A Further Generalized Lagrangian Density and Its Special Cases

Σχετικά έγγραφα
On Hypersurface of Special Finsler Spaces. Admitting Metric Like Tensor Field

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

P r s r r t. tr t. r P

A study on generalized absolute summability factors for a triangular matrix

Couplage dans les applications interactives de grande taille

Oscillatory integrals

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE)

Finite Field Problems: Solutions

Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle

Forêts aléatoires : aspects théoriques, sélection de variables et applications

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes

Consommation marchande et contraintes non monétaires au Canada ( )

Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation

Vers un assistant à la preuve en langue naturelle

Lecture 5: Numerical Integration

Μέθοδος Προσδιορισμού του Ισοδύναμου Ατομικού, από το Λόγο των Εντάσεων σύμφωνα και ασύμφωνα Σκεδαζόμενων Ακτινών-γ

ACI sécurité informatique KAA (Key Authentification Ambient)

met la disposition du public, via de la documentation technique dont les rιfιrences, marques et logos, sont

Universal Levenshtein Automata. Building and Properties

rs r r â t át r st tíst Ó P ã t r r r â

Digital Signal Processing: A Computer-Based Approach

SHORT REVISION. FREE Download Study Package from website: 2 5π (c)sin 15 or sin = = cos 75 or cos ; 12

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Jeux d inondation dans les graphes

Perturbation Series in Light-Cone Diagrams of Green Function of String Field

Ψηφιακή Επεξεργασία Εικόνας

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Assessment of otoacoustic emission probe fit at the workfloor

Analysis of a discrete element method and coupling with a compressible fluid flow method

Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

4.6 Autoregressive Moving Average Model ARMA(1,1)

FORMULAE SHEET for STATISTICS II

Hygromécanique des panneaux en bois et conservation du patrimoine culturel. Des pathologies... aux outils pour la conservation

Markov Processes and Applications

τ τ VOLTERRA SERIES EXPANSION OF LASER DIODE RATE EQUATION The basic laser diode equations are: 1 τ (2) The expansion of equation (1) is: (3) )( 1

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis

University of Kentucky Department of Physics and Astronomy PHY 525: Solid State Physics II Fall 2000 Final Examination Solutions

Homework for 1/27 Due 2/5

Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées

Article Multivariate Extended Gamma Distribution

Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa

Quadruple Simultaneous Fourier series Equations Involving Heat Polynomials

1. For each of the following power series, find the interval of convergence and the radius of convergence:

Résolution de problème inverse et propagation d incertitudes : application à la dynamique des gaz compressibles

Ημιγραμμικοποίηση και Διαγωνοποίηση των Διδιάστατων Εξισώσεων Euler για Ροές με Ελεύθερη Επιφάνεια

Langages dédiés au développement de services de communications

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Constant Elasticity of Substitution in Applied General Equilibrium

1 B0 C00. nly Difo. r II. on III t o. ly II II. Di XR. Di un 5.8. Di Dinly. Di F/ / Dint. mou. on.3 3 D. 3.5 ird Thi. oun F/2. s m F/3 /3.

On Generating Relations of Some Triple. Hypergeometric Functions

INTEGRAL INEQUALITY REGARDING r-convex AND

Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N.

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

8.324 Relativistic Quantum Field Theory II

Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

CE 530 Molecular Simulation

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Θωμάς ΣΑΛΟΝΙΚΙΟΣ 1, Χρήστος ΚΑΡΑΚΩΣΤΑΣ 2, Βασίλειος ΛΕΚΙΔΗΣ 2, Μίλτων ΔΗΜΟΣΘΕΝΟΥΣ 1, Τριαντάφυλλος ΜΑΚΑΡΙΟΣ 3,

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Minimum density power divergence estimator for diffusion processes

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ

Some Geometric Properties of a Class of Univalent. Functions with Negative Coefficients Defined by. Hadamard Product with Fractional Calculus I

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Stéphane Bancelin. Imagerie Quantitative du Collagène par Génération de Seconde Harmonique.

Estimators when the Correlation Coefficient. is Negative

Homework 4.1 Solutions Math 5110/6830

Bessel function for complex variable

UNIVERSITE DE PERPIGNAN VIA DOMITIA

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

MATRICES WITH CONVOLUTIONS OF BINOMIAL FUNCTIONS, THEIR DETERMINANTS, AND SOME EXAMPLES

Développement d un nouveau multi-détecteur de neutrons

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

The Simply Typed Lambda Calculus

Points de torsion des courbes elliptiques et équations diophantiennes

derivation of the Laplacian from rectangular to spherical coordinates

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Fusion de données multicapteurs pour la construction incrémentale du modèle tridimensionnel texturé d un environnement intérieur par un robot mobile

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

C.S. 430 Assignment 6, Sample Solutions

Tridiagonal matrices. Gérard MEURANT. October, 2008

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Optimal stopping under nonlinear expectation

Time Invariant Regressor in Nonlinear Panel Model with Fixed Effects 1

Studies on Properties and Estimation Problems for Modified Extension of Exponential Distribution

E fficient computational tools for the statistical analysis of shape and asymmetryof 3D point sets

Solutions_3. 1 Exercise Exercise January 26, 2017

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

6.642 Continuum Electromechanics

La naissance de la cohomologie des groupes

On Inclusion Relation of Absolute Summability

Logique et Interaction : une Étude Sémantique de la

Transcript:

A Furter eerlzed r Desty d Its Specl Cses F-Pe Ce Deprtet of Pyscs Dl Uversty of ecoloy Dl 64 C E-l: cefp@dluteduc Abstrct By surz d eted te r destes of te eerl reltvty d te Kbble s ue teory of rvtto furter eerlzed r desty for rvttol syste s obted d lyzed reter detl wc c be used for study ore etesve re of rvtto y specl cses c be derved fro ts eerlzed r desty ter eerl crcters d peculrtes wll be brefly descrbed PACS ubers: 4Cv 49e Keywords: r desty coupls betwee felds coservto lws eery-oetu tesor desty sp desty Itroducto I te teory of specl reltvty te r of tter feld c be deoted by te fuctol for: were s te ordry dervtve of It s well ow tt te reltvstc teores of rvtto te r desty of tter feld ust be deoted by te fuctol for : were s te covrt dervtve of : j 3 j For te Kbble s ue teory of rvtto te fre coecto j s depedet feld vrles d te torso ust pper te spce-te I ts cse te Eq c be eerlzed s j 4

For te reltvstc teores of rvtto te spce-te wtout torso j sould ot be depedet feld vrles d t wll be prove te Apped tt b d d j j j d d j j 5 I ts cse te Eq c be eerlzed s 6 Sce te ret jorty of te fudetl tter felds re spors t s ecessry to use tetrd feld e etrc feld s epressed s j j fro wc we ve j j etc I te reltvstc teores of rvtto 6 π 7 s lwys dopted s te r desty of rvttol feld For te Kbble s ue teory of rvtto Eq7 c be eerlzed s j j 8 For te reltvstc teores of rvtto te spce-te wtout torso e eerl reltvtyfter us Eq5 Eq7 c be eerlzed s 9 9 I ts pper order to coduct dept study o te eerl crcter d te peculrty of r destes for soe reltvstc teores of rvtto Eqs46 wll be eteded to te follow epresso: j j d Eqs89 wll be eteded to te follow epresso: j j

3 We wll e were d re deoted by Eq d Eq respectvelys furter eerlzed r desty represets te tter feld d j represet te rvttol felds s furter eerlzed r desty s sfctly ore eerl t te r destes deoted by Eqs46 d Eqs89 It ust be dcted tt prt fro descrb rvttol syste wt torso ts furter eerlzed r desty e Eqs c be used lso to descrbe rvttol syste wtout torso If Eqs re used to descrbe rvttol syste wtout torso t ust be oted tt j s fucto of d j s fucto of So te Eq c be epressed s d te Eq c be epressed s 3 Evdetly Eq6 s specl cse of Eq we Eq9 s equvlet to Eq3 For te reltvstc teores of rvtto te spce-te wt torso besdes Eq4 te follow r destes j 4 j j 5

re lso te specl cses of Eq By es of study te furter eerlzed r desty d ts specl cses ter eerl crcter d peculrty c be sow clerly e furter eerlzed r desty surzes y propertes of vrous teores of rvtto Below we sll prove tt Eq d Eq c be rewrtte s d j 6 j 7 j s te curvture tesor wt ed des j j j j j 8 s te torso tesor wt ed dees { } 9 e pyscl e of Eq6 s tt te rvttol felds could ct o te tter feld oly trou covrt dervtve curvture of spce-te d torso of spce-te erefore te fors of coupls betwee te rvttol felds d tter feld t be j j j j or etc e coupl j coted te covrt dervtve j s clled te l coupl wc s well ow te eerl reltvty d te ue teory of rvtto Eq6 tells us tt ddto to te l coupl tere t be oter coplcted coupls teory e pyscl e of Eq7 s tt te r of rvttol feld s coposed of curvture tesor feld d torso tesor feld Becuse s bot coordte sclr d fre sclr te possble ters volved 4

re sclrs costructed fro j Hece te study of furter eerlzed r destes sfctly eted te re of te studes of rvtto If Eq7 s used to descrbe rvttol syste wtout torso te d {} te possble ters volved re oly te sclr curvture {} {} j j d ts power suc s j Cosder oter requreets 6π s cose eerl reltvty We sll dscuss te ove probles te follow sectos e syetry of te r destes for rvttol syste Syetres est uverslly pyscl systes We suppose tt oe fudetl syetry of rvttol syste s tt te cto terls I d I d 4 4 d I I I d 4 I stsfy I I d respectvely uder te follow two sulteous trsfortos 4: te ftesl eerl coordte trsforto ξ te locl oretz trsforto of tetrd fre j e e e ε e j e suffcet codto of cto terl trsfortos s : I 4 d be I uder ove 5

6 ξ were represets te vrto t fed vlue of For te ost eerlzed r desty we ve j j j j 3 j j j j 4 et or or becuse of te depedet rbtrress of ε ε ε ξ ξ d ξ It s ot dffcult to derve te follow dettes 3 f : 5

7 6 7 j j j j 8 j j j j j 9 j j 3 Fro Eq3 d Eq7 t s foud tt tere ust est oter detty: 3 It wll be sow bellow tt y propertes of rvttol syste c be derved fro te ove dettes We Eqs re used to descrbe rvttol syste wtout torso fro Eq we ve

8 3 were deote te prtl dervtve t te costt vlues of d Hece we et 33 34 35 36 37 Fro Eq3 we ve

9 38 Hece we et 39 4 4 O te oter d t s evdet tt d relt to Eqs3 stsfy lso ξ were or or Ow to te depedet rbtrress of ε ε ε ξ ξ ξ d ξ we obt oter set of dettes 9 f :

4 43 44 45 46

47 48 I ddto tere re te reltos: 49 5 Utlz tese reltos d tose Eqs33-3739-4 d crry out soe coplcted clcultos t c be prove tt te dettes Eqs5-3 re equvlet to te dettes Eqs4-48 3 Possble fors of te rs uder te syetry of trsfortos Eqs I ts secto we wll prove tt due to te requreet of te cto terls of rvttol syste be vrt uder te trsfortos Eqs te possble fors of te r destes Eq d Eq t be: j 6 d j 7 respectvely e proof of Eq6 s ve te follow: Eq7 es tt j ppers oly trou curvture tesor feld j

becuse Eq3 es tt ppers j j oly trou torso tesor feld becuse Eq6 es tt ppers oly trou covrt dervtve d curvture tesor feld j d torso tesor feld becuse j j Hece te tter r desty sould te te for deoted by Eq6 O te oter d f tere ests te relto Eq6 we ust ve: j j erefore fro Eq5 j j j j 5

3 j j j j j j j j j j j j 5 us we ve 53 54 55 56

4 j j j j 57 j j 58 Us Eqs53-58 d Eqs5-3 we ve te follow dettes: 59 6

5 6 j j j j j j 6 ρ ρ ρ ρ j j j j j j j 63

6 j j 64 65 O te oter d fro Eq6 we lso ve: 66 were 67 b b b b 68 } { 69 Substtut Eqs67-69 to Eq66 d us ξ becuse of te depedet rbtrress of ε ε ε ξ ξ d ξ fter soe lety clcultos we c obt te dettes Eqs59-64 oe by oe Hece te dettes obted drectly fro

7 re just te se s tose derved fro j j j j j j e ove lyss prove tt te relto j j j ust est Wt te se etod we c lso prove te follow reltos: j j j Prevously we tred to prove Eq6 ef However tere pper to be soe errors tt pper I te ove lyss we beleve we ve corrected te flws 4 Coservto lws for rvttol syste wt our furter eerlzed r desty Below we sll derve te coservto lws for rvttol syste wt our furter eerlzed r desty deoted by Eqs fro te dettes Eqs5-3 d equtos of felds: 7 7

8 j j j j j j 7 Fro te we c et te follow reltos: j j 73 74 j j j j j _ 75 j j j j j _ 76

9 77 78 Eq73 t be rerded s coservto lws of eery-oetu tesor desty for te rvttol syste: t t 79 were j j t 8 d j j t 8 t be terpreted s te eery-oetu tesor desty of tter feld d of rvttol feld respectvely But we ust dcted tt t d t re ot tesor destes d Eq79 lcs te vrt crcter t sould ve te teores of reltvstc rvtto However f we use Eq 75 to defe

j j j j j _ 8 d use Eq 76 to defe j j j j j _ 83 te we et 84 85 At ere d re tesor destes d Eq85 s covrt relto Hece we wll te Eqs8485 to be te coservto lws of eery-oetu tesor desty for te rvttol syste wt our furter eerlzed r destes Hstorclly Este d proposed oter coservto lws of eery- -oetu tesor desty for rvttol syste : ~ t 86 were u t ~ u u e vrtues d defects out Eq85 d Eq86 ve bee dscussed torouly efs9 Becuse Eqs8485 ve ore locl bss d rc pyscl cotets te utor beleves tt te coservto lws Eqs8485 t be better t Este s coservto lws Eq86 9 d could be tested by future eperets d observtos Eq74 t be rerded s coservto lws of sp desty for te rvttol syste: s s 87 were

s 88 d s 89 t be terpreted s te sp desty of tter feld d of rvttol feld respectvely But we ust dcted tt s s d Eq87 lc t ll te vrt crcter t sould ve te sprt of eerl reltvty However f we use Eq 77 to defe S 9 d use Eq 78 to defe S 9 te we et S S 9 S S 93 At ere S S d Eq93 ll ve te vrt crcter ece we wll te Eqs993 to be te coservto lws of sp desty for te rvttol syste wt our furter eerlzed r destes

5 Soe specl cses of Eq d Eq We ve dcted tt j j j j re ll te specl cses of Eq d It s evdet tt j j re ll te specl cses of Eq Wt te se etod to prove j j j we c lso prove te follow reltos: j 94 j j j 95 j 96

3 j j j 97 98 It s ot dffcult to verfy tt for te ove specl cses of Eq d Eq te coservto lws for rvttol syste ll ve te se tetcl for: d S S S S Of course te deftos of eery-oetu tesor desty d sp desty for dfferet r destes re dfferet Fro te dscussos te ove sectos we ve see tt our furter eerlzed r desty c be used for descrb y teores of rvtto er eerl crcters re: te rvttol felds could ct o te tter feld oly trou covrt dervtve curvture of spce-te d torso of spce-te te r destes of rvttol feld re coposed of curvture tesor feld d torso tesor feld te coservto lws for rvttol syste ll ve te se tetcl for er peculrtes re: te cocrete fors of r destes for tter d rvttol feld re dfferet so te coupls betwee te rvttol felds d tter feld re dfferet te deftos of eery-oetu tesor desty d sp desty for dfferet r destes re dfferet Apped Ⅰ Proof of te relto Eq5 for te spce-te wtout torso e olooc coecto feld s relted to d j by 3 j j A

were j j I ddto j j EqA c be derved fro te requreet: A s requreet urtees tt lets d les re preserved uder prllel dsplceet 4 e torso tesor s defed by 5 A3 ere ests te relto 5: { } A4 were { } A5 s te Crstoffel sybol EqA4 c be derved fro EqsAA3A5 I te spce-te wtout torso fro EqA4 t s obvously { } I ts cse te relto j j j c be obted fro EqsAA5 d d b d d j j 5 Ⅱ Soe useful reltos of dfferetl eoetry At ere we troduce soe useful reltos of dfferetl eoetry wc wll be used ts pper e curvture tesor relted to coecto { } s defed by 8 {} ρ ρ { } { } { }{ } { }{ } A6 ρ ρ Slrly te curvture tesor relted to coecto s defed by ρ ρ ρ ρ A7 4

EqA4 suests tt {} for te spce-te wt torso d {} oly for te spce-te wtout torso We c lso defe te curvture tesor relted to te fre coecto j 3: j j j j j A8 Us EqA t c be verfed tt torso tesor c lso be verfed: j j Us EqA te follow relto for j j j j A9 efereces Kbble WB 96 oretz Ivrce d te rvttol Feld J t Pys Weber S 97 rvtto d Cosoloy Wley New Yor 3 Ce F P 99 eerl equtos of oto for test prtcles spce-te wt torso Iter J eor Pys 9 6 4 Hel F W vo der Heyde P d Kerlc D 976 eerl reltvty wt sp d torso: foudtos d prospects ev od Pys 48 393 5 Scoute J A 954 cc Clculus Sprer Berl 8 du d fstz E 975 e Clsscl eory of Felds rslted by Heres Pero Press Oford 9 Ce F P 7 Feld equtos d coservto lws derved fro te eerlzed Este s r desty for rvttol syste d ter plctos to cosoloy Iter J eor Pys to be publsed Corso E 953 Itroducto to esors Spors d eltvstc Wve Equtos Blce & So odo F P Ce 993 e eerlzed rs of rvttol teory wt torso d ter vrce uder ξ trsfortos Scece I C Seres A 366 ε Ce F P e restudy o te debte betwee Este d ev-cvt d te eperetl tests Spcete & Substce 3 6 5