The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

Σχετικά έγγραφα
ω = radians per sec, t = 3 sec

Homework 3 Solutions

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Lecture 12 Modulation and Sampling

1 String with massive end-points

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

Second Order Partial Differential Equations

Homework 8 Model Solution Section

Math221: HW# 1 solutions

EE512: Error Control Coding

Partial Differential Equations in Biology The boundary element method. March 26, 2013

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

Problem Set 3: Solutions

ST5224: Advanced Statistical Theory II

Matrices and Determinants

CNS.1 Compressible Navier-Stokes Time Averaged

PARTIAL NOTES for 6.1 Trigonometric Identities

Numerical Analysis FMN011

2 Composition. Invertible Mappings

4.6 Autoregressive Moving Average Model ARMA(1,1)

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

2. Chemical Thermodynamics and Energetics - I

Higher Derivative Gravity Theories

Second Order RLC Filters

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ECON 381 SC ASSIGNMENT 2

Example Sheet 3 Solutions

Approximation of distance between locations on earth given by latitude and longitude

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Section 8.3 Trigonometric Equations

Fourier Series. Fourier Series

( ) 2 and compare to M.

Concrete Mathematics Exercises from 30 September 2016

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

The Simply Typed Lambda Calculus

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

6.003: Signals and Systems. Modulation

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

w o = R 1 p. (1) R = p =. = 1

CRASH COURSE IN PRECALCULUS

Parametrized Surfaces

Exercises to Statistics of Material Fatigue No. 5

INTERTEMPORAL PRICE CAP REGULATION UNDER UNCERTAINTY By Ian M. Dobbs The Business School University of Newcastle upon Tyne, NE1 7RU, UK.

Finite Field Problems: Solutions

1) Formulation of the Problem as a Linear Programming Model

Other Test Constructions: Likelihood Ratio & Bayes Tests

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

6.003: Signals and Systems

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξενόγλωσση Τεχνική Ορολογία

D Alembert s Solution to the Wave Equation

Electronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution

6.4 Superposition of Linear Plane Progressive Waves

Fractional Colorings and Zykov Products of graphs

Areas and Lengths in Polar Coordinates

Partial Trace and Partial Transpose

Statistical Inference I Locally most powerful tests

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

( y) Partial Differential Equations

Lecture 2. Soundness and completeness of propositional logic

Every set of first-order formulas is equivalent to an independent set

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Inverse trigonometric functions & General Solution of Trigonometric Equations

Areas and Lengths in Polar Coordinates

From the finite to the transfinite: Λµ-terms and streams

On the Galois Group of Linear Difference-Differential Equations

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ

C.S. 430 Assignment 6, Sample Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Geodesic Equations for the Wormhole Metric

Bounding Nonsplitting Enumeration Degrees

Forced Pendulum Numerical approach

Section 8.2 Graphs of Polar Equations

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Transcript:

hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p = T; e = e( T ); c v = de /dt h = h( T); c p = dh /dt = c p c v ; = c p /c v ; p = ( )e The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: where + + p = x E E + p E = e + / Ideal Gas: p = T; h = h( T ); c p = dh / dt; h e = T = h / T e / T = c p c v ; = c p / c v ; and we define H = h + /; h = e + p/ e = e( T ); c v = de /dt Pressre and energy are relaed by p = ( h e) = ( h / e )e = ( )e Speed of sond c = p = T = p s p = ( ) c = p / The Eler Eqaions + + p = x E E + p p = ( )e c = p / Expanding he derivaive and rearranging he eqaions + / p c x = + A or x = p The Characerisics for he Eler Eqaions are fond by finding he eigenvales for A T de(a T λi) = Find de(a T λi) = or: The Eler Eqaions or (( ) c ) = ( λ) λ ( λ) = λ = (( λ) c ) = λ = ±c λ = ± c λ de λ c = / λ Therefore λ = c; λ = + c; λ 3 = Exac Solion: The ankine-hgonio condiions For a hyperbolic sysem + F x = The speed of a disconiniy (shock) is fond by moving o a frame where a shock moving wih speed s is saionary s x + F x = Inegraing across he shock yields [ ] = [ F] s f

Exac Solion: For he Eler eqaions: + + p = x E E + p The ankine-hgonio condiions are: s( L ) = (( ) L ( ) ) s( ( ) L ( ) ) = (( + p) + p L ( ) ) s( ( E ) L E ) = (( (E + p/) ) L (E + p/) ) ( ) ( ) The Shock-Tbe Problem Exac Solion The shock be problem L,, L,, Densiy L 5 3 Pressre Expansion Fan Conac Shock Expansion Fan Conac Shock L L Exac Solion: 3 L given:, L, L,,, α = + Exac Solion: 3 L given:, L, L,,, c L = L c = Consider he case > : Shock separaes and Conac disconiniy separaes and 3 Expansion fan separaes 3 and L The ankine-hgonio condiions give a nonlinear P = p relaion for he pressre jmp across he shock P = p L ( ) ( c / c L )(P ) ( + ( + ) ( P ) ) which can be solved by ieraion /( )

Exac Solion: Exac Solion: The speed of he shock and velociy behind he shock are fond sing H condiions: + ( +)P s shock = + c / 3 L x shock = x + s shock The speed of he conac is s conac = 3 = = L + c L P p x conac = x + s conac The lef hand side of he fan moves wih speed s fl = c L x fl = x + s fl The righ hand side of he fan moves wih speed s f = c 3 x f = x + s f P = p Lef niform sae given:, L, L, c L = L 3 L In he expansion fan () + (s x) = c L α = L + s x + + (s x) p = p c L α Behind he conac (3) p 3 = p 3 = P = p 3 = L P p / Exac Solion: Exac Solion: 3 L α = + P = p The velociy relaive o he speed of sond defines he flow regime Behind he conac (3) p 3 = p 3 = 3 = L P p / Behind he shock () = + αp α + P p = P = L + c L P p igh niform sae given:,, c = c = p The Mach nmber is defined as he raio of he local velociy over he speed of sond Ma = c Ma < sbsonic Ma > spersonic Tes case: Shockbe problem of G.A. Sod, JCP 7:, 97 = 5 ; L =.; L = = ; =.5; = final =.5 x =.5 Sbsonic case Exac Solion:.... x 3 5 velociy 3 5 3.... =.5 Velociy Pressre Densiy Mach nmber 3 5 Mach Nmber.... 3 5 5 3 5 5 velociy Exac Solion: x pressre 3 5.9..7..5..3.. Mach nmber 3 5 3 5 3 5

Exac Solion: Tes case: Pressre Shockbe problem of G.A. Sod, JCP 7:, 97 = 5 ; L =.; L = = ; =.; = final =.5 x =.5 Spersonic case Velociy Mach Nmber Densiy Solve sing second order Lax-Wendroff L-W wih arificial viscosiy For he flid-dynamic sysem of eqaions (Eler eqaions): + + p = x E E + p where E = e + / ; Add he arificial viscosiy o HS: = αh x x x p = ( ) e * f j + L-W wih arificial viscosiy Solions of he D Eler eqaion sing Lax-Wendroff ( ).5 Δ n n ( F j ) =.5 f n n j + f j + ( ) n f + j = f n j Δ h F * * j + F j F' = F αh h F j + Wih an arificial viscosiy erm added o he correcor sep x x Lax Fredrich Leap Frog j- j j+ Tes case: L-W wih arificial viscosiy L-W wih arificial viscosiy Effec of α Shockbe problem of G.A. Sod, JCP 7:, 97 = 5 ; L =.; L = = ; =.5; = Final ime:.5.... nx=; α =.5.... nx=; α =.5 α =. α =.5 α =.5 x pressre α =.5 α =. α =.5 α =.5............

nx=; nx=; nx=5; ime=.5 x pressre.... L-W wih arificial viscosiy Effec of resolion α =.5........ Oline of L-W program L-W wih arificial viscosiy for isep=: for i=:nx,p(i)=..; end for i=:nx- %predicion sep rh(i)=.. rh(i)=.. reh(i)=.. end for i=:nx,ph(i)=..; end for i=:nx- %correcion sep r(i)=.. r(i)=.. re(i)=.. end for i=:nx,(i)=r(i)/r(i);end for i=:nx- %arificial viscosiy r(i)=.. re(i)=.. end ime=ime+d,isep end L-W wih arificial viscosiy nx=9; arvisc=.5; hold off %gg=.;p_lef=;p_righ=;r_lef=;r_righ=.; gg=.;p_lef=;p_righ=;r_lef=;r_righ=.5; xl=.;h=xl/(nx-);ime=; r=zeros(,nx);r=zeros(,nx);re=zeros(,nx);p=zeros(,nx); rh=zeros(,nx);rh=zeros(,nx);reh=zeros(,nx);ph=zeros(,nx); for i=:nx,r(i)=r_righ;r(i)=.;re(i)=p_righ/(gg-);end for i=:nx/; r(i)=r_lef; re(i)=p_lef/(gg-); end rh=r;rh=r;reh=re;ph=p; d=.5*h/sqr(.*max([7+p_righ/r_righ,7+p_lef/r_lef]) ) for isep=: for i=:nx,p(i)=(gg-)*(re(i)-.5*(r(i)*r(i)/r(i)));end for i=:nx- %predicion sep rh(i)=.5*(r(i)+r(i+))-(.5*d/h)*(r(i+)-r(i)); rh(i)=.5*(r(i)+r(i+))-(.5*d/h)*((r(i+)^/r(i+))+p(i+)-(r(i)^/r(i))-p(i)); reh(i)=.5*(re(i)+re(i+))-... (.5*d/h)*((rE(i+)*r(i+)/r(i+))+(r(i+)*p(i+)/r(i+))... -(re(i)* r(i) /r(i))- (r(i) *p(i) /r(i))); end for i=:nx,ph(i)=(gg-)*(reh(i)-.5*(rh(i)*rh(i)/rh(i)));end for i=:nx- %correcion sep r(i)=r(i)-(d/h)*(rh(i)-rh(i-)); r(i)=r(i)-(d/h)*((rh(i)^/rh(i))-(rh(i-)^/rh(i-))+ph(i)-ph(i-)); re(i)=re(i)-(d/h)*((reh(i)*rh(i)/rh(i))-(reh(i-)*rh(i-)/rh(i-))+... (rh(i)*ph(i)/rh(i))-(rh(i-)*ph(i-)/rh(i-))); end for i=:nx,(i)=r(i)/r(i);end for i=:nx- %arificial viscosiy r(i)=r(i)+arvisc*(.5*d/h)*( (r(i)+r(i+))*((i+)-(i))*abs((i+)-(i))... -(r(i)+r(i-))*((i)-(i-))*abs((i)-(i-)) ); re(i)=re(i)+arvisc*(.5*d/h)*... ( ((i+)+(i))*(r(i)+r(i+))*((i+)-(i))*abs((i+)-(i))... -((i)+(i-))*(r(i)+r(i-))*((i)-(i-))*abs((i)-(i-)) ); end ime=ime+d,isep plo(p,'b','linewidh',),ile('pressre'); pase if(ime >.5)break,end end Solve sing firs order pwinding wih flx spliing For conservaion law Define F = F + + F So ha + F + x + F x = Flx Spliing + F x = Which can be wrien as + [ A] x = ; where [ A] = F [ λ] = [ λ + ] + [ λ ] Are he posiive and negaive eigenvales of A Flx Spliing For nonlinear eqaion he spliing is no niqe, differen marices can have he same eigenvales

Firs order pwind Here we solve he one-dimensional Eler eqaion sing he van Leer vecor flx spliing Van Leer F + = ( + c) c ( ) + c ( ) + c ( ) F = ( c) c ( ) c c ( ) ( ) van Leer vecor flx spliing + p = (E + p c ) Firs order pwind ( + c) For example, he mass flx: c ( + c) ( c) c ( ) + c ( ) + c ( ) ( c) c ( ) = c = c + c + c + c c ( ) c c ( ) ( ) c = For D flow he flxes are F ± = ± ( ± c) c Firs order pwind ( ) ± c [ c ± ( )] ( ) = ± c (M ±) c M ± c ± M For D flow he flxes are F ± = ± ( ± c) c v Firs order pwind ( ) ± c v [ ] + ( ) ± c ( ) ; G ± = ± (v ± c) c ( )v ± c + [( )v ± c] ( ) + F+ x + F x + G+ y + G y = Seger-Warming F + = Firs order pwind Several oher spliing schemes are possible, sch as: ( ) + c ( ) + ( + c) ( ) 3 + ( + c)3 + 3 ( + c)c ( ) F = ( c) c ( c) + 3 c F + = ( + c) c Firs order pwind ewrie he flx erms in erms of Mach nmber: ( ) + c ( ) + c ( ) = c c + c + c c + c = c (M +) c + M c + M

+ F + x + F - x = Firs order pwind + c E x ( M + c ) + M + x c ( M c ) + M = c + M c M + F+ x + F- x = Solve by f n+ j = f n j Δ h F + + j F j- Where Firs order pwind ( ) n Δ ( ) n - - h F j + F j F + = c ( M + c ) + M ; F = c ( M c ) + M c + M c M Firs order pwind for isep=:maxsep for i=:nx,c(i)=sqr( gg*(gg-)*(re(i)-.5*(r(i)^/r(i)))/r(i) );end for i=:nx,(i)=r(i)/r(i);end; for i=:nx,m(i)=(i)/c(i);end for i=:nx- %pwind rn(i)=r(i)-(d/h)*(... (.5*r(i)*c(i)*(m(i)+)^) - (.5*r(i-)*c(i-)*(m(i-)+)^)+... (-.5*r(i+)*c(i+)*(m(i+)-)^) - (-.5*r(i)*c(i)*(m(i)-)^) ); rn(i)=r(i)-(d/h)*(... (.5*r(i)*c(i) *(m(i)+)^) *(( +.5*(gg-)*m(i)) **c(i) /gg) -... (.5*r(i-)*c(i-)*(m(i-)+)^)*(( +.5*(gg-)*m(i-))**c(i-)/gg) +... (-.5*r(i+)*c(i+)*(m(i+)-)^)*((-+.5*(gg-)*m(i+))**c(i+)/gg) -... (-.5*r(i)*c(i) *(m(i)-)^) *((-+.5*(gg-)*m(i)) **c(i) /gg) ); ren(i)=re(i)-(d/h)*(... (.5*r(i)*c(i) *(m(i)+)^) *((+.5*(gg-)*m(i))^ **c(i)^ /(gg^-)) -... (.5*r(i-)*c(i-)*(m(i-)+)^)*((+.5*(gg-)*m(i-))^**c(i-)^/(gg^-)) +... (-.5*r(i+)*c(i+)*(m(i+)-)^)*((-.5*(gg-)*m(i+))^**c(i+)^/(gg^-)) -... (-.5*r(i)*c(i) *(m(i)-)^) *((-.5*(gg-)*m(i))^ **c(i)^ /(gg^-)) ); end Firs order pwind Effec of resolion Shockbe problem of G.A. = 5 ; L =.; L = Sod, JCP 7:, 97 = ; =.5; = x Pressre nx=; maxsep=3 nx=5; maxsep= Final ime:.5 Densiy... nx=; maxsep=3 nx=; maxsep=. nx=5; maxsep= nx=5; maxsep=5 Smmary Nmerical solions of he onedimensional Eler eqaions Upwind/flx spliing Lax-Wendroff/arificial viscosiy