Distributed Probabilistic Model-Building Genetic Algorithm

Σχετικά έγγραφα
Simplex Crossover for Real-coded Genetic Algolithms

Topology Structural Optimization Using A Hybrid of GA and ESO Methods

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

Buried Markov Model Pairwise

Statistical Inference I Locally most powerful tests

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

Section 8.3 Trigonometric Equations

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Inverse trigonometric functions & General Solution of Trigonometric Equations

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

5.4 The Poisson Distribution.

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Adaptive grouping difference variation wolf pack algorithm

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

The Simply Typed Lambda Calculus

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

Srednicki Chapter 55

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Second Order RLC Filters

Numerical Analysis FMN011

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

C.S. 430 Assignment 6, Sample Solutions

Matrices and Determinants

D Alembert s Solution to the Wave Equation

, -.

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Section 7.6 Double and Half Angle Formulas

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Example Sheet 3 Solutions

Section 9.2 Polar Equations and Graphs

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

EE512: Error Control Coding

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Solution Series 9. i=1 x i and i=1 x i.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Stabilization of stock price prediction by cross entropy optimization

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

ST5224: Advanced Statistical Theory II

Introduction to Risk Parity and Budgeting

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Partial Differential Equations in Biology The boundary element method. March 26, 2013

ER-Tree (Extended R*-Tree)

Homework 8 Model Solution Section

MathCity.org Merging man and maths

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Study of urban housing development projects: The general planning of Alexandria City

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

PARTIAL NOTES for 6.1 Trigonometric Identities

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ΔΙΠΛΩΜΑΣΙΚΗ ΕΡΓΑΙΑ. του φοιτητή του Σμήματοσ Ηλεκτρολόγων Μηχανικών και. Σεχνολογίασ Τπολογιςτών τησ Πολυτεχνικήσ χολήσ του. Πανεπιςτημίου Πατρών

Strain gauge and rosettes

Reminders: linear functions

ΤΜΗΜΑ ΕΚΠΑΙ ΕΥΤΙΚΗΣ ΚΑΙ ΚΟΙΝΩΝΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΚΑΤΕΥΘΥΝΣΗ: ΣΥΝΕΧΙΖΟΜΕΝΗ ΕΚΠΑΙ ΕΥΣΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ

Solutions to Exercise Sheet 5

2002 Journal of Software

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Probabilistic Approach to Robust Optimization

Math 6 SL Probability Distributions Practice Test Mark Scheme

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

6.3 Forecasting ARMA processes

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Approximation of distance between locations on earth given by latitude and longitude

Θωμάς ΣΑΛΟΝΙΚΙΟΣ 1, Χρήστος ΚΑΡΑΚΩΣΤΑΣ 2, Βασίλειος ΛΕΚΙΔΗΣ 2, Μίλτων ΔΗΜΟΣΘΕΝΟΥΣ 1, Τριαντάφυλλος ΜΑΚΑΡΙΟΣ 3,

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Wiki. Wiki. Analysis of user activity of closed Wiki used by small groups

Homework 3 Solutions

IMES DISCUSSION PAPER SERIES


Διπλωματική Εργασία. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

Areas and Lengths in Polar Coordinates

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

ΕΚΤΙΜΗΣΗ ΤΟΥ ΚΟΣΤΟΥΣ ΤΩΝ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΕΠΙΡΡΟΗΣ ΤΟΥ

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)

2 Composition. Invertible Mappings

If we restrict the domain of y = sin x to [ π 2, π 2

MSM Men who have Sex with Men HIV -

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Τα γνωστικά επίπεδα των επαγγελματιών υγείας Στην ανοσοποίηση κατά του ιού της γρίπης Σε δομές του νομού Λάρισας

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ. Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο. την απόκτηση του διπλώματος

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Επιβλέπουσα Καθηγήτρια: ΣΟΦΙΑ ΑΡΑΒΟΥ ΠΑΠΑΔΑΤΟΥ

Finite Field Problems: Solutions

Γηπισκαηηθή Δξγαζία ημο θμζηδηή ημο Σιήιαημξ Ζθεηηνμθυβςκ Μδπακζηχκ ηαζ Σεπκμθμβίαξ Τπμθμβζζηχκ ηδξ Πμθοηεπκζηήξ πμθήξ ημο Πακεπζζηδιίμο Παηνχκ

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΣΤΥΛΙΑΝΗΣ Κ. ΣΟΦΙΑΝΟΠΟΥΛΟΥ Αναπληρώτρια Καθηγήτρια. Τµήµα Τεχνολογίας & Συστηµάτων Παραγωγής.

Parametrized Surfaces

ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ. Υποβάλλεται στην

Areas and Lengths in Polar Coordinates

Μηχανική Μάθηση Hypothesis Testing

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Transcript:

,,,, GA PMBGA PCA PCA UNDX MGG Boundary Extension by Mirroring BEM Distributed Probabilistic Model-Building Genetic Algorithm Masaki SANO, Tomoyuki HIROYASU, Mitsunori MIKI, Hisashi SHIMOSAKA, and Shigeyoshi TSUTSUI Graduate School of Engineering, Doshisha University Department of Engineering, Doshisha University Department of Management Information, Hannan University In this paper, a new model of Probabilistic Model-Building Genetic Algorithms(s), Distributed PMBGA (), is proposed. In the, the correlation among the design variables is considered by Principal Component Analysis(PCA) when the offsprings are generated. The island model is also applied in the for maintaining the population diversity. Through the standard test functions, the effectiveness of the is examined. In this paper, some models of are examined. The where PCA is executed in the half of the islands and not executed in the other islands can find the good solutions in the problems whether or not the problems have the correlation among the design variables. From these results, it is clarified that the has higher searching ability than the UNDX with MGG. It is also discussed the treatment of the boundary condition of the design field using the Boundary Extension by Mirroring (BEM). 1 Genetic Algorithm : GA 1) populationselection crossover mutation genetic operator GA 2) Probabilistic Model-Building Genetic Algorithm : PMBGA 3) GA Real-Coded GA 1

Unimodal Normal Distribution Crossover : UNDX 4) UNDX 2 UNDX UNDX 5) Eshelman Blend Crossover : BLX- BLX- GA 6) Schwefel correlated mutation PM- BGA Distributed PMBGA : Principal Component Analysis : PCA 5) Population Select promissing individuals Generate new individuals, and Replace old individuals with new ones Estimation of distribution Construct probabilistic model Probabilistic Model 1: Probabilistic Model-Building GA 3 GA GA 7) GA 1 Tanese Distributed GA : DGA 8) DGA (migration) DGA 8) Island 2 3 PMBGA 4 5 Migration Individual 2 PMBGA GA PMBGA GA 2: Distributed Genetic Algorithm 4 PMBGA Distributed Probabilistic Model-Building Genetic Algorithm : DGA PM- BGA PCA 2

4.1 PMBGA 1 t 3 v2 x2 v1 y2 4.3 PCA S(t) PCA PCA S(t) PCA T (t) ( 4) T (t) T (t) PCA migration x1 reduction of corelation between design variables y1 generation 0 Island Archive for PCA Select better individuals Psub(0) T(0) generation 1 Island Replace Generate new individuals y2 y1 generation 2 Psub(1) Psub(2) T(1) T(2) 3: 4: PCA with the archive of the best individuals 1. 2. 3. PCA 4. 5. 6. 7. 8. 9. 4.2 P sub (t) R s S(t) S(t) S(t) T (t) D T (t) T nt (t) D S(t) D T (t) X ns(t) D T S D D S S = 1 ns(t) 1 T T T (1) S λ 1,λ 2,...,λ D v 1, v 2,...,v D D S(t) X V = [v 1, v 2,...,v D ] X V Y Y ns(t) D Y 3

selected individual x v2 distribution of archives for PCA x v1 reduce correlation y y 5: Reduction operation of correlation between design variables with PCA 4.4 np (t) Y n n Y Amp Y Y offs np (t) D 4.5 Y offs V X offs = Y offs V 1 (2) X offs P (t) P (t +1) 4.6 R mu 4.7 ne(t) E(t) E(t) P (t +1) 4.8 GA PCA 1 5 5.1 Rastrigin Schwefel, Rosenbrock Ridge Griewank 5 0 Schwefel 10 20 Rastrigin Schwefel Rosenbrock Ridge Griewank F Rastrigin =10n + F Schwefel = F Rosenbrock = n i=1 n ( x 2 i 10 cos(2πx i ) ) (3) i=1 ( 5.12 x i < 5.12) ) x i sin( xi C (4) (C : optimum.) ( 512 x i < 512) n ( 100(x1 x 2 i ) 2 +(1 x i ) 2) (5) i=2 F Ridge = F Griewank =1+ ( 2.048 x i < 2.048) n ( i ) 2 x j (6) i=1 j=1 ( 64 x i < 64) n x 2 n i 4000 ( cos ( x i ) ) (7) i=1 i ( 512 x i < 512) i=1 5.2 PCA 4

PCA PCA 1 1.0 10 10 3.0 10 6 20 2 6 1: Parameters Population size 512 Number of elites 1 Number of islands 32 Migration rate 0.0625 Migration interval 5 Archive size for PCA 100 Sampling rate 0.25 Amp. of Variance 2 Mutation rate 0.1/ (Dim. of function) model 1 : PCA model 2 : PCA model 3 : PCA PCA model 1 4 model 2 PCA model 3 PCA GA Distributed Environment GA : DEGA DGA 9) DEGA GA DGA DEGA 2: Number of times that the threshold is reached model 1 model 2 model 3 Rastrigin 0 20 20 Schwefel 20 20 20 Rosenbrock 20 0 20 Ridge 20 20 20 Griewank 19 17 20 Number of Evaluation 2.5x10 6 2.0x10 6 1.5x10 6 1.0x10 6 5.0x10 5 model 1 model 2 model 3 0.0 Rastrigin Schwefel Rosenbrock Ridge Griewank 6: Average number of evaluations to reach the threshold Schwefel Rastrigin model 1 PCA Rosenbrock PCA model 2 Ridge model 2 PCA PCA PCA 5

model 3 Griewank model 1 model 2 model 3 model 3 5.3 5.2 Rastrigin PCA PCA PCA Rastrigin PCA 1 5.2 model 1 PCA Rastrigin Rosenbrock 7 20 Rastrigin Rosenbrock 8 20 erase/10 10 10 Rastrigin Num. of Updated Individuals 500 400 300 200 100 0 0.0 2.5x10 5 5.0x10 5 7.5x10 5 1.0x10 6 Rastrigin Num. of Updated Individuals 500 400 300 200 100 0 0.0 2.5x10 5 5.0x10 5 7.5x10 5 1.0x10 6 Rosenbrock 7: History of number of updated individuals in archive of the best individuals 200 150 100 50 erase/10 0 0.0 2.5x10 5 5.0x10 5 Rastrigin 20 15 10 5 erase/10 0 0.0 2.5x10 5 5.0x10 5 Rosenbrock 8: History of averave of evaluation values in the model in which archive is erased each 10 generation Rosenbrock Rastrigin Rastrigin PCA 1 5.4 UNDX MGG GA MGG Unimodal Normal Distribution Crossover : UNDX GA 4) UNDX 3 2 1 2 3 UNDX Minimal Generation Gap MGG 10) 6

MGG 1 MGG 9 20 20 300 50 100 α =0.5 β =0.35 5.2 model 3 Rastrigin Schwefel 5.5 GA Tsutsui Boundary Extension by Mirroring (BEM) 11) BEM extension rate r e (0.0 <r e < 1.0) GA BEM 5.2 model 3 3 3: Domain of objective functions Rosenbrock Ridge Function Optimal solution Domain Rastrigin 0.0 [0, 5.12] Schwefel 420.968746 [-512, 421] Rosenbrock 1.0 [-2.048, 1] Ridge 0.0 [0, 64] Griewank 9: History of average of evaluation values 9 10 20 BEM 7

BEM BEM 1.0x10-10 0.0 2.5x10 5 5.0x10 5 7.5x10 5 1.0x10 6 Rastrigin (modified) BEM 1.0x10-10 0.0 2.5x10 5 5.0x10 5 7.5x10 5 1.0x10 6 Rosenbrock (modified) BEM 1.0x10-10 5 5 0.0 2.5x10 5.0x10 Schwefel (modified) BEM 1.0x10-10 5 5 0.0 2.5x10 5.0x10 Ridge (modified) 10: History of average of evaluation values on functions which have optimum at the edge of search space 6 GA DPM- BGA PCA PCA PCA DPMGA PCA GA UNDX MGG BEM BEM 1) D.E.Goldberg. Genetic Algorithms in Search Optimization and Machine Learnig. Addison- Wesley, 1989. 2) Annie S. Wu, Robert K. Lindsay, and Rick L. Riolo. Emprical observation on the roles of crossover and mutation. Proc. 7th International Conference on Genetic Algorithms, pp. 362 369, 1997. 3) Martin Pelikan, David E. Goldberg, and Fernando Lobo. A Survey of Optimization by Building and Using Probabilistic Models. No. 99018, Sep. 1999. 4),,. UNDX GA., Vol. 14, No. 6, pp. 1146 1155, 1999. 5),.. 13, pp. 245 250, 2001. 6) Thomas Bäck, Frank Hoffmeister, and Hans-Paul Schwefel. A Survey of Evolution Strategies. Proc. 4th International Conference on Genetic Algorithms, pp. 2 9, 1991. 7) Erick Cantú-Paz. A survey of parallel genetic algorithms. Calculateurs Paralleles, Vol. 10, No. 2, 1998. 8) Reiko Tanese. Distributed Genetic Algorithms. Proc. 3rd International Conference on Genetic Algorithms, pp. 434 439, 1989. 9) M.Miki, T.Hiroyasu, M.Kaneko, and K.Hatanaka. A Parallel Genetic Algorithm with Distributed Environment Scheme. IEEE Proceedings of Systems, Man and Cybernetics Conference SMC 99, 1999. 10),,.., Vol. 12, No. 5, pp. 734 744, 1997. 11) Shigeyoshi Tsutsui. Multi-parent Recombination in Genetic Algorithms with Search Space Boundary Extension by Mirroring. Proc. the 5th International Conference on Parallel Problem Solving from Nature (PPSN V), pp. 428 437, Sep, 1998. 8