= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

Σχετικά έγγραφα
( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

Approximation of the Lerch zeta-function

Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat

Appendix A. Stability of the logistic semi-discrete model.

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

I.I. Guseinov. Department of Physics, Faculty of Arts and Sciences, Onsekiz Mart University, Çanakkale, Turkey

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

Xiaoquan (Michael) Zhang

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:

is the home less foreign interest rate differential (expressed as it

( P) det. constitute the cofactor matrix, or the matrix of the cofactors: com P = c. ( 1) det

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

α ]0,1[ of Trigonometric Fourier Series and its Conjugate

ω = radians per sec, t = 3 sec

Math221: HW# 1 solutions

The choice of an optimal LCSCR contract involves the choice of an x L. such that the supplier chooses the LCS option when x xl

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Homework 3 Solutions

GENERAL FRACTIONAL CALCULUS OPERATORS CONTAINING THE GENERALIZED MITTAG-LEFFLER FUNCTIONS APPLIED TO ANOMALOUS RELAXATION

Lecture 12 Modulation and Sampling

Almost all short intervals containing prime numbers

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i

Global Attractor for a Class of Nonlinear Generalized Kirchhoff-Boussinesq Model

Electronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Section 8.3 Trigonometric Equations

The Student s t and F Distributions Page 1

Section 7.6 Double and Half Angle Formulas

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations

Srednicki Chapter 55

Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4,

Statistical Inference I Locally most powerful tests

2 Composition. Invertible Mappings

Chapter 6 ( )( ) 8 ( ) ( )( ) Exercise Solutions. Microelectronics: Circuit Analysis and Design, 4 th edition Chapter 6. EX6.

Managing Production-Inventory Systems with Scarce Resources

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Derivation of the Filter Coefficients for the Ramp Invariant Method as Applied to Base Excitation of a Single-degree-of-Freedom System Revision B

ΕΝΑ ΔΙΑΓΡΑΜΜΑ ΕΛΕΓΧΟΥ ΓΙΑ ΤΟΝ ΕΛΕΓΧΟ ΔΙΕΡΓΑΣΙΩΝ ΥΨΗΛΗΣ ΠΟΙΟΤΗΤΑΣ ΜΕ ΙΔΙΟΤΗΤΕΣ ΤΑΧΕΙΑΣ ΑΡΧΙΚΗΣ ΑΝΤΙΔΡΑΣΗΣ

Example Sheet 3 Solutions

6. MAXIMUM LIKELIHOOD ESTIMATION

Math 6 SL Probability Distributions Practice Test Mark Scheme

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

A Simple Version of the Lucas Model

6.003: Signals and Systems

Derivations of Useful Trigonometric Identities

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales

w o = R 1 p. (1) R = p =. = 1

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

þÿ»±íº »¹ Áà  : É º±¹ Ä þÿ Á³ Ä Å : ¼¹± ºÁ¹Ä¹º ±À Ä ¼

6.003: Signals and Systems. Modulation

Laplace s Equation in Spherical Polar Coördinates

4.6 Autoregressive Moving Average Model ARMA(1,1)

ΜΟΝΑΔΕΣ ΑΡΙΣΤΕΙΑΣ ΑΝΟΙΧΤΟΥ ΛΟΓΙΣΜΙΚΟΥ

(As on April 16, 2002 no changes since Dec 24.)

Matrices and Determinants

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw


Trigonometric Formula Sheet

The one-dimensional periodic Schrödinger equation

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

ECE145a / 218a Tuned Amplifier Design -basic gain relationships

EE101: Resonance in RLC circuits

Oscillation criteria for two-dimensional system of non-linear ordinary differential equations

EE512: Error Control Coding

Variational Wavefunction for the Helium Atom

Forced Pendulum Numerical approach

10.7 Performance of Second-Order System (Unit Step Response)

ΠΟΛΥ ΜΕΓΑΛΗ : ΜΕΓΑΛΗ : ΜΕΣΑΙΑ: ΜΙΚΡΗ

Linear singular perturbations of hyperbolic-parabolic type

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Technical Appendix. Uncertainty about Government Policy and Stock Prices

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Υπόδειγµα Προεξόφλησης

Fourier Transform. Fourier Transform

A Note on Intuitionistic Fuzzy. Equivalence Relation

Areas and Lengths in Polar Coordinates

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Internet Appendix for Uncertainty about Government Policy and Stock Prices

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 10. Hence, the circuit in the frequency domain is as shown below. 4 Ω V 1 V 2. 3Vx 10 = + 2 Ω. j4 Ω. V x. At node 1, (1) At node 2, where V

On local motion of a general compressible viscous heat conducting fluid bounded by a free surface

Second Order Partial Differential Equations

Solutions to Exercise Sheet 5

These derivations are not part of the official forthcoming version of Vasilaky and Leonard

Multi-dimensional Central Limit Theorem

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

Problem Set 3: Solutions

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Transcript:

Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L 4] 3L π π ] 3 π L π ] 8e 4 8e 4 3 8e 4 3 8e 4 π π 252 e L 3 + 2 + 25] L 3 2 + 25 + 2 + 25] ] L 3 2 + 5 2 + 5 5 2 + 5 2 ] 3L 2 + 5 2 + ] 5 5 L 2 + 5 2 3 co(5) + 5 in(5) 253 a From exercie 243 we have L in(ω)] 2ω ( 2 + ω 2) 2 y he definiion of he invere Laplace ranform lineariy i hen follow ha ] ] in(ω) L 2ω ( 2 + ω 2) 2ωL 2 ( 2 + ω 2) 2 Dividing hrough by 2ω hen yield L ] ( 2 + ω 2) 2 2ω in(ω)

96 The Invere Laplace Tranform 254 a L y + 9y ] L] L y ] + 9Ly] Y() y() ] + 9Y() }{{} 4 ( + 9)Y() 4 Y() 4 + 9 Taking he invere: y() L Y()] L 4 + 9 ] 4L ( 9)] 4e 9 255 a Fir we mu find he parial fracion expanion: 7 + 5 ( + 2)( ) A + 2 + A( ) ( + 2)( ) + ( + 2) ( )( + 2) A( ) + ( + 2) ( + 2)( ) Cuing ou he middle muliplying hrough by ( + 2)( ) hen give A( ) + ( + 2) 7 + 5 Solving for A i eaily done by repecively plugging 2 ino he la equaion olving : A( 2 ) + ( 2 + 2) 7( 2) + 5 A 7( 2) + 5 3 3 A( ) + ( + 2) 7 + 5 7 + 5 + 2 4 Thu he parial fracion expanion of our funcion i 7 + 5 ( + 2)( ) A + 2 + 3 + 2 + 4 Now we can ake he invere ranform: L 7 + 5 L ( + 2)( )] 3 + 2 + 4 ] 3L ] + 4L ] 3e 2 + 4e + 2 255 c 2 4 ( 2)( + 2) A 2 + + 2 A( + 2) ( 2)( + 2) + ( 2) ( + 2)( 2) A( + 2) + ( 2) ( 2)( + 2)

Worked Soluion 97 So A( + 2) + ( 2) Leing 2 yield A(2 + 2) + (2 2) A 4 while leing yield A( 2 + 2) + ( 2 2) 4 Thu L 2 4] 2 4 A 2 + L /4 2 + /4 + 2] 4 L 2 + 2 /4 2 + /4 + 2 ] 4 L + 2 ] 4 e2 4 e 2 255 e 3 4 2 2 ( 4) A 2 + + C 4 A( 4) + ( 4) + C2 2 ( 4) So A( 4) + ( 4) + C 2 Muliplying hi ou gahering like erm yield ( + C) 2 + (A 4) 4A 2 + + giving u he yem which in urn mean ha + C A 4 4A A 4 A 4 6 C 6 So 3 4 2 ] L 3 4 2 A 2 + + C 4 /4 2 /6 L /4 2 /6 + /6 4] ] 4 L 2 6 L + /6 4 ] + 6 L 4] 4 6 + 6 e4 6 e4 4 6

98 The Invere Laplace Tranform 255 g 5 2 + 6 4 ( + 6) ( 2 + 6 ) A + 6 + + C 2 + 6 ( ) A 2 + 6 + ( + C)( + 6) ( + 6) ( 2 + 6 ) So ( ) A 2 + 6 + ( + C)( + 6) 5 2 + 6 4 ( ) Muliplying hi ou gahering like erm yield (A + ) 2 + (6 + C) + (6A + 6C) 5 2 + 6 4 giving u he yem A + 5 6 + C 6 6A + 6C 4 ( ) The fir coefficien A i eaily found afer fir leing 6 in equaion ( ): ( ) A 6] 2 + 6 + ( 6] + C)( 6 + 6) 5 6] 2 + 6 6] 4 A 5 6]2 + 6 6] 4 6] 2 + 6 2 From hi yem ( ) we hen obain 5 A 5 2 3 C 6 6 6 6 3 2 So 5 2 + 6 4 ( + 6) ( 2 + 6 ) A + 6 + + C 2 + 6 2 + 6 L 5 2 + 6 4 ( + 6) ( 2 + 6 )] L 2 + 6 + 2L + 6 2e 6 + 3L + 3 2 2 + 6 2 + 6 + 3 2 + 6 2 2 + 6] 3 2 + 6 2 2 + 6 ] + 3L 2 2L + 6] 2 + 6] ] 2 + 4 2 2 ] 4 4 L 2 + 4 2 2e 6 + 3 co(4) 3 in(4) 255 i 6 2 + 62 + 92 ( + ) ( 2 + + 2 ) 6 2 + 62 + 92 ( + )( + 3)( + 7) A + + + 3 + C + 7 A( + 3)( + 7) + ( + )( + 7) + C( + )( + 3) ( + )( + 3)( + 7)

Worked Soluion 99 So A( + 3)( + 7) + ( + )( + 7) + C( + )( + 3) 6 2 + 62 + 92 ( ) Leing in equaion ( ): A( + 3)( + 7) + ( + 7) + C ( + 3) 6 ] 2 + 62 ] + 92 A 6 ]2 + 62 ] + 92 ( + 3)( + 7) 3 Leing 3 in equaion ( ): A ( 3 + 7) + ( 3 + )( 3 + 7) + C( 3 + ) 6 3] 2 + 62 3] + 92 6 3]2 + 62 3] + 92 ( 3 + )( 3 + 7) 5 Leing 7 in equaion ( ): A( 7 + 3) + ( 7 + ) + C( 7 + )( 7 + 3) 6 7] 2 + 62 7] + 92 C 6 7]2 + 62 7] + 92 ( 7 + )( 7 + 3) 2 Thu 6 2 + 62 + 92 ( + ) ( 2 + + 2 ) A + + + 3 + C + 7 3 + + 5 + 3 2 + 7 L 6 2 )] + 62 + 92 ( + ) ( 2 + + 2 L 3 + + 5 + 3 2 + 7] 3L + ] + 5L + 3 3e + 5e 3 2e 7 ] 2L + 7] 256 a Taking he ranform: L y 9y ] L] L y ] 9Ly]

2 The Invere Laplace Tranform 2 Y() y() y ] () 9Y() }{{}}{{} 4 9 ) ( 2 9 Y() 4 9 Y() 4 + 9 2 9 Finding he parial fracion expanion for Y hen aking he invere ranform: 4 + 9 2 9 4 + 9 ( 3)( + 3) A 3 + + 3 A( + 3) + ( 3) ( 3)( + 3) So A( + 3) + ( 3) 4 + 9 Leing 3 3 repecively in hi la equaion: A(3 + 3) + 4 3 + 9 A 4 3 + 9 3 + 3 A + ( 3 3) 4 3] + 9 4 3] + 9 3 3 7 2 2 Thu Y() A 3 + + 3 7/2 3 + /2 + 3 y() L Y()] L 7/2 3 + /2 + 3] 7 ] 2 L + ] 3 2 L 7 + 3 2 e3 + 2 e 3 256 c Taking he ranform: L y + 8y + 7y ] L 65e 4] L y ] + 8L y ] + 7Ly] 65L e 4] 2 Y() y() y ] () }{{}}{{} 8 + 8Y() y() ] + 7Y() 65 }{{} 4 8 ( ) 2 + 8 + 7 Y() 8 65 65 4 Solving for Y : Y() 65 ( 4) ( 8 + 65 2 ) + + 8 + 7 2 + 8 + 7 65 + (8 + 65)( 4) ( 4) ( 2 + 8 + 7 ) 8 2 + 33 95 ( 4)( + 7)( + )

Worked Soluion 2 Finding he parial fracion expanion of Y : Y() which require ha 8 2 + 33 95 ( 4)( + 7)( + ) A 4 + + 7 + C + A( + 7)( + ) + ( 4)( + ) + C( 4)( + 7) ( 4)( + 7)( + ) A( + 7)( + ) + ( 4)( + ) + C( 4)( + 7) 8 2 + 33 95 ( ) Leing 4 in equaion ( ): A(4 + 7)(4 + ) + (4 + ) + C (4 + 7) 8 4 2 + 33 4 95 A 8 42 + 33 4 95 (4 + 7)(4 + ) Leing 7 in equaion ( ): 3 A ( 7 + ) + ( 7 4)( 7 + ) + C( 7 4) 8 7] 2 + 33 7] 95 8 7]2 + 33 7] 95 ( 7 4)( 7 + ) Leing in equaion ( ): A( + 7) + ( 4) + C( 4)( + 7) 8 ] 2 + 33 ] 95 So C 8 ]2 + 33 ] 95 ( 4)( + 7) Y() A 4 + + 7 + 4 C + 3 4 + + 7 + 4 + y() L Y()] L 3 4 + + 7 + 4 + ] 3L 4 ] + L 3e 4 + e 7 + 4e ( 7)] + 4L ( )] 257 a Uing he ranlaion ideniy we have ] L ( 7) 5 L F( 7)] e 7 f () ( )

22 The Invere Laplace Tranform where Replacing 7 wih X hi mean F( 7) ( 7) 5 Hence F(X) X 5 F() 5 f () L F()] L 5 ] 4! L 4! 4+ ] 24 4 Thu equaion ( ) become ] L ( 7) 5 e 7 f () e 7 24 4 257 c Since he denominaor doe no facor we complee he quare of he denominaor: 2 6 + 45 } 2 2 {{ 3 + 3 } 2 3 + 45 ( 3) 2 + 36 ( 3) 2 So L 2 6 + 45] L ( 3) 2 + 36] L F( 3)] e 3 f () ( ) wih F( 3) ( 3) 2 + 36 To ge F() fir le X 3 (equivalenly X + 3 ) in hi equaion: which mean Thu F(X) X + 3 X 2 + 36 F() + 3 2 + 36 2 + 6 2 + 3 2 + 6 2 f () L F()] ] L 2 + 6 2 + 3 2 + 6 2 ] L 2 + 6 2 + 3 ] 6 6 L 2 + 6 2 co(6) + 2 in(6) equaion ( ) coninue a L 2 6 + 45] e 3 f () e 3 co(6) + 2 in(6) ]

Worked Soluion 23 257 e Since he denominaor facor a 2 + 8 + 6 ( + 4) 2 ( 4] ) 2 we can apply he ranlaion ideniy a follow: ] L 2 L + 8 + 6] ( ) 2 4] F( 4]) e 4 f () ( ) wih F( 4]) ( 4] ) 2 Leing X 4] hi become F(X) X 2 So F() 2 f () L F()] L 2 ] equaion ( ) become L 2 + 8 + 6] e 4 f () e 4 e 4 257 g Since we have 2 + 2 + 4 2 + 2 + 36 + 4 ( + 6) 2 + 4 L 2 L + 2 + 4] ( + 6) 2 + 4] F( + 6) F( 6]) e 6 f () ( ) wih Leing X + 6 hi become F( + 6) ( + 6) 2 + 4 F(X) X 2 + 4 Hence F() 2 + 4 2 + 2 2 ] f () L F()] L 2 + 2 2 ] 2 2 L 2 + 2 2 2 in(2) equaion ( ) become L 2 + 2 + 4] e 6 f () e 6 2 in(2) ] 2 in(2)e 6

24 The Invere Laplace Tranform 258 a L y 8y + 7y ] L] L y ] 8L y ] + 7Ly] 2 Y() y() y ] () }{{}}{{} 3 2 8Y() y() ] + 7Y() }{{} 3 ( ) 2 8 + 7 Y() 3 + 2 So wih Y() 3 2 2 8 + 7 3 2 2 8 + 6 + y() L 3 2 ( 4) 2 + ] F( 4) 3 2 ( 4) 2 + L F( 4)] e 4 f () ( ) 3 2 ( 4) 2 + Leing X 4 (equivalenly X + 4 ) we have F(X) 3X + 4] 2 X 2 + 3X X 2 + Thu F() 3 2 + f () L 3 2 3L + ] 2 + ] y() e 4 f () 3 co()e 4 3 co() 258 c L y + 6y + 3y ] L] L y ] + 6L y ] + 3Ly] 2 Y() y() y ] () }{{}}{{} 2 8 + 6Y() y() ] + 3Y() }{{} 2 ( ) 2 + 6 + 3 Y() 2 2

Worked Soluion 25 So Y() 2 + 2 2 + 6 + 3 2 + 2 2 + 6 + 9 + 4 2 + 2 ( + 3) 2 + 4 2 + 2 ( ) 2 3] + 4 ] y() L 2 + 2 ( ) 2 L 3] + 4 F( 3])] e 3 f () ( ) wih F( 3]) 2 + 2 ( 3] ) 2 + 4 Leing X 3] + 3 (equivalenly X 3 ) we have Thu F(X) F() 2X 3] + 2 2 + 4 2 + 4 ] f () L 2 2 + 2 2 + 7 2 2 + 2 2 X 2 + 4 ] ] 2L 2 + 2 2 + 7L 2 2 + 2 2 2X + 4 X 2 + 4 2 2 + 2 2 + 7 2 2 + 2 2 2 co(2) + 7 in(2) y() e 3 f () e 3 2 co(2) + 7 in(2)] 259 a L y ] L e in() ] 2 Y() y() }{{} y () }{{} Le in() ] }{{} f () where 2 Y() F( ) So he la line conaining Y become F() L f ()] Lin()] 2 Y() F( }{{ } ) F(X) X 2 + X 2 + ( ) 2 + Solving for Y aring o find he correponding parial fracion expanion lead o Y() A 2 2( ( ) 2 + ) + + C + D ( ) 2 + A( ( ) 2 + ) + ( ( ) 2 + ) + (C + D) 2 2( ( ) 2 + )

26 The Invere Laplace Tranform which require ha A ( ( ) 2 + ) + ( ( ) 2 + ) + (C + D) 2 Muliplying hi ou gahering like erm hen yield 3 + A 2 + D] 2 + 2A + 2] + 2A 3 + 2 + + which in urn require ha + C A 2 + D 2A + 2 2A From hi i follow ha A 2 A 2 D 2 A 2 C 2 hu he parial fracion expanion of Y i Y() A 2 + + C + D ( ) 2 + ( 2 2 + ) + + ( ) 2 + 2 ( 2 + ) ( ) 2 + Conequenly ( y() L 2 2 + ( ) 2 + )] ( L ] 2 2 +L ] ) L ( ) 2 + ] ) ( + L G( )] 2 ( ) + e g() 2 where Leing X hi become G( ) ( ) 2 + Hence G(X) X X 2 + g() L G()] L 2 + ] co() he la formula above for y become y() ( ) + e g() ( + e co() ) 2 2

Worked Soluion 27 259 c L y 9y ] L 24e 3] L y ] L9y] 24L e 3] 2 Y() y() y ] 24 () 9Y() }{{}}{{} 3] 6 2 ) ( 2 9 Y() 6 2 24 + 3 So Y() 24 ( + 3) ( 2 9 ) + 6 + 2 2 9 24 + (6 + 2)( + 3) ( + 3) ( 2 9 ) 62 + 2 + 3 ( + 3) 2 ( 3) Thi require ha A ( + 3) 2 + + 3 + C 3 A( 3) + ( + 3)( 3) + C( + 3)2 ( + 3) 2 ( 3) A( 3) + ( + 3)( 3) + C( + 3) 2 6 2 + 2 + 3 ( ) Muliplying hi ou gahering like erm yield + C] 2 + A + 6C] + 3A 9 + 9C] 6 2 + 2 + 3 which in urn yield he yem + C 6 A + 6C 2 3A 9 + 9C 3 ( ) Leing 3 in ( ): A( 3 3) + ( 3 3) + C 2 6 3] 2 + 2 3] + 3 A 6 3]2 + 2 3] + 3 3 3 4 Leing 3 in ( ): A + (3 + 3) + C(3 + 3) 2 63] 2 + 23] + 3 C 23]2 + 23] + 3 (3 + 3) 2 4 Uing hee value wih he fir equaion in yem ( ): 6 C 6 4 2

28 The Invere Laplace Tranform Thu Y() A ( + 3) 2 + + 3 + C 3 4 ( + 3) 2 + 2 + 3 + 4 3 y() L 4 ( + 3) 2 + 2 + 3 + 4 3] ] 4L ( + 3) 2 + 2L ] + 4L + 3 3] 4L F( 3]) ] + 2e 3 + 4e 3 4e 3 f () + 2e 3 + 4e 3 wih F( 3]) F( + 3) ( + 3) 2 F(X) X 2 f () L F()] L 2 ] y So y() 4e 3 f () + 2e 3 + 4e 3 4e 3 + 2e 3 + 4e 3 2e 3 4e 3 + 4e 3 25 a From heorem 245 on page 473 he definiion of he invere ranform we have L ] F() f (τ) dτ wih f (τ) L F()] τ In hi problem ( 2 + 9 ) F() wih F() 2 + 9 So )] L ( 2 + 9 τ f (τ) L 2 + 9] L ] F() ] 3 L 3 τ 2 + 3 2 f (τ) dτ 3 in(3τ) 3 in(3τ) dτ co(3)] 9 25 c In hi problem ( 3) 2 F() wih F() ( 3) 2 So ] τ f (τ) L ( 3) 2 LF( 3)] τ e 3 f () τe 3τ

Worked Soluion 29 ] L ( 3) 2 L ] F() f (τ) dτ τe 3τ dτ 3 τe3τ e 3τ dτ 3 3 e3 ] e 3 9 9 + (3 )e 3]