Appendix B: Mathematical Formulae and Statistical Tables

Σχετικά έγγραφα
Sixth Term Examination Papers MATHEMATICS LIST OF FORMULAE AND STATISTICAL TABLES

LIST OF FORMULAE STATISTICAL TABLES MATHEMATICS. (List MF1) AND

List MF20. List of Formulae and Statistical Tables. Cambridge Pre-U Mathematics (9794) and Further Mathematics (9795)

List MF19. List of formulae and statistical tables. Cambridge International AS & A Level Mathematics (9709) and Further Mathematics (9231)

MEI EXAMINATION FORMULAE AND TABLES (MF2)

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

p n r

DIPLOMA PROGRAMME MATHEMATICS SL INFORMATION BOOKLET


Homework for 1/27 Due 2/5

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

Presentation of complex number in Cartesian and polar coordinate system

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

physicsandmathstutor.com

1. For each of the following power series, find the interval of convergence and the radius of convergence:

IIT JEE (2013) (Trigonomtery 1) Solutions

Probability theory STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN15/MASM23 TABLE OF FORMULÆ. Basic probability theory

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Homework 8 Model Solution Section

α β

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

FORMULAS FOR STATISTICS 1

Solution Series 9. i=1 x i and i=1 x i.

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Ψηφιακή Επεξεργασία Εικόνας

PhysicsAndMathsTutor.com

The Equivalence Theorem in Optimal Design

Other Test Constructions: Likelihood Ratio & Bayes Tests

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Solutions: Homework 3

Rectangular Polar Parametric

Areas and Lengths in Polar Coordinates

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

The ε-pseudospectrum of a Matrix

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Inverse trigonometric functions & General Solution of Trigonometric Equations

Solve the difference equation

Spherical Coordinates

Trigonometric Formula Sheet

t-distribution t a (ν) s N μ = where X s s x = ν 2 FD ν 1 FD a/2 a/2 t-distribution normal distribution for ν>120

Math 6 SL Probability Distributions Practice Test Mark Scheme

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Review Exercises for Chapter 7

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Solutions to Exercise Sheet 5

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Biostatistics for Health Sciences Review Sheet

Trigonometry 1.TRIGONOMETRIC RATIOS

Statistical Inference I Locally most powerful tests

Areas and Lengths in Polar Coordinates

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

Homework 3 Solutions

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

ECE Notes 21 Bessel Function Examples. Fall 2017 David R. Jackson. Notes are from D. R. Wilton, Dept. of ECE

DERIVATION OF MILES EQUATION Revision D

Parameter Estimation Fitting Probability Distributions Bayesian Approach

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Matrices and Determinants

CRASH COURSE IN PRECALCULUS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Outline. Detection Theory. Background. Background (Cont.)

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Differential equations

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Section 8.2 Graphs of Polar Equations

Quadratic Expressions

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

B.A. (PROGRAMME) 1 YEAR

derivation of the Laplacian from rectangular to spherical coordinates

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Lifting Entry (continued)

Section 8.3 Trigonometric Equations

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Section 9.2 Polar Equations and Graphs

ST5224: Advanced Statistical Theory II

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

B.A. (PROGRAMME) 1 YEAR

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Example Sheet 3 Solutions

TRIGONOMETRIC FUNCTIONS

χ 2 test ανεξαρτησίας

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Core Mathematics C12

The Neutrix Product of the Distributions r. x λ

5.4 The Poisson Distribution.

Numerical Analysis FMN011

1999 by CRC Press LLC

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Transcript:

Aedi B: Mathematical Formulae ad Statistical Tables Pure Mathematics Mesuratio Surface area of shere = π r Area of curved surface of coe = π r slat height Trigoometry a = b + c bccosa Arithmetic Series u = a+ ( ) d S = ( a+ l) = { a+ ( ) d} Geometric Series u = ar S a( r ) = r a S = for r r < Summatios 6 r= r = ( + )(+ ) r = ( + ) r= OCR00 Aedi B: Mathematical Formulae ad Statistical Tables 95 Oford, Cambridge ad RSA Eamiatios GCE Mathematics

Biomial Series + + = r r+ r+ r r ( a+ b) = a + a b+ a b + + a b + + b r ( ),! where = Cr = r r!( r)! ( ) ( ) ( r+ ) r ( + ) = + + + + +..r ( <, ) Logarithms ad Eoetials l e a = a Comle Numbers { r(cosθ + isi θ)} = r (cos θ + isi θ) iθ e = cosθ + isiθ The roots of z = are give by π k i z = e, for k = 0,,,, Maclauri s Series ( r) f( ) = f(0) + f (0) + f (0) + + f (0) +! r! r = = + + +! e e( )! r + + for all r r+ l( + ) = + + ( ) + ( < ) r r 5 r+ r si = + + ( ) + for all! 5! ( r + )! r r cos = + + ( ) + for all!! ( r )! 96 Aedi B: Mathematical Formulae ad Statistical Tables OCR 00 GCE Mathematics Oford, Cambridge ad RSA Eamiatios

ta 5 r+ r = + + ( ) + ( ) 5 r + 5 r+ sih = + + + + + for all! 5! (r + )! r cosh = + + + + + for all!! ( r)! tah 5 r+ = + + + + + 5 r + ( < < ) Hyerbolic Fuctios cosh sih = sih = sih cosh cosh = cosh + sih { } cosh = l + ( ) { } sih = l + + tah l + = ( ) < Coordiate Geometry The eredicular distace from ( h, k ) to a + by + c = 0 is ah + bk + c a + b The acute agle betwee lies with gradiets m ad m is ta m m + mm OCR00 Aedi B: Mathematical Formulae ad Statistical Tables 97 Oford, Cambridge ad RSA Eamiatios GCE Mathematics

Trigoometric Idetities si( A± B) = si Acos B± cos Asi B cos( A± B) = cos Acos B si Asi B ta A± ta B ta( A± B) = ( A± B ( k + ) π ) taatab For t = ta A: t si A =, + t t cos A = + t A+ B A B si A+ si B= si cos A+ B A B si A si B= cos si A+ B A B cos A+ cos B= cos cos A+ B A B cos A cos B= si si Vectors The resolved art of a i the directio of b is a.b b The oit dividig AB i the ratio λ : µ is µ a+ λ b λ + µ Vector roduct: i a b ab ab ˆ a b= a b si θ = j a b = ab ab k a b ab ab If A is the oit with ositio vector a= ai+ aj+ ak ad the directio vector b is give by b= bi+ b j+ b k, the the straight lie through A with directio vector b has cartesia equatio a y a z a = = ( = λ) b b b 98 Aedi B: Mathematical Formulae ad Statistical Tables OCR 00 GCE Mathematics Oford, Cambridge ad RSA Eamiatios

The lae through A with ormal vector = i+ j+ k has cartesia equatio + y+ z + d= 0 where d= a. The lae through o-colliear oits A, B ad C has vector equatio r= a+ λ ( b a) + µ ( c a) = ( λ µ ) a+ λ b+ µ c The lae through the oit with ositio vector a ad arallel to b ad c has equatio r= a+ sb+ tc The eredicular distace of ( α, β, γ ) from + y+ z + d= 0 is α + β + γ + d + + Matri Trasformatios Aticlockwise rotatio through θ about O : cosθ siθ si θ cosθ Reflectio i the lie y = (ta θ ) : cos θ si θ si θ cosθ OCR00 Aedi B: Mathematical Formulae ad Statistical Tables 99 Oford, Cambridge ad RSA Eamiatios GCE Mathematics

Differetiatio f( ) f( ) ta k si ksec k cos ta + sec sec ta cot cosec sih cosh tah sih cosh tah cosec cosec cot cosh sih sech + 00 Aedi B: Mathematical Formulae ad Statistical Tables OCR 00 GCE Mathematics Oford, Cambridge ad RSA Eamiatios

Itegratio (+ costat; a > 0 where relevat) f( ) f( )d sec k ta cot ta k k l sec l si cosec sec sih cosh tah l cosec + cot = l ta( ) l sec + ta = l ta( + π ) cosh sih l cosh a si ( < a) a a + a ta a a cosh or l { + a } ( > a) a a + a sih or l{ + + a } a a+ l = tah ( < a) a a a a a a l a + a dv du u d= uv v d d d OCR00 Aedi B: Mathematical Formulae ad Statistical Tables 0 Oford, Cambridge ad RSA Eamiatios GCE Mathematics

Area of a Sector d A= r θ (olar coordiates) dy d A= y dt (arametric form) dt dt Numerical Mathematics Numerical Itegratio b The traezium rule: y d {( h y 0 + y ) + ( y a + y + + y ) }, where b a h = b Simso s rule: y d {( h y 0 + y ) + ( y a + y + + y ) + ( y + y + + y ) }, where b a h = ad is eve Numerical Solutio of Equatios f( ) The Newto-Rahso iteratio for solvig f( ) = 0 : + = f( ) Mechaics Motio i a Circle Trasverse velocity: v= rθ Trasverse acceleratio: v = rθ Radial acceleratio: v rθ = r 0 Aedi B: Mathematical Formulae ad Statistical Tables OCR 00 GCE Mathematics Oford, Cambridge ad RSA Eamiatios

Cetres of Mass For uiform bodies Triagular lamia: alog media from verte Solid hemishere, radius r: r from cetre Hemisherical shell, radius r: r from cetre 8 Circular arc, radius r, agle at cetre si α : r α from cetre α Sector of circle, radius r, agle at cetre r siα α : from cetre α Solid coe or yramid of height h: h above the base o the lie from cetre of base to verte Coical shell of height h: h above the base o the lie from cetre of base to verte Momets of Iertia For uiform bodies of mass m Thi rod, legth l, about eredicular ais through cetre: ml Rectagular lamia about ais i lae bisectig edges of legth l : ml Thi rod, legth l, about eredicular ais through ed: ml Rectagular lamia about edge eredicular to edges of legth l : ml Rectagular lamia, sides a ad b, about eredicular ais through cetre: ma ( + b ) Hoo or cylidrical shell of radius r about ais: mr Hoo of radius r about a diameter: mr Disc or solid cylider of radius r about ais: mr Disc of radius r about a diameter: mr OCR00 Aedi B: Mathematical Formulae ad Statistical Tables 0 Oford, Cambridge ad RSA Eamiatios GCE Mathematics

Solid shere, radius r, about a diameter: 5 mr Sherical shell of radius r about a diameter: mr Parallel aes theorem: I = I + m( AG) A G Peredicular aes theorem: I z = I + Iy (for a lamia i the -y lae) Probability ad Statistics Probability P( A B) = P( A) + P( B) P( A B) P( A B) = P( A)P( B A) P( B A)P( A) P( A B) = P( B A)P( A) + P( B A )P( A ) Bayes Theorem: P( Aj)P( B Aj) P( Aj B) = Σ P( A)P( B A) i i Discrete Distributios For a discrete radom variable X takig values i with robabilities Eectatio (mea): E( X ) = µ =Σ i i i Variace: i i i i Var( X) = σ =Σ( µ ) =Σ µ For a fuctio g( X ) : E(g( X )) =Σg( ) The robability geeratig fuctio of X is G X ( t ) = E( t ), ad E( X ) = G (), X i i X Var( X ) = G () + G () {G ()} X X X For Z = X + Y, where X ad Y are ideedet: G ( t) = G ( t)g ( t) Z X Y 0 Aedi B: Mathematical Formulae ad Statistical Tables OCR 00 GCE Mathematics Oford, Cambridge ad RSA Eamiatios

Stadard Discrete Distributios: Distributio of X P(X = ) Mea Variace P.G.F. Biomial B(, ) ( ) ( ) ( + t) Poisso Po( λ) λ λ e λ λ ( ) e λ t! Geometric Geo () o,, ( ) t ( ) t Cotiuous Distributios For a cotiuous radom variable X havig robability desity fuctio f Eectatio (mea): E( X ) µ f( )d = = Variace: Var( X) = σ = ( µ ) f( )d= f( )d µ For a fuctio g( X ) : E(g( X )) = g( )f( )d Cumulative distributio fuctio: F( ) P( X ) f( t) dt = = tx The momet geeratig fuctio of X is M X ( t ) = E(e ) ad E( X ) = M (0), X ( ) X E( X ) = M (0), Var( X ) = M (0) {M (0)} X X For Z = X + Y, where X ad Y are ideedet: M ( t) = M ( t)m ( t) Z X Y OCR00 Aedi B: Mathematical Formulae ad Statistical Tables 05 Oford, Cambridge ad RSA Eamiatios GCE Mathematics

Stadard Cotiuous Distributios: Distributio of X P.D.F. Mea Variace M.G.F. Uiform (Rectagular) o [ a, b] b a ( a b) ( b a) e e ( b a) t + bt at Eoetial λ λ e λ λ λ λ t Normal µ µ σ ( ) σ N(, ) e σ π µ σ e µ t+ σ t Eectatio Algebra Covariace: Cov( X, Y) = E(( X µ )( Y µ )) = E( XY) µ µ X Y X Y Var( ax ± by ) = a Var( X ) + b Var( Y ) ± abcov( X, Y ) Product momet correlatio coefficiet: Cov( X, Y ) ρ = σ σ X Y If X = ax + b ad Y = cy + d, the Cov( X, Y) = accov( X, Y ) For ideedet radom variables X ad Y E( XY) = E( X)E( Y) Var( ax ± by ) = a Var( X ) + b Var( Y ) Samlig Distributios For a radom samle X, X,, X of ideedet observatios from a distributio havig mea µ ad variace σ X is a ubiased estimator of µ, with Var( X ) σ = S is a ubiased estimator of σ, where Σ( X i X ) S = 06 Aedi B: Mathematical Formulae ad Statistical Tables OCR 00 GCE Mathematics Oford, Cambridge ad RSA Eamiatios

For a radom samle of observatios from X µ ~N(0, ) σ / N( µ, σ ) X µ ~ t S/ (also valid i matched-airs situatios) If X is the observed umber of successes i ideedet Beroulli trials i each of which the X robability of success is, ad Y =, the E( Y) = ad Var( Y ) = ( ) For a radom samle of observatios from y observatios from y N( µ, σ ) y N( µ, σ ) ad, ideedetly, a radom samle of ( X Y) ( µ µ y) ~N(0, ) σ σ y + y y If σ = σ = σ (ukow) the ( X Y) ( µ µ y) ~ t S + y + y, where + y y ( ) S ( ) S S = + y Correlatio ad Regressio For a set of airs of values (, y ) i i ( Σi ) S =Σ( i ) =Σi ( Σyi ) Syy =Σ( yi y) =Σyi ( Σi)( Σyi) Sy =Σ( i )( yi y) =Σiyi OCR00 Aedi B: Mathematical Formulae ad Statistical Tables 07 Oford, Cambridge ad RSA Eamiatios GCE Mathematics

The roduct momet correlatio coefficiet is ( Σi)( Σyi) S Σy ( )( ) i i y Σ i yi y r = = = S Syy { Σ( i ) }{ Σ( yi y) } ( Σi) ( Σyi) Σi Σyi Searma s rak correlatio coefficiet is 6Σd rs = ( ) The regressio coefficiet of y o is S Σ( )( y y) b = = S y i i Σ( i ) Least squares regressio lie of y o is y = a+ b where a= y b Distributio-free (No-arametric) Tests Goodess-of-fit test ad cotigecy tables: ( O i E i ) E i ν ~ χ Aroimate distributios for large samles: Wilcoo Siged Rak test: T ~ N ( ( + ), ( + )(+ ) ) Wilcoo Rak Sum test (samles of sizes m ad, with m ): ( + + + + ) W ~ N m( m ), m( m ) 08 Aedi B: Mathematical Formulae ad Statistical Tables OCR 00 GCE Mathematics Oford, Cambridge ad RSA Eamiatios

OCR00 Aedi B: Mathematical Formulae ad Statistical Tables 09 Oford, Cambridge ad RSA Eamiatios GCE Mathematics 0.95 0.00 0.06 0.6 0.95 0.00 0.08 0.69 0.95 0.000 0.008 0.0 0.07 0.95 0.0058 0.057 0.66 0.9 0.0086 0.085 0.095 0.9 0.00 0.059 0. 0.686 0.9 0.000 0.007 0.057 0.97 0.57 0.9 0.0050 0.08 0.869 0.5695 0.85 0.00 0.066 0.68 0.556 0.85 0.0059 0.07 0.5 0.69 0.85 0.00 0.0 0.078 0.8 0.679 0.85 0.000 0.009 0.0 0.05 0.8 0.775 5/6 0.00 0.055 0.96 0.598 5/6 0.0007 0.0087 0.06 0.6 0.665 5/6 0.000 0.076 0.0958 0.0 0.709 5/6 0.006 0.007 0.8 0.95 0.767 0.8 0.0067 0.0579 0.67 0.67 0.8 0.006 0.070 0.0989 0.6 0.779 0.8 0.007 0.0 0.80 0. 0.790 0.8 0.00 0.00 0.056 0.0 0.967 0.8 0.75 0.000 0.056 0.05 0.67 0.767 0.75 0.000 0.006 0.076 0.69 0.66 0.80 0.75 0.00 0.09 0.0706 0.6 0.555 0.8665 0.75 0.00 0.07 0.8 0.5 0.69 0.8999 0.7 0.00 0.008 0.6 0.78 0.89 0.7 0.0007 0.009 0.0705 0.557 0.5798 0.88 0.7 0.000 0.008 0.088 0.60 0.59 0.6706 0.976 0.7 0.00 0.0 0.0580 0.9 0.8 0.77 0.9 / 0.00 0.05 0.099 0.59 0.868 / 0.00 0.078 0.00 0.96 0.688 0.9 / 0.0069 0.05 0.7 0.9 0.766 0.95 / 0.000 0.006 0.097 0.0879 0.586 0.58 0.809 0.960 0.65 0.005 0.050 0.5 0.576 0.880 0.65 0.008 0.0 0.7 0.59 0.6809 0.96 0.65 0.0006 0.0090 0.0556 0.998 0.677 0.766 0.950 0.65 0.000 0.006 0.05 0.06 0.96 0.57 0.809 0.968 0.6 0.00 0.0870 0.7 0.660 0.9 0.6 0.00 0.00 0.79 0.557 0.7667 0.95 0.6 0.006 0.088 0.096 0.898 0.580 0.8 0.970 0.6 0.0007 0.0085 0.098 0.77 0.059 0.686 0.896 0.98 0.55 0.085 0. 0.069 0.78 0.997 0.55 0.008 0.069 0.55 0.5585 0.86 0.97 0.55 0.007 0.057 0.59 0.97 0.686 0.8976 0.988 0.55 0.007 0.08 0.0885 0.60 0.50 0.7799 0.968 0.996 0.5 0.0 0.875 0.5000 0.85 0.9688 0.5 0.056 0.09 0.8 0.656 0.8906 0.98 0.5 0.0078 0.065 0.66 0.5000 0.77 0.975 0.99 0.5 0.009 0.05 0.5 0.6 0.667 0.8555 0.968 0.996 0.5 0.050 0.56 0.59 0.8688 0.985 0.5 0.077 0.66 0.5 0.77 0.908 0.997 0.5 0.05 0.0 0.6 0.608 0.87 0.96 0.996 0.5 0.008 0.06 0.0 0.770 0.796 0.95 0.989 0.998 0. 0.0778 0.70 0.686 0.90 0.9898 0. 0.067 0. 0.5 0.808 0.9590 0.9959 0. 0.080 0.586 0.99 0.70 0.907 0.98 0.998 0. 0.068 0.06 0.5 0.59 0.86 0.950 0.995 0.999 0.5 0.60 0.8 0.768 0.960 0.997 0.5 0.075 0.9 0.67 0.886 0.9777 0.998 0.5 0.090 0.8 0.5 0.800 0.9 0.990 0.999 0.5 0.09 0.69 0.78 0.706 0.899 0.977 0.996 / 0.7 0.609 0.790 0.957 0.9959 / 0.0878 0.5 0.680 0.8999 0.98 0.9986 / 0.0585 0.6 0.5706 0.867 0.957 0.99 / 0.090 0.95 0.68 0.7 0.9 0.980 0.997 0. 0.68 0.58 0.869 0.969 0.9976 0. 0.76 0.0 0.7 0.995 0.989 0.999 0. 0.08 0.9 0.67 0.870 0.97 0.996 0. 0.0576 0.55 0.558 0.8059 0.90 0.9887 0.9987 0.5 0.7 0.68 0.8965 0.98 0.9990 0.5 0.780 0.59 0.806 0.96 0.995 0.5 0.5 0.9 0.756 0.99 0.987 0.9987 0.5 0.00 0.67 0.6785 0.886 0.977 0.9958 0. 0.77 0.77 0.9 0.99 0. 0.6 0.655 0.90 0.980 0.998 0. 0.097 0.5767 0.850 0.9667 0.995 0. 0.678 0.50 0.7969 0.97 0.9896 0.9988 /6 0.09 0.808 0.965 0.9967 /6 0.9 0.768 0.977 0.99 0.999 /6 0.79 0.6698 0.90 0.98 0.9980 /6 0.6 0.607 0.865 0.969 0.995 0.5 0.7 0.85 0.97 0.9978 0.5 0.77 0.7765 0.957 0.99 0.5 0.06 0.766 0.96 0.9879 0.9988 0.5 0.75 0.657 0.898 0.9786 0.997 0. 0.5905 0.985 0.99 0. 0.5 0.8857 0.98 0.9987 0. 0.78 0.850 0.97 0.997 0. 0.05 0.8 0.969 0.9950 0.05 0.778 0.977 0.9988 0.05 0.75 0.967 0.9978 0.05 0.698 0.9556 0.996 0.05 0.66 0.98 0.99 CUMULATIVE BINOMIAL PROBABILITIES = 5 = 0 5 = 6 = 0 5 6 = 7 = 0 5 6 7 = 8 = 0 5 6 7 8

0 Aedi B: Mathematical Formulae ad Statistical Tables OCR 00 GCE Mathematics Oford, Cambridge ad RSA Eamiatios 0.95 0.0006 0.008 0.07 0.698 0.95 0.000 0.05 0.086 0.0 0.95 0.000 0.00 0.096 0.8 0.596 0.9 0.0009 0.008 0.050 0.5 0.66 0.9 0.006 0.08 0.070 0.69 0.65 0.9 0.00 0.056 0.09 0.0 0.776 0.85 0.0006 0.0056 0.09 0.09 0.005 0.768 0.85 0.00 0.0099 0.0500 0.798 0.557 0.80 0.85 0.0007 0.006 0.09 0.09 0.6 0.5565 0.8578 5/6 0.00 0.0090 0.080 0.78 0.57 0.806 5/6 0.00 0.055 0.0697 0.8 0.555 0.885 5/6 0.000 0.00 0.0079 0.06 0.5 0.6 0.687 0.8878 0.8 0.00 0.096 0.0856 0.68 0.568 0.8658 0.8 0.0009 0.006 0.08 0.09 0. 0.6 0.896 0.8 0.0006 0.009 0.09 0.076 0.05 0.7 0.75 0.9 0.75 0.00 0.000 0.089 0.657 0.99 0.6997 0.99 0.75 0.005 0.097 0.078 0. 0.7 0.7560 0.97 0.75 0.008 0.0 0.05 0.576 0.5 0.609 0.86 0.968 0.7 0.00 0.05 0.0988 0.70 0.57 0.800 0.9596 0.7 0.006 0.006 0.07 0.50 0.50 0.67 0.8507 0.978 0.7 0.000 0.007 0.0095 0.086 0.78 0.76 0.5075 0.77 0.950 0.986 / 0.000 0.008 0.0 0.8 0.97 0.68 0.8569 0.970 / 0.00 0.097 0.0766 0. 0.07 0.7009 0.8960 0.987 / 0.009 0.088 0.066 0.777 0.685 0.6069 0.889 0.960 0.99 0.65 0.00 0.0 0.056 0.77 0.9 0.667 0.8789 0.979 0.65 0.008 0.060 0.099 0.85 0.86 0.78 0.90 0.9865 0.65 0.0008 0.0056 0.055 0.086 0.7 0.67 0.65 0.887 0.9576 0.99 0.6 0.008 0.050 0.099 0.666 0.57 0.768 0.995 0.9899 0.6 0.007 0.0 0.058 0.66 0.669 0.677 0.87 0.956 0.990 0.6 0.008 0.05 0.057 0.58 0.8 0.568 0.777 0.966 0.980 0.9978 0.55 0.0008 0.009 0.098 0.658 0.786 0.686 0.8505 0.965 0.995 0.55 0.005 0.07 0.00 0.66 0.956 0.70 0.900 0.9767 0.9975 0.55 0.00 0.0079 0.056 0.7 0.607 0.7 0.6956 0.8655 0.9579 0.997 0.999 0.5 0.000 0.095 0.0898 0.59 0.5000 0.76 0.90 0.9805 0.9980 0.5 0.000 0.007 0.057 0.79 0.770 0.60 0.88 0.95 0.989 0.9990 0.5 0.000 0.00 0.09 0.070 0.98 0.87 0.68 0.806 0.970 0.9807 0.9968 0.5 0.006 0.085 0.95 0.6 0.6 0.8 0.950 0.9909 0.999 0.5 0.005 0.0 0.0996 0.660 0.50 0.78 0.8980 0.976 0.9955 0.5 0.0008 0.008 0.0 0.5 0.0 0.569 0.79 0.888 0.96 0.99 0.9989 0. 0.00 0.0705 0.8 0.86 0.7 0.9006 0.9750 0.996 0. 0.0060 0.06 0.67 0.8 0.6 0.88 0.95 0.9877 0.998 0. 0.00 0.096 0.08 0.5 0.8 0.665 0.88 0.97 0.987 0.997 0.5 0.007 0. 0.7 0.6089 0.88 0.96 0.9888 0.9986 0.5 0.05 0.0860 0.66 0.58 0.755 0.905 0.970 0.995 0.5 0.0057 0.0 0.5 0.67 0.58 0.787 0.95 0.975 0.99 0.999 / 0.060 0. 0.77 0.650 0.855 0.9576 0.997 0.9990 / 0.07 0.00 0.99 0.559 0.7869 0.9 0.980 0.9966 / 0.0077 0.050 0.8 0.9 0.65 0.8 0.96 0.98 0.996 0. 0.00 0.960 0.68 0.797 0.90 0.977 0.9957 0. 0.08 0.9 0.88 0.696 0.897 0.957 0.989 0.998 0. 0.08 0.0850 0.58 0.95 0.77 0.88 0.96 0.9905 0.998 0.5 0.075 0.00 0.6007 0.8 0.95 0.9900 0.9987 0.5 0.056 0.0 0.556 0.7759 0.99 0.980 0.9965 0.5 0.07 0.58 0.907 0.688 0.8 0.956 0.9857 0.997 0. 0. 0.6 0.78 0.9 0.980 0.9969 0. 0.07 0.758 0.6778 0.879 0.967 0.996 0.999 0. 0.0687 0.79 0.558 0.796 0.97 0.9806 0.996 0.999 /6 0.98 0.57 0.87 0.950 0.990 0.9989 /6 0.65 0.85 0.775 0.90 0.985 0.9976 /6 0. 0.8 0.677 0.878 0.966 0.99 0.9987 0.5 0.6 0.5995 0.859 0.966 0.99 0.999 0.5 0.969 0.5 0.80 0.9500 0.990 0.9986 0.5 0. 0.5 0.758 0.9078 0.976 0.995 0.999 0. 0.87 0.778 0.970 0.997 0.999 0. 0.87 0.76 0.998 0.987 0.998 0. 0.8 0.6590 0.889 0.97 0.9957 0.05 0.60 0.988 0.996 0.999 0.05 0.5987 0.99 0.9885 0.9990 0.05 0.50 0.886 0.980 0.9978 CUMULATIVE BINOMIAL PROBABILITIES = 9 = 0 5 6 7 8 9 = 0 = 0 5 6 7 8 9 0 = = 0 5 6 7 8 9 0

OCR00 Aedi B: Mathematical Formulae ad Statistical Tables Oford, Cambridge ad RSA Eamiatios GCE Mathematics 0.95 0.00 0.00 0.50 0.5 0.95 0.0009 0.0070 0.09 0.89 0.5599 0.9 0.000 0.005 0.009 0.0 0.58 0.5 0.77 0.9 0.00 0.070 0.068 0.08 0.85 0.87 0.85 0.00 0.05 0.067 0.65 0.5 0.6 0.897 0.85 0.000 0.00 0.0056 0.05 0.079 0.0 0.86 0.76 0.957 5/6 0.0007 0.00 0.09 0.0690 0.97 0.05 0.700 0.9 5/6 0.00 0.00 0.078 0. 0.709 0.5 0.778 0.959 0.8 0.00 0.06 0.09 0.98 0.08 0.559 0.80 0.9560 0.8 0.000 0.005 0.0070 0.067 0.087 0.08 0.09 0.68 0.859 0.979 0.75 0.00 0.00 0.08 0.7 0.585 0.787 0.789 0.8990 0.98 0.75 0.006 0.0075 0.07 0.0796 0.897 0.698 0.5950 0.809 0.965 0.9900 0.7 0.000 0.007 0.008 0.05 0.09 0.95 0.58 0.68 0.89 0.955 0.99 0.7 0.006 0.007 0.057 0.07 0.75 0.0 0.550 0.75 0.9006 0.979 0.9967 / 0.0007 0.000 0.07 0.0576 0.95 0.0 0.55 0.788 0.897 0.976 0.9966 / 0.0008 0.000 0.059 0.0500 0.65 0.66 0.5 0.6609 0.8 0.906 0.986 0.9985 0.65 0.00 0.0060 0.0 0.075 0.86 0.595 0.577 0.7795 0.96 0.9795 0.9976 0.65 0.000 0.00 0.006 0.09 0.067 0.59 0.9 0.500 0.708 0.866 0.959 0.990 0.9990 0.6 0.0006 0.009 0.075 0.058 0.50 0.075 0.5 0.707 0.8757 0.960 0.999 0.999 0.6 0.0009 0.009 0.09 0.058 0. 0.89 0.78 0.67 0.8 0.99 0.987 0.9967 0.55 0.00 0.0 0.06 0.89 0.586 0.59 0.667 0.88 0.968 0.980 0.997 0.55 0.0006 0.005 0.09 0.086 0. 0.559 0.7 0.60 0.80 0.97 0.979 0.99 0.9990 0.5 0.0009 0.0065 0.087 0.0898 0.0 0.95 0.607 0.7880 0.90 0.97 0.995 0.999 0.5 0.00 0.006 0.08 0.05 0.7 0.08 0.598 0.778 0.899 0.966 0.989 0.9979 0.5 0.000 0.009 0.070 0.06 0.67 0.7 0.56 0.7 0.88 0.957 0.9886 0.9978 0.5 0.000 0.0066 0.08 0.085 0.976 0.660 0.569 0.7 0.8759 0.95 0.985 0.9965 0.999 0. 0.0008 0.008 0.098 0. 0.79 0.859 0.695 0.899 0.97 0.985 0.996 0.999 0. 0.00 0.08 0.065 0.666 0.88 0.57 0.76 0.8577 0.97 0.9809 0.995 0.999 0.5 0.00 0.005 0.089 0.05 0.7 0.605 0.86 0.97 0.9757 0.990 0.9989 0.5 0.000 0.0098 0.05 0.9 0.89 0.900 0.688 0.806 0.99 0.977 0.998 0.9987 / 0.00 0.07 0.05 0.6 0.755 0.6898 0.8505 0.9 0.986 0.9960 0.999 / 0.005 0.07 0.059 0.659 0.9 0.569 0.77 0.875 0.9500 0.98 0.9960 0.999 0. 0.0068 0.075 0.608 0.55 0.58 0.7805 0.9067 0.9685 0.997 0.998 0. 0.00 0.06 0.099 0.59 0.99 0.6598 0.87 0.956 0.97 0.999 0.998 0.5 0.078 0.00 0.8 0.5 0.75 0.888 0.967 0.9897 0.9978 0.5 0.000 0.065 0.97 0.050 0.60 0.80 0.90 0.979 0.995 0.998 0. 0.00 0.979 0.8 0.698 0.870 0.956 0.988 0.9976 0. 0.08 0.07 0.58 0.598 0.798 0.98 0.97 0.990 0.9985 /6 0.0779 0.960 0.5795 0.806 0.90 0.9809 0.9959 0.999 /6 0.05 0.7 0.868 0.79 0.8866 0.96 0.9899 0.9979 0.5 0.08 0.567 0.679 0.855 0.95 0.9885 0.9978 0.5 0.07 0.89 0.56 0.7899 0.909 0.9765 0.99 0.9989 0. 0.88 0.586 0.86 0.9559 0.9908 0.9985 0. 0.85 0.57 0.789 0.96 0.980 0.9967 0.05 0.877 0.870 0.9699 0.9958 0.05 0.0 0.808 0.957 0.990 0.999 CUMULATIVE BINOMIAL PROBABILITIES = = 0 5 6 7 8 9 0 = 6 = 0 5 6 7 8 9 0 5 6

Aedi B: Mathematical Formulae ad Statistical Tables OCR 00 GCE Mathematics Oford, Cambridge ad RSA Eamiatios 0.95 0.000 0.005 0.009 0.058 0.65 0.608 0.95 0.006 0.059 0.0755 0.6 0.65 0.9 0.000 0.00 0.006 0.08 0.098 0.66 0.597 0.899 0.9 0.00 0.0 0.0 0.0 0. 0.608 0.878 0.85 0.007 0.08 0.09 0.06 0.798 0.50 0.7759 0.96 0.85 0.000 0.00 0.0059 0.09 0.067 0.70 0.5 0.595 0.8 0.96 5/6 0.000 0.00 0.005 0.006 0.065 0.68 0.5 0.597 0.87 0.96 5/6 0.0006 0.008 0.0 0.07 0.08 0. 0.5 0.67 0.8696 0.979 0.8 0.000 0.0009 0.00 0.06 0.05 0.9 0.86 0.990 0.787 0.9009 0.980 0.8 0.0006 0.006 0.000 0.0 0.0867 0.958 0.70 0.5886 0.799 0.908 0.9885 0.75 0.000 0.00 0.005 0.09 0.0569 0.90 0.85 0.8 0.69 0.867 0.9605 0.99 0.75 0.000 0.0009 0.009 0.09 0.009 0.08 0. 0.88 0.585 0.778 0.9087 0.9757 0.9968 0.7 0.00 0.006 0.00 0.0596 0.07 0.78 0.656 0.667 0.85 0.900 0.9858 0.998 0.7 0.00 0.005 0.07 0.080 0. 0.77 0.90 0.586 0.765 0.899 0.965 0.99 0.999 / 0.0009 0.009 0.0 0.0 0.076 0. 0.95 0.5878 0.7689 0.898 0.967 0.99 0.999 / 0.000 0.0009 0.007 0.00 0.076 0.099 0.905 0.85 0.507 0.708 0.885 0.996 0.98 0.9967 0.65 0.00 0.006 0.0 0.0597 0.9 0.77 0.509 0.650 0.8 0.97 0.976 0.995 0.65 0.005 0.0060 0.096 0.05 0.8 0.76 0.990 0.58 0.756 0.888 0.9556 0.9879 0.9979 0.6 0.000 0.00 0.0058 0.00 0.0576 0.7 0.6 0.66 0.657 0.79 0.9058 0.967 0.998 0.9987 0.6 0.006 0.0065 0.00 0.0565 0.75 0.7 0.0 0.58 0.7500 0.87 0.990 0.980 0.996 0.55 0.000 0.009 0.08 0.057 0.80 0.57 0. 0.6085 0.77 0.89 0.9589 0.9880 0.9975 0.55 0.005 0.006 0.0 0.0580 0.08 0.9 0.086 0.5857 0.780 0.870 0.97 0.98 0.995 0.999 0.5 0.0007 0.008 0.05 0.08 0.89 0.0 0.07 0.597 0.7597 0.88 0.959 0.986 0.996 0.999 0.5 0.000 0.00 0.0059 0.007 0.0577 0.6 0.57 0.9 0.588 0.78 0.868 0.9 0.979 0.99 0.9987 0.5 0.005 0.00 0.0 0.077 0.58 0.95 0.5778 0.77 0.870 0.96 0.987 0.995 0.9990 0.5 0.0009 0.009 0.089 0.055 0.99 0.50 0. 0.59 0.7507 0.869 0.90 0.9786 0.996 0.9985 0. 0.00 0.008 0.08 0.09 0.088 0.7 0.56 0.768 0.865 0.9 0.9797 0.99 0.9987 0. 0.006 0.060 0.050 0.56 0.500 0.59 0.5956 0.755 0.875 0.95 0.9790 0.995 0.998 0.5 0.006 0.06 0.078 0.886 0.550 0.59 0.78 0.8609 0.90 0.9788 0.998 0.9986 0.5 0.000 0.00 0.0 0.0 0.8 0.5 0.66 0.600 0.76 0.878 0.968 0.980 0.990 0.9985 / 0.0007 0.0068 0.06 0.07 0. 0. 0.6085 0.7767 0.89 0.9567 0.9856 0.996 0.999 / 0.00 0.076 0.060 0.55 0.97 0.79 0.665 0.8095 0.908 0.96 0.9870 0.996 0.999 0. 0.006 0.0 0.0600 0.66 0.7 0.5 0.77 0.859 0.90 0.9790 0.999 0.9986 0. 0.0008 0.0076 0.055 0.07 0.75 0.6 0.6080 0.77 0.8867 0.950 0.989 0.999 0.9987 0.5 0.0056 0.095 0.5 0.057 0.587 0.775 0.860 0.9 0.9807 0.996 0.9988 0.5 0.00 0.0 0.09 0.5 0.8 0.67 0.7858 0.898 0.959 0.986 0.996 0.999 0. 0.080 0.099 0.7 0.500 0.76 0.867 0.987 0.987 0.9957 0.999 0. 0.05 0.069 0.06 0. 0.696 0.80 0.9 0.9679 0.9900 0.997 0.999 /6 0.076 0.78 0.07 0.679 0.88 0.97 0.979 0.997 0.9989 /6 0.06 0.0 0.87 0.5665 0.7687 0.898 0.969 0.9887 0.997 0.999 0.5 0.056 0. 0.797 0.70 0.879 0.958 0.988 0.997 0.5 0.088 0.756 0.09 0.677 0.898 0.97 0.978 0.99 0.9987 0. 0.50 0.50 0.78 0.908 0.978 0.996 0.9988 0. 0.6 0.97 0.6769 0.8670 0.9568 0.9887 0.9976 0.05 0.97 0.775 0.99 0.989 0.9985 0.05 0.585 0.758 0.95 0.98 0.997 CUMULATIVE BINOMIAL PROBABILITIES = 8 = 0 5 6 7 8 9 0 5 6 7 8 = 0 = 0 5 6 7 8 9 0 5 6 7 8 9 0

OCR00 Aedi B: Mathematical Formulae ad Statistical Tables Oford, Cambridge ad RSA Eamiatios GCE Mathematics 0.95 0.000 0.00 0.007 0.0 0.7 0.576 0.76 0.9 0.00 0.0095 0.0 0.0980 0.6 0.69 0.788 0.98 0.85 0.00 0.0080 0.055 0.0695 0.65 0.79 0.589 0.76 0.9069 0.988 5/6 0.00 0.007 0.057 0.07 0.09 0.80 0.06 0.68 0.8 0.97 0.9895 0.8 0.005 0.0056 0.07 0.068 0.09 0.00 0.8 0.579 0.7660 0.908 0.976 0.996 0.75 0.000 0.0009 0.00 0.007 0.097 0.07 0.9 0.75 0.89 0.67 0.786 0.908 0.9679 0.990 0.999 0.7 0.008 0.0060 0.075 0.0 0.0978 0.89 0. 0.88 0.659 0.8065 0.9095 0.9668 0.990 0.998 / 0.006 0.0056 0.06 0.05 0.098 0.780 0.0 0.6 0.697 0.7785 0.8880 0.958 0.985 0.9965 0.65 0.000 0.0008 0.009 0.009 0.055 0.060 0.5 0.88 0.697 0.5 0.699 0.866 0.97 0.9680 0.990 0.9979 0.6 0.00 0.00 0.0 0.0 0.0778 0.58 0.677 0. 0.575 0.765 0.86 0.96 0.9706 0.9905 0.9976 0.55 0.006 0.0058 0.07 0.00 0.0960 0.87 0.06 0.57 0.657 0.7576 0.8660 0.96 0.97 0.99 0.9977 0.5 0.000 0.007 0.06 0.059 0.8 0. 0.50 0.5000 0.6550 0.7878 0.885 0.96 0.978 0.997 0.9980 0.5 0.00 0.0086 0.058 0.069 0.0 0. 0.8 0.56 0.697 0.87 0.900 0.9560 0.986 0.99 0.998 0. 0.00 0.0095 0.09 0.076 0.56 0.75 0.6 0.5858 0.7 0.86 0.9 0.9656 0.9868 0.9957 0.9988 0.5 0.00 0.0097 0.00 0.086 0.7 0.06 0.668 0.60 0.77 0.876 0.996 0.975 0.9907 0.997 0.999 / 0.005 0.09 0.06 0.0 0.5 0.70 0.576 0.6956 0.80 0.908 0.9585 0.986 0.99 0.998 0. 0.006 0.0090 0.0 0.0905 0.95 0.07 0.58 0.6769 0.806 0.90 0.9558 0.985 0.990 0.998 0.5 0.0008 0.0070 0.0 0.096 0.7 0.78 0.56 0.765 0.8506 0.987 0.970 0.989 0.9966 0.999 0. 0.008 0.07 0.098 0.0 0.07 0.667 0.7800 0.8909 0.95 0.987 0.99 0.9985 /6 0.005 0.069 0.887 0.86 0.597 0.770 0.8908 0.955 0.98 0.995 0.9988 0.5 0.07 0.09 0.57 0.7 0.68 0.885 0.905 0.975 0.990 0.9979 0. 0.078 0.7 0.57 0.766 0.900 0.9666 0.9905 0.9977 0.05 0.77 0.6 0.879 0.9659 0.998 0.9988 CUMULATIVE BINOMIAL PROBABILITIES = 5 = 0 5 6 7 8 9 0 5 6 7 8 9 0 5

Aedi B: Mathematical Formulae ad Statistical Tables OCR 00 GCE Mathematics Oford, Cambridge ad RSA Eamiatios 0.95 0.0006 0.00 0.056 0.0608 0.878 0.65 0.785 0.9 0.000 0.0078 0.058 0.07 0.755 0.56 0.5886 0.86 0.9576 0.85 0.000 0.0008 0.009 0.0097 0.078 0.0698 0.56 0.89 0.755 0.678 0.886 0.950 0.99 5/6 0.000 0.0067 0.097 0.0506 0.7 0.5 0.86 0.5757 0.760 0.897 0.9705 0.9958 0.8 0.000 0.0009 0.00 0.0095 0.056 0.06 0.87 0.9 0.90 0.575 0.78 0.877 0.9558 0.9895 0.9988 0.75 0.000 0.0008 0.007 0.008 0.06 0.0507 0.057 0.966 0.6 0.857 0.659 0.797 0.90 0.966 0.989 0.9980 0.7 0.000 0.0006 0.00 0.006 0.069 0.00 0.085 0.59 0.696 0. 0.5685 0.786 0.805 0.9 0.9698 0.9907 0.9979 / 0.000 0.0007 0.005 0.007 0.088 0.05 0.0898 0.660 0.76 0.5 0.568 0.70 0.8 0.96 0.965 0.9878 0.9967 0.999 0.65 0.00 0.005 0.0 0.00 0.065 0.6 0.98 0.5 0.9 0.65 0.775 0.876 0.9 0.9767 0.995 0.998 0.6 0.000 0.0009 0.009 0.008 0.0 0.08 0.097 0.75 0.855 0.5 0.5689 0.7085 0.87 0.9060 0.9565 0.988 0.99 0.9985 0.55 0.006 0.0050 0.08 0.0 0.07 0.56 0.09 0.55 0.975 0.608 0.767 0.8650 0.906 0.9688 0.9879 0.9960 0.9989 0.5 0.000 0.0007 0.006 0.008 0.0 0.09 0.00 0.808 0.9 0.78 0.57 0.7077 0.89 0.8998 0.9506 0.9786 0.999 0.997 0.999 0.5 0.000 0.00 0.000 0.0 0.0 0.069 0.50 0.7 0.59 0.505 0.68 0.769 0.86 0.986 0.9666 0.986 0.9950 0.998 0. 0.005 0.0057 0.07 0.05 0.090 0.76 0.95 0. 0.5785 0.75 0.86 0.909 0.959 0.9788 0.997 0.997 0.999 0.5 0.009 0.0075 0.0 0.0586 0.8 0.7 0.575 0.5078 0.658 0.780 0.877 0.98 0.9699 0.9876 0.9955 0.9986 / 0.0007 0.00 0.0 0.055 0.088 0.668 0.860 0.7 0.588 0.79 0.80 0.90 0.9565 0.98 0.998 0.9975 0.999 0. 0.00 0.009 0.00 0.0766 0.595 0.8 0.5 0.5888 0.70 0.807 0.955 0.9599 0.98 0.996 0.9979 0.999 0.5 0.000 0.000 0.006 0.07 0.0979 0.06 0.8 0.5 0.676 0.80 0.89 0.99 0.978 0.998 0.997 0.999 0. 0.00 0.005 0.0 0.7 0.55 0.75 0.6070 0.7608 0.87 0.989 0.97 0.9905 0.9969 0.999 /6 0.00 0.095 0.08 0.96 0. 0.66 0.7765 0.886 0.99 0.980 0.99 0.9980 0.5 0.0076 0.080 0.5 0.7 0.55 0.706 0.87 0.90 0.97 0.990 0.997 0.999 0. 0.0 0.87 0. 0.67 0.85 0.968 0.97 0.99 0.9980 0.05 0.6 0.555 0.8 0.99 0.98 0.9967 0.999 CUMULATIVE BINOMIAL PROBABILITIES = 0 = 0 5 6 7 8 9 0 5 6 7 8 9 0 5 6 7 8 9 0

CUMULATIVE POISSON PROBABILITIES λ 0.0 0.0 0.0 0.0 0.05 0.06 0.07 0.08 0.09 = 0 0.9900 0.980 0.970 0.9608 0.95 0.98 0.9 0.9 0.99 0.999 0.9988 0.998 0.9977 0.9970 0.996 λ 0.0 0.0 0.0 0.0 0.50 0.60 0.70 0.80 0.90 = 0 0.908 0.887 0.708 0.670 0.6065 0.588 0.966 0.9 0.066 0.995 0.985 0.96 0.98 0.9098 0.878 0.8 0.8088 0.775 0.9989 0.996 0.99 0.9856 0.9769 0.9659 0.956 0.97 0.999 0.998 0.9966 0.99 0.9909 0.9865 0.999 0.9986 0.9977 5 6 λ.00.0.0.0.0.50.60.70.80.90 = 0 0.679 0.9 0.0 0.75 0.66 0. 0.09 0.87 0.65 0.96 0.758 0.6990 0.666 0.668 0.598 0.5578 0.59 0.9 0.68 0.7 0.997 0.900 0.8795 0.857 0.85 0.8088 0.78 0.757 0.706 0.707 0.980 0.97 0.966 0.9569 0.96 0.9 0.9 0.9068 0.89 0.877 0.996 0.996 0.99 0.989 0.9857 0.98 0.976 0.970 0.966 0.9559 5 0.999 0.9990 0.9985 0.9978 0.9968 0.9955 0.990 0.990 0.9896 0.9868 6 0.999 0.999 0.9987 0.998 0.997 0.9966 7 0.999 0.999 8 9 λ.00.0.0.0.0.50.60.70.80.90 = 0 0.5 0.5 0.08 0.00 0.0907 0.08 0.07 0.067 0.0608 0.0550 0.060 0.796 0.56 0.09 0.08 0.87 0.67 0.87 0. 0.6 0.6767 0.696 0.67 0.5960 0.5697 0.58 0.58 0.96 0.695 0.60 0.857 0.886 0.89 0.799 0.7787 0.7576 0.760 0.7 0.699 0.6696 0.97 0.979 0.975 0.96 0.90 0.89 0.877 0.869 0.877 0.88 5 0.98 0.9796 0.975 0.9700 0.96 0.9580 0.950 0.9 0.99 0.958 6 0.9955 0.99 0.995 0.9906 0.988 0.9858 0.988 0.979 0.9756 0.97 7 0.9989 0.9985 0.9980 0.997 0.9967 0.9958 0.997 0.99 0.999 0.990 8 0.999 0.999 0.9989 0.9985 0.998 0.9976 0.9969 9 0.999 0.999 0 OCR00 Aedi B: Mathematical Formulae ad Statistical Tables 5 Oford, Cambridge ad RSA Eamiatios GCE Mathematics

CUMULATIVE POISSON PROBABILITIES λ.00.0.0.0.0.50.60.70.80.90 = 0 0.098 0.050 0.008 0.069 0.0 0.00 0.07 0.07 0.0 0.00 0.99 0.87 0.7 0.586 0.68 0.59 0.57 0.6 0.07 0.099 0. 0.0 0.799 0.59 0.97 0.08 0.07 0.85 0.689 0.5 0.67 0.68 0.605 0.580 0.558 0.566 0.55 0.9 0.75 0.5 0.85 0.798 0.7806 0.766 0.7 0.75 0.706 0.687 0.6678 0.68 5 0.96 0.9057 0.896 0.889 0.8705 0.8576 0.8 0.80 0.856 0.8006 6 0.9665 0.96 0.955 0.990 0.9 0.97 0.967 0.98 0.909 0.8995 7 0.988 0.9858 0.98 0.980 0.9769 0.97 0.969 0.968 0.9599 0.956 8 0.996 0.995 0.99 0.99 0.997 0.990 0.988 0.986 0.980 0.985 9 0.9989 0.9986 0.998 0.9978 0.997 0.9967 0.9960 0.995 0.99 0.99 0 0.999 0.999 0.9990 0.9987 0.998 0.998 0.9977 0.999 0.999 λ.00.0.0.0.0.50.60.70.80.90 = 0 0.08 0.066 0.050 0.06 0.0 0.0 0.00 0.009 0.008 0.007 0.096 0.085 0.0780 0.079 0.066 0.06 0.056 0.058 0.077 0.09 0.8 0.8 0.0 0.97 0.85 0.76 0.66 0.5 0.5 0. 0.5 0. 0.95 0.77 0.59 0. 0.57 0.097 0.9 0.79 0.688 0.609 0.5898 0.570 0.55 0.5 0.5 0.96 0.76 0.58 5 0.785 0.769 0.75 0.767 0.799 0.709 0.6858 0.668 0.650 0.65 6 0.889 0.8786 0.8675 0.8558 0.86 0.8 0.880 0.806 0.7908 0.7767 7 0.989 0.97 0.96 0.990 0.9 0.9 0.909 0.8960 0.8867 0.8769 8 0.9786 0.9755 0.97 0.968 0.96 0.9597 0.959 0.997 0.9 0.98 9 0.999 0.9905 0.9889 0.987 0.985 0.989 0.9805 0.9778 0.979 0.977 0 0.997 0.9966 0.9959 0.995 0.99 0.99 0.99 0.990 0.9896 0.9880 0.999 0.9989 0.9986 0.998 0.9980 0.9976 0.997 0.9966 0.9960 0.995 0.999 0.999 0.9990 0.9988 0.9986 0.998 0.999 5 6 6 Aedi B: Mathematical Formulae ad Statistical Tables OCR 00 GCE Mathematics Oford, Cambridge ad RSA Eamiatios

CUMULATIVE POISSON PROBABILITIES λ 5.00 5.50 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 = 0 0.0067 0.00 0.005 0.005 0.0009 0.0006 0.000 0.00 0.066 0.07 0.0 0.007 0.007 0.000 0.009 0.00 0.0008 0.7 0.088 0.060 0.00 0.096 0.00 0.08 0.009 0.006 0.00 0.650 0.07 0.5 0.8 0.088 0.059 0.0 0.00 0.0 0.09 0.05 0.575 0.85 0.7 0.70 0. 0.0996 0.07 0.0550 0.00 5 0.660 0.589 0.57 0.690 0.007 0. 0.9 0.96 0.57 0.0885 6 0.76 0.6860 0.606 0.565 0.97 0.78 0. 0.56 0.068 0.69 7 0.8666 0.8095 0.70 0.678 0.5987 0.56 0.50 0.856 0.9 0.687 8 0.99 0.89 0.87 0.796 0.79 0.660 0.595 0.5 0.557 0.98 9 0.968 0.96 0.96 0.877 0.805 0.776 0.766 0.650 0.587 0.58 0 0.986 0.977 0.957 0.9 0.905 0.86 0.859 0.76 0.7060 0.65 0.995 0.9890 0.9799 0.966 0.967 0.908 0.888 0.887 0.800 0.750 0.9980 0.9955 0.99 0.980 0.970 0.957 0.96 0.909 0.8758 0.86 0.999 0.998 0.996 0.999 0.987 0.978 0.9658 0.986 0.96 0.898 0.999 0.9986 0.9970 0.99 0.9897 0.987 0.976 0.9585 0.900 5 0.9988 0.9976 0.995 0.998 0.986 0.9780 0.9665 6 0.9990 0.9980 0.996 0.99 0.9889 0.98 7 0.999 0.998 0.9970 0.997 0.99 8 0.999 0.9987 0.9976 0.9957 9 0.9989 0.9980 0 0.999 OCR00 Aedi B: Mathematical Formulae ad Statistical Tables 7 Oford, Cambridge ad RSA Eamiatios GCE Mathematics

CUMULATIVE POISSON PROBABILITIES λ 0.00.00.00.00.00 5.00 6.00 7.00 8.00 9.00 = 0 0.000 0.008 0.00 0.000 0.00 0.009 0.00 0.00 0.000 0.09 0.05 0.0076 0.007 0.008 0.0009 0.000 5 0.067 0.075 0.00 0.007 0.0055 0.008 0.00 0.0007 0.000 6 0.0 0.0786 0.058 0.059 0.0 0.0076 0.000 0.00 0.000 7 0.0 0. 0.0895 0.050 0.06 0.080 0.000 0.005 0.009 0.005 8 0.8 0.0 0.550 0.0998 0.06 0.07 0.00 0.06 0.007 0.009 9 0.579 0.05 0. 0.658 0.09 0.0699 0.0 0.06 0.05 0.0089 0 0.580 0.599 0.7 0.57 0.757 0.85 0.077 0.09 0.00 0.08 0.6968 0.579 0.66 0.5 0.600 0.88 0.70 0.087 0.059 0.07 0.796 0.6887 0.5760 0.6 0.585 0.676 0.9 0.50 0.097 0.0606 0.865 0.78 0.685 0.570 0.6 0.6 0.75 0.009 0.6 0.098 0.965 0.850 0.770 0.675 0.570 0.657 0.675 0.808 0.08 0.97 5 0.95 0.907 0.8 0.766 0.669 0.568 0.667 0.75 0.867 0.8 6 0.970 0.9 0.8987 0.855 0.7559 0.66 0.5660 0.677 0.75 0.90 7 0.9857 0.9678 0.970 0.8905 0.87 0.789 0.659 0.560 0.686 0.78 8 0.998 0.98 0.966 0.90 0.886 0.895 0.7 0.6550 0.56 0.695 9 0.9965 0.9907 0.9787 0.957 0.95 0.875 0.8 0.76 0.6509 0.5606 0 0.998 0.995 0.988 0.9750 0.95 0.970 0.868 0.8055 0.707 0.67 0.999 0.9977 0.999 0.9859 0.97 0.969 0.908 0.865 0.799 0.755 0.9990 0.9970 0.99 0.98 0.967 0.98 0.907 0.855 0.79 0.9985 0.9960 0.9907 0.9805 0.96 0.967 0.8989 0.890 0.999 0.9980 0.9950 0.9888 0.9777 0.959 0.97 0.89 5 0.9990 0.997 0.998 0.9869 0.978 0.955 0.969 6 0.9987 0.9967 0.995 0.988 0.978 0.95 7 0.999 0.998 0.9959 0.99 0.987 0.9687 8 0.999 0.9978 0.9950 0.9897 0.9805 9 0.9989 0.997 0.99 0.988 0 0.999 0.9986 0.9967 0.990 0.999 0.998 0.9960 0.9990 0.9978 0.9988 0.999 5 6 7 8 8 Aedi B: Mathematical Formulae ad Statistical Tables OCR 00 GCE Mathematics Oford, Cambridge ad RSA Eamiatios

THE NORMAL DISTRIBUTION FUNCTION If Z has a ormal distributio with mea 0 ad variace the, for each value of z, the table gives the value of Φ ( z), where: Φ ( z) = P( Z z) For egative values of z use Φ ( z) = Φ ( z). z 0 5 6 7 8 9 5 6 7 8 9 ADD 0.0 0.5000 0.500 0.5080 0.50 0.560 0.599 0.59 0.579 0.59 0.559 8 6 0 8 6 0. 0.598 0.58 0.578 0.557 0.5557 0.5596 0.566 0.5675 0.57 0.575 8 6 0 8 6 0. 0.579 0.58 0.587 0.590 0.598 0.5987 0.606 0.606 0.60 0.6 8 5 9 7 5 0. 0.679 0.67 0.655 0.69 0.6 0.668 0.606 0.6 0.680 0.657 7 5 9 6 0 0. 0.655 0.659 0.668 0.666 0.6700 0.676 0.677 0.6808 0.68 0.6879 7 8 5 9 0.5 0.695 0.6950 0.6985 0.709 0.705 0.7088 0.7 0.757 0.790 0.7 7 0 7 0 7 0.6 0.757 0.79 0.7 0.757 0.789 0.7 0.75 0.786 0.757 0.759 7 0 6 9 6 9 0.7 0.7580 0.76 0.76 0.767 0.770 0.77 0.776 0.779 0.78 0.785 6 9 5 8 7 0.8 0.788 0.790 0.799 0.7967 0.7995 0.80 0.805 0.8078 0.806 0.8 5 8 6 9 5 0.9 0.859 0.886 0.8 0.88 0.86 0.889 0.85 0.80 0.865 0.889 5 8 0 5 8 0.0 0.8 0.88 0.86 0.885 0.8508 0.85 0.855 0.8577 0.8599 0.86 5 7 9 6 9. 0.86 0.8665 0.8686 0.8708 0.879 0.879 0.8770 0.8790 0.880 0.880 6 8 0 6 8. 0.889 0.8869 0.8888 0.8907 0.895 0.89 0.896 0.8980 0.8997 0.905 6 7 9 5 7. 0.90 0.909 0.9066 0.908 0.9099 0.95 0.9 0.97 0.96 0.977 5 6 8 0. 0.99 0.907 0.9 0.96 0.95 0.965 0.979 0.99 0.906 0.99 6 7 8 0.5 0.9 0.95 0.957 0.970 0.98 0.99 0.906 0.98 0.99 0.9 5 6 7 8 0.6 0.95 0.96 0.97 0.98 0.995 0.9505 0.955 0.955 0.955 0.955 5 6 7 8 9.7 0.955 0.956 0.957 0.958 0.959 0.9599 0.9608 0.966 0.965 0.96 5 6 7 8.8 0.96 0.969 0.9656 0.966 0.967 0.9678 0.9686 0.969 0.9699 0.9706 5 6 6.9 0.97 0.979 0.976 0.97 0.978 0.97 0.9750 0.9756 0.976 0.9767 5 5.0 0.977 0.9778 0.978 0.9788 0.979 0.9798 0.980 0.9808 0.98 0.987 0. 0.98 0.986 0.980 0.98 0.988 0.98 0.986 0.9850 0.985 0.9857 0. 0.986 0.986 0.9868 0.987 0.9875 0.9878 0.988 0.988 0.9887 0.9890 0. 0.989 0.9896 0.9898 0.990 0.990 0.9906 0.9909 0.99 0.99 0.996 0. 0.998 0.990 0.99 0.995 0.997 0.999 0.99 0.99 0.99 0.996 0 0.5 0.998 0.990 0.99 0.99 0.995 0.996 0.998 0.999 0.995 0.995 0 0 0.6 0.995 0.9955 0.9956 0.9957 0.9959 0.9960 0.996 0.996 0.996 0.996 0 0 0 0.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.997 0.997 0.997 0.997 0 0 0 0 0.8 0.997 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.998 0 0 0 0 0 0 0.9 0.998 0.998 0.998 0.998 0.998 0.998 0.9985 0.9985 0.9986 0.9986 0 0 0 0 0 0 0 0 0 Critical values for the ormal distributio If Z has a ormal distributio with mea 0 ad variace the, for each value of, the table gives the value of z such that: P( Z z) =. 0.75 0.90 0.95 0.975 0.99 0.995 0.9975 0.999 z 0.67.8.65.960.6.576.807.090.9 OCR00 Aedi B: Mathematical Formulae ad Statistical Tables 9 Oford, Cambridge ad RSA Eamiatios GCE Mathematics

0//0 DRAFT MATHEMATICS DRAFT 0//0 CRITICAL VALUES FOR THE t-distribution If T has a t-distributio with ν degrees of freedom the, for each air of values of ad ν, the table gives the value of t such that: P( T t) =. 0.75 0.90 0.95 0.975 0.99 0.995 0.9975 0.999 ν =.000.078 6..7.8 6.66 7. 8. 66.6 0.86.886.90.0 6.965 9.95.09..60 0.765.68.5.8.5 5.8 7.5 0..9 0.7.5..776.77.60 5.598 7.7 8.60 5 0.77.76.05.57.65.0.77 5.89 6.869 6 0.78.0.9.7..707.7 5.08 5.959 7 0.7.5.895.65.998.99.09.785 5.08 8 0.706.97.860.06.896.55.8.50 5.0 9 0.70.8.8.6.8.50.690.97.78 0 0.700.7.8.8.76.69.58..587 0.697.6.796.0.78.06.97.05.7 0.695.56.78.79.68.055.8.90.8 0.69.50.77.60.650.0.7.85. 0.69.5.76.5.6.977.6.787.0 5 0.69..75..60.97.86.7.07 6 0.690.7.76.0.58.9.5.686.05 7 0.689..70.0.567.898..66.965 8 0.688.0.7.0.55.878.97.60.9 9 0.688.8.79.09.59.86.7.579.88 0 0.687.5.75.086.58.85.5.55.850 0.686..7.080.58.8.5.57.89 0.686..77.07.508.89.9.505.79 0.685.9.7.069.500.807.0.85.768 0.685.8.7.06.9.797.09.67.75 5 0.68.6.708.060.85.787.078.50.75 6 0.68.5.706.056.79.779.067.5.707 7 0.68..70.05.7.77.057..689 8 0.68..70.08.67.76.07.08.67 9 0.68..699.05.6.756.08.96.660 0 0.68.0.697.0.57.750.00.85.66 0 0.68.0.68.0..70.97.07.55 60 0.679.96.67.000.90.660.95..60 0 0.677.89.658.980.58.67.860.60.7 0.67.8.65.960.6.576.807.090.9 0 Aedi B: Mathematical Formulae ad Statistical Tables OCR 00 GCE Mathematics Oford, Cambridge ad RSA Eamiatios

CRITICAL VALUES FOR THE χ -DISTRIBUTION If X has a χ -distributio with ν degrees of freedom the, for each air of values of ad ν, the table gives the value of such that: P( X ) = 0.0 0.05 0.05 0.9 0.95 0.975 0.99 0.995 0.999 ν = 0.0 57 0.0 98 0.0 9.706.8 5.0 6.65 7.879 0.8 0.000 0.0506 0.06.605 5.99 7.78 9.0 0.60.8 0.8 0.58 0.58 6.5 7.85 9.8..8 6.7 0.97 0.8 0.707 7.779 9.88..8.86 8.7 5 0.55 0.8.5 9.6.07.8 5.09 6.75 0.5 6 0.87.7.65 0.6.59.5 6.8 8.55.6 7.9.690.67.0.07 6.0 8.8 0.8. 8.67.80.7.6 5.5 7.5 0.09.95 6. 9.088.700.5.68 6.9 9.0.67.59 7.88 0.558.7.90 5.99 8. 0.8. 5.9 9.59.05.86.575 7.8 9.68.9.7 6.76.6.57.0 5.6 8.55.0. 6. 8.0.9.07 5.009 5.89 9.8.6.7 7.69 9.8.5.660 5.69 6.57.06.68 6. 9.. 6. 5 5.9 6.6 7.6. 5.00 7.9 0.58.80 7.70 6 5.8 6.908 7.96.5 6.0 8.85.00.7 9.5 7 6.08 7.56 8.67.77 7.59 0.9. 5.7 0.79 8 7.05 8. 9.90 5.99 8.87.5.8 7.6. 9 7.6 8.907 0. 7.0 0..85 6.9 8.58.8 0 8.60 9.59 0.85 8...7 7.57 0.00 5. 8.897 0.8.59 9.6.67 5.8 8.9.0 6.80 9.5 0.98. 0.8.9 6.78 0.9.80 8.7 0.0.69.09.0 5.7 8.08.6.8 9.7 0.86.0.85.0 6. 9.6.98 5.56 5.8 5.5..6.8 7.65 0.65. 6.9 5.6 0.95 6.79 8.9 0.6.77 6.98 50.89 5.67 59.70 0.6. 6.5 5.8 55.76 59. 6.69 66.77 7.0 50 9.7.6.76 6.7 67.50 7. 76.5 79.9 86.66 60 7.8 0.8.9 7.0 79.08 8.0 88.8 9.95 99.6 70 5. 8.76 5.7 85.5 90.5 95.0 00. 0.. 80 5.5 57.5 60.9 96.58 0.9 06.6. 6..8 90 6.75 65.65 69. 07.6. 8.. 8. 7. 00 70.06 7. 77.9 8.5. 9.6 5.8 0. 9. OCR00 Aedi B: Mathematical Formulae ad Statistical Tables Oford, Cambridge ad RSA Eamiatios GCE Mathematics

WILCOXON SIGNED RANK TEST P is the sum of the raks corresodig to the ositive differeces, Q is the sum of the raks corresodig to the egative differeces, T is the smaller of P ad Q. For each value of the table gives the largest value of T which will lead to rejectio of the ull hyothesis at the level of sigificace idicated. Critical values of T Level of sigificace Oe Tail 0.05 0.05 0.0 0.005 Two Tail 0. 0.05 0.0 0.0 = 6 0 7 0 8 5 0 9 8 5 0 0 8 5 0 7 5 7 9 7 7 9 5 5 5 0 5 9 5 6 5 9 9 7 7 8 7 0 7 9 5 6 7 0 60 5 7 For larger values of, each of P ad Q ca be aroimated by the ormal distributio with mea + ( ) ad variace ( + )(+ ). Aedi B: Mathematical Formulae ad Statistical Tables OCR 00 GCE Mathematics Oford, Cambridge ad RSA Eamiatios

WILCOXON RANK SUM TEST The two samles have sizes m ad, where m. R m is the sum of the raks of the items i the samle of size m. W is the smaller of R m ad m ( + m+ ) Rm. For each air of values of m ad, the table gives the largest value of W which will lead to rejectio of the ull hyothesis at the level of sigificace idicated. Critical values of W Level of sigificace Oe Tail 0.05 0.05 0.0 0.05 0.05 0.0 0.05 0.05 0.0 0.05 0.05 0.0 Two Tail 0. 0.05 0.0 0. 0.05 0.0 0. 0.05 0.0 0. 0.05 0.0 m = m = m = 5 m = 6 6 6 0 5 7 6 0 9 7 6 6 8 7 0 8 7 8 6 7 8 7 6 0 8 9 7 5 8 9 8 6 5 9 9 7 9 0 8 7 6 0 8 0 0 9 7 7 5 6 5 9 Level of sigificace Oe Tail 0.05 0.05 0.0 0.05 0.05 0.0 0.05 0.05 0.0 0.05 0.05 0.0 Two Tail 0. 0.05 0.0 0. 0.05 0.0 0. 0.05 0.0 0. 0.05 0.0 m = 7 m = 8 m = 9 m = 0 7 9 6 8 8 5 5 9 5 9 0 7 5 5 7 66 6 59 0 5 9 56 5 9 69 65 6 8 78 7 For larger values of m ad, the ormal distributio with mea mm ( + + ) ad variace m( m + + ) should be used as a aroimatio to the distributio of R m. OCR00 Aedi B: Mathematical Formulae ad Statistical Tables Oford, Cambridge ad RSA Eamiatios GCE Mathematics