A Survey of Recent Clustering Methods for Data Mining (part 1)

Σχετικά έγγραφα
A Survey of Recent Clustering Methods for Data Mining (part 2)


: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Anomaly Detection with Neighborhood Preservation Principle

Quick algorithm f or computing core attribute



Twitter 6. DEIM Forum 2014 A Twitter,,, Wikipedia, Explicit Semantic Analysis,


ER-Tree (Extended R*-Tree)

443020,,., 61, / : +7 (846)

Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+

Research on Economics and Management

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

476,,. : 4. 7, MML. 4 6,.,. : ; Wishart ; MML Wishart ; CEM 2 ; ;,. 2. EM 2.1 Y = Y 1,, Y d T d, y = y 1,, y d T Y. k : p(y θ) = k α m p(y θ m ), (2.1

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Exhaustive Topic Detection and Query Expansion Support Based on Substance-Oriented Term Clustering

Text Mining using Linguistic Information

Research on model of early2warning of enterprise crisis based on entropy

Στοιχεία εισηγητή Ημερομηνία: 10/10/2017

Buried Markov Model Pairwise

Web. Web p OutDegree(p) log 7 1/OutDegree(p) A New Difinition of Subjective Distance between Web Pages

Stabilization of stock price prediction by cross entropy optimization

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)

Big Data/Business Intelligence

Extraction of Basic Patterns of Household Energy Consumption

th International Conference on Machine Learning and Applications. E d. h. U h h b w k. b b f d h b f. h w k by v y

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity

Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- Takuya Adachi 1 Naoki Fukuta 2.

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ

substructure similarity search using features in graph databases

HMY 795: Αναγνώριση Προτύπων

Applying Markov Decision Processes to Role-playing Game

y = f(x)+ffl x 2.2 x 2X f(x) x x p T (x) = 1 Z T exp( f(x)=t ) (2) x 1 exp Z T Z T = X x2x exp( f(x)=t ) (3) Z T T > 0 T 0 x p T (x) x f(x) (MAP = Max

A research on the influence of dummy activity on float in an AOA network and its amendments

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ


The Algorithm to Extract Characteristic Chord Progression Extended the Sequential Pattern Mining

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΑΤΗΣΙΩΝ ΑΘΗΝΑ Ε - ΜΑΙL : mkap@aueb.gr ΤΗΛ: , ΚΑΠΕΤΗΣ ΧΡΥΣΟΣΤΟΜΟΣ. Βιογραφικό Σημείωμα

Probabilistic Approach to Robust Optimization

Reading Order Detection for Text Layout Excluded by Image

[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)

Architecture for Visualization Using Teacher Information based on SOM

1 n-gram n-gram n-gram [11], [15] n-best [16] n-gram. n-gram. 1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e)

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

(clusters) clusters : clusters : clusters : 4. :

From Secure e-computing to Trusted u-computing. Dimitris Gritzalis

Κβαντική Επεξεργασία Πληροφορίας

Automatic extraction of bibliography with machine learning

SVM. Research on ERPs feature extraction and classification

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕΣ» OSWINDS RESEARCH GROUP

Bayesian Discriminant Feature Selection

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1


Customized Pricing Recommender System Simple Implementation and Preliminary Experiments

Αξιολόγηση πληροφοριακών συστηµάτων και υπηρεσιών πληροφόρησης

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

{takasu, Conditional Random Field

Clustering. Αλγόριθµοι Οµαδοποίησης Αντικειµένων

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

Οι Εννοιολογικές Αλλαγές ως Συνιστώσα της Σύγχρονης Ιστοριογραφίας των Μαθηματικών

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

User Behavior Analysis for a Large2scale Search Engine

ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

Adaptive grouping difference variation wolf pack algorithm

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

Προεπεξεργασία Δεδομένων. Αποθήκες και Εξόρυξη Δεδομένων Διδάσκουσα: Μαρία Χαλκίδη

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

Ανακάλυψη κανόνων συσχέτισης από εκπαιδευτικά δεδομένα

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕς» OSWINDS RESEARCH GROUP

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

1530 ( ) 2014,54(12),, E (, 1, X ) [4],,, α, T α, β,, T β, c, P(T β 1 T α,α, β,c) 1 1,,X X F, X E F X E X F X F E X E 1 [1-2] , 2 : X X 1 X 2 ;

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΔΙΠΛΩΜΑΤΙΚΩΝ ΕΡΓΑΣΙΩΝ ΓΙΑ ΤΟ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ Εισηγητής: Νίκος Πλόσκας Επίκουρος Καθηγητής ΤΜΠΤ

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΣΤΥΛΙΑΝΗΣ Κ. ΣΟΦΙΑΝΟΠΟΥΛΟΥ Αναπληρώτρια Καθηγήτρια. Τµήµα Τεχνολογίας & Συστηµάτων Παραγωγής.

Wiki. Wiki. Analysis of user activity of closed Wiki used by small groups

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

Οντολογία Ψηφιακής Βιβλιοθήκης

Homomorphism in Intuitionistic Fuzzy Automata

Efficient Top-k Search for Random Walk with Restart

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Λέκτορας στο Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων, Πανεπιστήμιο Πειραιώς, Ιανουάριος 2012-Μάρτιος 2014.

HMY 795: Αναγνώριση Προτύπων

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System

ΣΔΥΝΟΛΟΓΗΚΟ ΔΚΠΑΗΓΔΤΣΗΚΟ ΗΓΡΤΜΑ ΗΟΝΗΧΝ ΝΖΧΝ «ΗΣΟΔΛΗΓΔ ΠΟΛΗΣΗΚΖ ΔΠΗΚΟΗΝΧΝΗΑ:ΜΔΛΔΣΖ ΚΑΣΑΚΔΤΖ ΔΡΓΑΛΔΗΟΤ ΑΞΗΟΛΟΓΖΖ» ΠΣΤΥΗΑΚΖ ΔΡΓΑΗΑ ΔΤΑΓΓΔΛΗΑ ΣΔΓΟΤ

ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής

Ομαδοποίηση Ι (Clustering)

Online Social Networks: Posts that can save lives. Sotiria Giannitsari April 2016

Transcript:

59 1 A Survey of Recent Clustering Methods for Data Mining (part 1) Try Clustering! Toshihiro Kamishima National Institue of Advanced Industrial Science and Technology (AIST) mail@kamishima.net, http://www.kamishima.net/ keywords: Clustering, Unsupvervised Learning, Survey, Data Mining 1. 1 internal cohesion external isolation [Everitt 93, 85] [Fayyad 96] 1 7 2 2 5 1 2 1 2 3 4 5 Web 2 6 WWW 7 8 9 10 11 12 1 2. Everitt [Everitt 93] Jain Dubes [Jain 88] Jain [Jain 99] [Jain 00] [ 99] [Everitt 93] [Jain 88] [Jain 88] [ 99] [Fisher 91] CLUSTER 1 x i : object N : X={x 1,...,x N } : d : x i=(x i1,...,x id ) : x i D 1,...,D d : k : C 1,...,C k : n i : C i c i : C i D(x i,x j ) : x i x j

60 18 1 2003 1 [Michalski 83] COBWEB [Fisher 87] [ 96] KDD [Keim 99] ACM SIGMOD [Hinneburg 99] Hinneburg Keim http://hawaii.informatik.uni-halle.de /~hinnebur/clustertutorial/ [ 01] BIRCH 3. (hierarchical) k-means (partitioning-optimization) (divisive) (agglomerative) 1 N 3(b) 2 C 1 C 2 D(C 1,C 2 ) (nearest neighbor method) (single linkage method) D(C 1,C 2 )= min D(x 1,x 2 ) x 1 C 1,x 2 C 2 (furthest neighbor method) (complete linkage method) D(C 1,C 2 )= max D(x 1,x 2 ) x 1 C 1,x 2 C 2 (group average method) D(C 1,C 2 )= 1 n 1 n 2 x 1 C 1 x 2 C 2 D(x 1,x 2 ) (Ward s method) D(C 1,C 2 )=E(C 1 C 2 ) E(C 1 ) E(C 2 ) E(C i )= x C i ( D(x,ci ) ) 2 1. k c 1,...,c k 2. x X min i D(x,c i ) 3. if then else 2. 1 k-means Ward D(x i,x j ) Ward partitional optimization N k-means k ( D(x,ci ) ) 2 i=1 x C i 1 4. Web 4 1 exploratory Cutting [Cutting 92]

1 61 Cutting 1990 8 5,000,,,,,,, 8 [Dubes 79] [Milligan 85] 4 2 [ 02] S1 r ar S2 δv 2 [ 98] [ 98] 2 r ar(0 < a < 1) d S 1 S 2 S 1 V δv δv/v = 1 a d δv/v d 1 d S 1 9 4 3 3(a) 3(b) (b) 1 (a) 3(b)

62 18 1 2003 1 4 k-means [Guha 98] library(mva) # x <- read.table("datafile") # cl <- kmeans(x, 2, 20) # plot(x, col=cl$cluster) # (a) 5 R k-means Ward (b) 3 [Everitt 93] k-means [Guha 98] 4 k-means k-means 7 10 k-means O(Nk) O(N 2 ) k-means 5. WWW 1 2 The R Project: http://www.r-project.org/ S R OS kmeans hclust 5 Netlib: http://www.netlib.org/ Scientific Applications on LINUX: http://sal.kachinatech.com/ LINUX StatPages.net: http://www.statpages.net/ Recursive-Partitioning.com: http://www.recursive-partitioning.com/ KDnuggets: http://www.kdnuggets.com/

1 63 2 xi1 xi2 xi3 v 6. Web 1 3 Jaccard [Jain 88] k-means Huang k-mode [Huang 98] simple matching Web 2 ROCK Guha ROCK RObust Clustering using links [Guha 99] Jaccard k n i link(x q,x r ) n 1+2f(θ) x q,x r C i i i=1 link(x q,x r ) x q x r n 1+2f(θ) i 3 CACTUS ROCK O(N 3 ) CACTUS CAtegorical ClusTering Using Summaries [Ganti 99] Ganti CACTUS 6 STIRR i a i D i j a j D j σ(a i,a j ) E[σ(a i,a j )] σ(a i,a j ) > αe[σ(a i,a j )] a i a j α > 1 S i D i S j D j S i S j S i S j S=S 1 S d 3 1 S i S j 2 S i 3 σ(s) αe[σ(s)] σ(s) S E[σ(S)] 2 D i D j 4 STIRR Gibson STIRR Sieving Through Iterated Relational Reinforcement [Gibson 98] 6 STIRR x i1,x i2,x i3 3 2 v v x τ

64 18 1 2003 1 v x i2 x i3 w(x τ ) w(x τ ) v v w(v) 5 STIRR Ding Mcut [Ding 01] C 1 C 2 cut(c 1,C 2 ) C 1 W (C 1 ) Mcut = cut(c 1,C 2 ) W (C 1 ) + cut(c 1,C 2 ) W (C 2 ) Mcut NP C 1 0 C 2 1 0 C 1 Mcut [Tsuda 96] Web [He 01] [ 00] [Dhillon 01] 7. 1 i θ i f i (x θ i ) α i > 0, k i α i = 1 Pr[x θ 1,...θ k ] = k α i f i (x θ i ) i f i (x θ i ) X EM [Dempster 77] k-means 4 kmeans Meilă [Meilă 01] EM [Cadez 00] [ 02] 2 AutoClass Maximum A-Posteriori; MAP) Cheeseman AutoClass [Cheeseman 96, Hanson 91] Web http://ic.arc.nasa.gov/ic/projects /bayes-group/autoclass/ Paliouras [Paliouras 00] WWW Auto- Class Kohonen [Kohonen 97] [ 2 ] [Cadez 00] Cadez, I. V., Gaffney, S., and Smyth, P.: A General Probabilistic Framework for Clustering Individuals and Objects, in Proc. of The 6th Int l Conf. on Knowledge Discovery and Data Mining, pp. 140 149 (2000) [Cheeseman 96] Cheeseman, P. and Stutz, J.: Bayesian Classification (AutoClass): Theory and Results, in Fayyad, U. M., Diatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R. eds., Advances in Knowledge Discovery and Data Mining, chapter 6, pp. 153 180, AAAI Press/The MIT Press (1996) [Cutting 92] Cutting, D. R., Karger, D. R., Pedersen, J. O., and Tukey, J. W.: Scatter/Gather: A Cluster-based Approach to Browsing Large Document Collections, in Proc. of the 15th Annual ACM SIGIR Conf. on Research and

1 65 Development in Information Retrieval, pp. 318 329 (1992) [Dempster 77] Dempster, A. P., Laird, N. M., and Rubin, D. B.: Maximum Likelihood from Incomplete Data via The EM Algorithm, Journal of the Royal Statistical Society (B), Vol. 39, No. 1, pp. 1 38 (1977) [Dhillon 01] Dhillon, I. S.: Co-clustering documents and words using Bipartite Spectral Graph Partitioning, in Proc. of The 7th Int l Conf. on Knowledge Discovery and Data Mining, pp. 269 274 (2001) [Ding 01] Ding, C. H. Q., He, X., Zha, H., Gu, M., and Simon, H. D.: A Min-max Cut Algorithm for Graph Partitioning and Data Clustering, in Proc. of the IEEE Int l Conf. on Data Mining, pp. 107 114 (2001) [Dubes 79] Dubes, R. and Jain, A. K.: Validity Studies in Clustering Methodologies, Pattern Recognition, Vol. 11, pp. 235 254 (1979) [Everitt 93] Everitt, B. S.: Cluster Analysis, Edward Arnold, third edition (1993) [Fayyad 96] Fayyad, U. M., Piatetsky-Shapiro, G., and Smyth, P.: From Data Mining to Knowledge Discovery: An Overview, in Fayyad, U. M., Diatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R. eds., Advances in Knowledge Discovery and Data Mining, chapter 1, pp. 1 34, AAAI Press/The MIT Press (1996) [Fisher 87] Fisher, D. H.: Knowledge Acquisition via Incremental Conceptual Clustering, Machine Learning, Vol. 2, pp. 139 172 (1987) [Fisher 91] Fisher, D. H. and Pazzani, M. J.: Computational Models of Concept Learning, in Fisher, D. H., Pazzani, M. J., and Langley, P. eds., Concept Formation: Knowledge and Experience in Unsupervised Learning, chapter 1, pp. 3 43, Morgan Kaufmann (1991) [ 01],,,, 3, (2001) [Ganti 99] Ganti, V., Gehrke, J., and Ramakrishnan, R.: CACTUS Clustering Categorical Data Using Summaries, in Proc. of The 5th Int l Conf. on Knowledge Discovery and Data Mining, pp. 73 83 (1999) [Gibson 98] Gibson, D., Kleinberg, J., and Raghavan, P.: Clustering Categorical Data: An Approach Based on Dynamical Systems, in Proc. of the 24th Very Large Database Conf., pp. 311 322 (1998) [Guha 98] Guha, S., Rastogi, R., and Shim, K.: CURE: An Efficient Clustering Algorithm for Large Databases, in Proc. of the ACM SIGMOD Int l Conf. on Management of Data, pp. 73 80 (1998) [Guha 99] Guha, S., Rastogi, R., and Shim, K.: ROCK: A Robust Clustering Algorithm for Categorical Attributes, in Proc. of the 15th Int l Conf. on Data Engineering, pp. 512 521 (1999) [Hanson 91] Hanson, R., Stutz, J., and Cheeseman, P.: Bayesian Classification with Correlation and Inheritance, in Proc. of the 12th Int l Joint Conf. on Artificial Intelligence, pp. 692 698 (1991) [He 01] He, X., Ding, C. H. Q., Zha, H., and Simon, H. D.: Automatic Topic Identification Using Webpage Clustering, in Proc. of the IEEE Int l Conf. on Data Mining, pp. 195 202 (2001) [Hinneburg 99] Hinneburg, A. and Keim, D. A.: Clustering Methods for Large Databases: From the Past to the Future, in Proc of the ACM SIGMOD Int l Conf. on Management of Data, p. 509 (1999) [Huang 98] Huang, Z.: Extensions to the k-means Algorithm for Clustering Large Data with Categorical Values, Journal of Data Mining and Knowledge Discovery, Vol. 2, pp. 283 304 (1998) [ 00],, D-II, Vol. J83-D-II, No. 3, pp. 957 966 (2000) [ 98],,,, (1998) [Jain 88] Jain, A. K. and Dubes, R. C.: Algorithms for Clustering Data, Prentice Hall (1988) [Jain 99] Jain, A. K., Murty, M. N., and Flynn, P. J.: Data Clustering: A Review, ACM Computing Surveys, Vol. 31, No. 3 (1999) [Jain 00] Jain, A. K., Duin, R. P. W., and Mao, J.: Statistical Pattern Recognition: A Review, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 22, No. 1, pp. 4 37 (2000) [Keim 99] Keim, D. A. and Hinneburg, A.: Tutorial 3. Clustering Techniques for Large Data Sets From the Past to the Future, in Tutorial Notes of The 5th Int l Conf. on Knowledge Discovery and Data Mining, pp. 141 181 (1999) [Kohonen 97] Kohonen, T.: Self-Organizing Maps, Springer- Verlag, second edition (1997) [Meilă 01] Meilă, M. and Heckerman, D.: An Experimental Comparison of Model-Based Clustering Methods, Machine Learning, Vol. 42, No. 9-29 (2001) [Michalski 83] Michalski, R. S. and Stepp, R. E.: Learning from Observataion: Conceptual Clustering, in Michalski, R. S., Carbonell, J. G., and Mitchell, T. M. eds., Machine Learning I: An Artificial Intelligence Approach, chapter 11, pp. 331 363, Morgan Kaufmann (1983) [Milligan 85] Milligan, G. W. and Cooper, M. C.: An Examination of Procedures for Determining The Number of Clusters in A Data Set, Psychometrika, Vol. 50, No. 2, pp. 159 179 (1985) [ 99], (1999) [ 85],, Vol. 24, No. 11, pp. 999 1006 (1985) [Paliouras 00] Paliouras, G., Papatheodorou, C., and Karkaletsis, V.: Clustering the Users of Large Web Sites into Communities, in Proc. of the 17th Int l Conf. on Machine Learning, pp. 719 726 (2000) [ 02],!!,, Vol. 43, No. 5, pp. 562 567 (2002) [ 96],, Vol. 8, No. 3, pp. 463 467 (1996) [Tsuda 96] Tsuda, K., Minoh, M., and Ikeda, K.: Extracting straight lines by sequential fuzzy clustering, Pattern Recognition Letters, Vol. 17, pp. 643 549 (1996) [ 02],, 5, pp. 196 201 (2002) 1968 1992 1994 2001 ( ) ACM