓ1 sγγ qs s Γβ αsγδ psw s begins t c i nd ends t c i ; c R. Hence Γδ wz Γγ M 1 {f s; z} Now pplying Mellin trnsform to both sides, we obtin M which proves 35. nd L is the contour of integrtion tht { } wz; s Γδ ΓsΓ1 sγγ qs Γγ Γβ αsγδ ps w s Theorem 4.4 Whittker Trnsform L e 1 2 ϕt t ζ 1 W λ,µ ϕt wtσ dt Γδϕ ζ Γγ γ, q, 1, 1, 1. 4 Ψ 2 + µ + ζ, σ, 1 2 µ + ζ, σ 3 β, α, δ, p, 1 λ + ζ, σ where 7 is stisfied nd Rζ >, Rϕ >. Proof. Setting v ϕt, then we get ; w ϕ σ 36

JFCA-212/3 A GENERALIZATION OF MITTAG-LEFFLER FUNCTION 9 e 1 2 ϕt t ζ 1 W λ,µ ϕt wtσ dt e v 2 Γδϕ ζ Γγ Γδϕ ζ Γγ Γδϕ ζ Γγ σn v ζ 1 v W γ qn w n ϕ 1 λ,µv ϕ Γαn + βδ pn ϕ dv n Γqn + γ w Γαn + βγpn + δ ϕ σ e v 2 v ζ+σn 1 W λ,µ vdv n Γqn + γγn + 1 w Γ 1 2 + µ + ζ + σnγ 1 2 µ + ζ + σn Γαn + βγpn + δn! ϕ σ Γ1 λ + ζ + σn which directly yields 36. Γqn + γγn + 1Γ 1 2 + µ + ζ + σnγ 1 2 µ + ζ + σn Γαn + βγpn + δγ1 λ + ζ + σn w ϕ σ 5. Integrl Opertors with Generlized Mittg-Leffler Function in the Kernel In this section, we consider composition of the Riemnn-Liouville frctionl integrl nd derivtive nd Hilfer s frctionl derivtive 9-11 with Mittg-Leffler function defined by 7. Theorem 5.1 Let R +, α, β, γ, δ, λ, w C, min {Rα, Rβ, Rγ, Rδ, Rλ} > nd p, q >, then for x > we hve D+ λ t β 1 wt α x x β λ 1 α,β λ,p wx α 37 Proof. Beginning with I + λ t β 1 x Γβ I λ + t β 1 wt α x I+ λ n! n Γβ + λ x β+λ 1, then γ qn w n t αn+β 1 x Γαn + βδ pn γ qn w n t αn+β 1 Γαn + βδ pn Γαn + β Γαn + β + λ x αn+β+λ 1 38 x β+λ 1 α,β+λ,p wx α Now mking use of 9, 27 nd 38 yields D+ λ t β 1 wt α x d m I+ m λ t β 1 wt α x m d x β+m λ 1 wx α x β λ 1 α,β λ,p wx α. Now, mking use of the formuls in 27 nd 38, we cn get the following result contined in

1 TARIQ O. SALIM, AHMAD W. FARAJ JFCA-212/3 Theorem 5.2 Let R +, α, β, γ, δ, w C, min {Rα, Rβ, Rγ, Rδ} >, < u < 1, v, Rβ > u + v uv nd p, q >, then for x > we hve D u,v + t β 1 wt α x x β u 1 α,β u,p wx α. 39 Consider the integrl opertor defined in 8 contining the Mittg-Leffler function γ,δ,q z in the kernel. First of ll we will prove tht the opertor E,w, + is bounded on L, b. Theorem 5.3 Let α, β, γ, δ, w C, min {Rα, Rβ, Rγ, Rδ} >, b > nd p, q >, then the opertor,w, is bounded on L, b nd +,w,+ φ 1 B φ 1 4 where B b Rβ γ qn wb Rα n Γαn + β δ pn Rαn + Rβ Proof. First of ll, let C n denote the n th term of 41, then c n+1 c n γ qn+q Γαn + β δ pn Rαn + Rβ γ qn Γαn + β + α δ pn+p Rαn + Rα + Rβ wb Rα wb Rα qn q s n, provided tht q < p + Rα. Hence α n Rα pn p c n+1 c n s n, which mens tht the right hnd side of 41 is convergent nd finite under the given condition. Now ccording to 8 nd 22,w,+ φ 1 b b x t β 1 wx tα φtdt b b x t β 1 wx b b t tα φt dt u Rβ 1 wuα du φt dt b b u Rβ 1 wuα du φt dt. But we hve b u Rβ 1 γ qn w n wuα du Γαn + β δ pn so tht B b Rβ Hence,w,+ φ 1 b b γ qn wb Rα n Γαn + β δ pn Rαn + Rβ B φt dt B φ 1. 41 u Rαn+Rβ 1 du B

JFCA-212/3 A GENERALIZATION OF MITTAG-LEFFLER FUNCTION 11 Equlity 28 cn simply be written by mens of the opertor,w, s + Corollry 5.4 Let α, β, γ, δ, ζ, w C, min {Rα, Rβ, Rγ, Rδ, Rλ} > nd p, q >, then,w,+ t ζ 1 x Γζx β+ζ 1 α,β+ζ,p wx α. 42 6. Composition of Frctionl Clculus Opertors nd Integrl Opertor with Generlized Mittg-Leffler Function in the Kernel We consider now composition of the Riemnn-Liouville frctionl integrtion opertor I λ with the opertor +,w,+ Theorem 6.1 Let α, β, γ, δ, λ, w C, min {Rα, Rβ, Rγ, Rδ, Rλ} > nd p, q >, then I λ γ,δ,q +E,w,+ φ α,β+λ,p,w,+ φ,w,+ Iλ +φ 43 holds for ny summble function φ L, b. Proof. I λ +,w,+ φ x 1 x u x u λ 1 u t β 1 Γλ wu tα φtdt du x 1 x x u λ 1 u t β 1 Γλ wu tα du φtdt letting τ u t implies t I λ +,w,+ φ x x I λ x τ β 1 wτ α x 1 x t Γλ x tφtdt x t β+λ 1 α,β+λ,p wx tα Similrly, we cn prove the other side. x t τ λ 1 τ β 1 wτ α dτ φtdt x τ β+λ 1 α,β+λ,p wτ α φtdt φtdt α,β+λ,p,w,+ φ x Theorem 6.2 If the conditions of Theorem 6.1 is stisfied, then D λ γ,δ,q +E,w,+ φ x α,β λ,p,w,+ φ x. 44 Proof. Let n Rλ + 1 nd using 9, we get n D λ d +,w,+ φ x I n λ +,w,+ φ x n d α,β+n λ,p,w,+ φ x n d x x t β+n λ 1 α,β+n λ,p wx tα φtdt Since the integrl is continuous, 23 yields

12 TARIQ O. SALIM, AHMAD W. FARAJ JFCA-212/3 n 1 D λ d x +,w,+ φ x +limx t β+n λ 1 t x α,β+n λ,p wx tα n 1 d x x t β+n λ 2 γ qn wx t α n Γαn + β + n λ 1δ pn n 1 d x x t β+n λ 2 α,β+n λ 1,p wx tα φtdt Repeting this process n 1 times, then we get D λ +,w,+ φ x x x t β+n λ 1 α,β+n λ,p x wx tα φtdt φtdt x t β λ 1 α,β λ,p wx tα φtdt α,β λ,p,w,+ φ x. Theorem 6.3 Let α, β, γ, δ, w C, min {Rα, Rβ, Rγ, Rδ} > < u < 1, v 1, Rβ > u + v uv nd p, q >, then D u,v +,w,+ φ x α,β u,p,w,+ φ x. 45 Acknowledgement: The uthors wish to thnk the nonymous referee for vluble comments nd suggestions. References 1 R. Finney, D. Ostberg, R. Kuller, Elementry Differentil Equtions with Liner Algebr, Addison-Weley Publishing Compny; 1976.. 2 R. HilferEd., Applictions of Frctionl Clculus in Physics, Singpore, New Jersey, London nd Hong Kong : World Scientific Publishing Compny; 2. 3 A.A. Kilbs, M. Sigo, H Trnsforms: Theory nd Applictions., London, NewYork: Chpmn nd Hll/CRC; 24. 4 A.A. Kilbs, M. Sigo, R.K. Sxen, Generlized Mittg Leffler function nd generlized frctionl clculus opertors, Integrl Trnsforms Spec. Funct., Vol. 15,24,pp. 31 49. 5 G.M. Mittg-Leffler, Sur l nouvelle fonction. C.R. Acd. Sci. Pris, Vol. 137, 193, pp. 554 558. 6 T.R. Prbhkr, A Singulr integrl eqution with generlized Mittg-Leffler function in the kernel. Yokohm Mth. J., Vol. 19,1971, pp. 7 15. 7 E.D. Rinville, Specil Functions. New York : Chelse Publ. Co.; 196. 8 T.O. Slim, Some properties relting to the generlized Mittge-Leffler function, Adv. Appl. Mth. Anl., Vol. 4, 29, pp. 21-3. 9 S.G. Smko, A.A. Kilbs, O.I. Mrichev, Frctionl Integrls nd Derivtives: Theory nd Applictions, Yverdon Switzerlnd: Gordon nd Brech Science Publishers; 1993.. 1 A.K. Shukl, J.C. Prjpti, On generliztion of Mittg Leffler function nd its properties, J. Mth. Anl. Appl., Vol. 336, 27, pp. 797 811.. 11 I.N. Sneddon, The Use of Integrl Trnsforms. New Delhi: Tt McGrw Hill; 1979. 12 H.M. Srivstv, H.L. Mnoch, A Tretise on Generting Functions. New York: John Wiley nd Sons; 1984. 13 H.M. Srivstv, Z. Tomovski, Frctionl clculus with n integrl opertor contining generlized Mittg-Leffler function in the kernel, Appl. Mth. Comput.,Vol. 211,29, pp.198-21. 14 A. Wimn, Uber den fundmentl stz in der theori der functionen, Act Mth., Vol. 29, 195, pp. 191 21. 15 E.T. Wittker, G.N. Wtson, A Course of Modern Anlysis. Cmbridge: Cmbridge Univ. Press; 1962.

JFCA-212/3 A GENERALIZATION OF MITTAG-LEFFLER FUNCTION 13 Triq O. Slim, Deprtment of Mthemtics, Al-Azhr University-Gz, P.O.Box 1277, Gz, Plestine E-mil ddress: trslim@yhoo.com, t.slim@lzhr.edu.ps Ahmd W. Frj, Deprtment of Mthemtics, Al-Azhr University-Gz, P.O.Box 1277, Gz, Plestine