Class 03 Systems modelling

Σχετικά έγγραφα
CHAPTER 10. Hence, the circuit in the frequency domain is as shown below. 4 Ω V 1 V 2. 3Vx 10 = + 2 Ω. j4 Ω. V x. At node 1, (1) At node 2, where V

Μηχανικές αρχές. Spiros Prassas National & Kapodistrian University of Athens

Second Order RLC Filters

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Homework 8 Model Solution Section

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

( ) 2 and compare to M.

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Παραγωγή ήχου από ψάρια που υέρουν νηκτική κύστη: Παραμετρική ανάλυση του μοντέλου

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

Spherical Coordinates

Monochromatic Radiation is Always 100% Polarized

Second Order Partial Differential Equations

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Differentiation exercise show differential equation

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Areas and Lengths in Polar Coordinates

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Areas and Lengths in Polar Coordinates

Higher Derivative Gravity Theories

Space-Time Symmetries

derivation of the Laplacian from rectangular to spherical coordinates

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Module 5. February 14, h 0min

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

10.7 Performance of Second-Order System (Unit Step Response)

D Alembert s Solution to the Wave Equation

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

4.6 Autoregressive Moving Average Model ARMA(1,1)

Reminders: linear functions

Heat exchanger. Type WT. For the reheating of airflows in rectangular ducting PD WT 1. 03/2017 DE/en

DuPont Suva 95 Refrigerant

Sampling Basics (1B) Young Won Lim 9/21/13

Orbital angular momentum and the spherical harmonics

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ

Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler

ST5224: Advanced Statistical Theory II

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

DuPont Suva 95 Refrigerant

Model: MTZ22. Data. Cylinder count: 1 Displacement [m³/h]: 6,63 Cylinder capacity [cm³]: 38,1 RPM [min -1 ]: 2900 Weight [kg]: 21 Oil charge [dm³]: 1

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Forced Pendulum Numerical approach

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Srednicki Chapter 55

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Section 9.2 Polar Equations and Graphs

Matrices and Determinants

[1] P Q. Fig. 3.1

Math221: HW# 1 solutions

Homework 3 Solutions

( ) Sine wave travelling to the right side

Section 8.3 Trigonometric Equations

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

1 String with massive end-points

the total number of electrons passing through the lamp.

Parametrized Surfaces

Trigonometric Formula Sheet

Ψηφιακή Επεξεργασία Φωνής

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

6.4 Superposition of Linear Plane Progressive Waves

Uniform Convergence of Fourier Series Michael Taylor

Example of the Baum-Welch Algorithm

Διερεύνηση και αξιολόγηση μεθόδων ομογενοποίησης υδροκλιματικών δεδομένων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Solution Series 9. i=1 x i and i=1 x i.

Problem Set 3: Solutions

On the Galois Group of Linear Difference-Differential Equations

EL 625 Lecture 2. State equations of finite dimensional linear systems

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Numerical Analysis FMN011

Finite difference method for 2-D heat equation

Exercises in Electromagnetic Field

IXBH42N170 IXBT42N170

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

2 Composition. Invertible Mappings

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Section 7.6 Double and Half Angle Formulas

Introduction to the ML Estimation of ARMA processes

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Tridiagonal matrices. Gérard MEURANT. October, 2008

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

A 1 A 2 A 3 B 1 B 2 B 3

Partial Differential Equations in Biology The boundary element method. March 26, 2013

w o = R 1 p. (1) R = p =. = 1

EE101: Resonance in RLC circuits

Multilayer Ceramic Chip Capacitors

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Proses = 0 / 0 Proses = 0 / 36 16" 4576 / 2.3 Barat : 4833 / Utara : 5941 / 3.05 Proses = 63 / 37 Flow : 9936 / 3.2

Transcript:

Class 03 Systems mdelling

Systems mdelling input utput

spring / mass / damper

Systems mdelling spring / mass / damper

Systems mdelling spring / mass / damper applied frce displacement input utput

Systems mdelling Newtn s nd Law Sir Isaac Newtn, 1643-177 lg m k µ u,

Systems mdelling spring / mass / damper and therefre, m µ k u, r d m µ d k u,

Systems mdelling carr / massa / mla Nw, giving values t m, µ and k: m 1 kg µ 4 N s/m k 3 N/m

Systems mdelling spring / mass / damper m 1 kg µ 4 N s/m k 3 N/m d m (0) µ d a, k (0) m b µ k u,

Systems mdelling spring / mass / damper m 1 kg µ 4 N s/m k 3 N/m and the mdel becmes: d (0) d 4 a, 3 (0) b 4 3 u,

translatinal mechanical mtin

Systems mdelling translatinal mechanical mtin prblem similar t the previus ne spring / mass / damper

Systems mdelling translatinal mechanical mtin prblem similar t the previus ne spring / mass / damper (equivalent vertical)

Systems mdelling translatinal mechanical mtin applied frce displacement input utput

Systems mdelling translatinal mechanical mtin Again, using the Newtn s nd Law we btain: m µ k u, u d m µ d k u,

Systems mdelling spring / mass / damper r translatinal mechanical mtin Thus, these tw systems are described by the same differential equatin ( nd rder), that is, have the same mdel: d m µ d k m µ k u initial cnditins: (0) a, (0) b

Systems mdelling spring / mass / damper r translatinal mechanical mtin d m (0) µ a, d k (0) m b µ k u,

Systems mdelling mviment translacinal mecânic Nw, giving the same values t m, µ and k that has been given t the prblem spring / mass / damper, we have: m 1 kg µ 4 N s/m k 3 N/m

Systems mdelling spring / mass / damper r translatinal mechanical mtin m 1 kg µ 4 N s/m k 3 N/m d m (0) µ a, d k (0) m b µ k u,

Systems mdelling spring / mass / damper r (bth have the same mdel) translatinal mechanical mtin m 1 kg µ 4 N s/m k 3 N/m d (0) 4 d a, 3 (0) b 4 3 u,

Systems mdelling translatinal mechanical mtin Observatin: Nte that if µ 0 this system becmes the harmnic scillatr.

circuit RLC série

Systems mdelling RLC series circuit input vltage utput vltage

Systems mdelling RLC series circuit input vltage utput vltage input utput

Systems mdelling Kirchhff Law (lp rule): Gustav Kirchhff, 184-1887 thus v LC v RC v v i 0,

Systems mdelling RLC series circuit and therefre, LC v RC v v v i, r LC d v RC dv v v i, Then, this system is als described by ne differential equatin (f nd rder).

Systems mdelling RLC series circuit That is, the mdel f this system is a differential equatin (f nd rder): LC d v RC dv v RC v LCv v v i initial cnditins: v (0) a, v (0) b

b (0) v a, (0) v, v v RCv LCv v dv RC v d LC i RLC series circuit Systems mdelling

Systems mdelling circuit RLC série Dand valres para R, L e C: R 1000 Ω L 50 H C 1,333 10-3 F

Systems mdelling RLC series circuit d LC v v (0) RC a, dv v v (0) b LCv RCv v R 1000 Ω L 50 H C 1,333 10-3 F v i,

Systems mdelling circuit RLC série d LC v v (0) RC a, dv v v (0) b LCv RCv v v R 1000 Ω L 50 H C 1,333 10-3 F i,

Systems mdelling circuit RLC série d v v (0) 4 dv a, v 3v (0) b v 4v 3v 3v R 1000 Ω L 50 H C 1,333 10-3 F i,

rtatinal mechanical mtin

Systems mdelling rtatinal mechanical mtin (t) trque applied t the system input [N m]; ω(t) angular velcity utput [rad/s]; J mment f inertia [kg m ]; µ frictin cefficient [N m /rad/s]

Systems mdelling rtatinal mechanical mtin trque applied angular velcity input utput

Systems mdelling rtatinal mechanical mtin Using the Newtn s Law fr rtatinal systems mments J ω', we btain J ω µ ω,

Systems mdelling rtatinal mechanical mtin Thus, this system is described by a differential equatin (f 1 st rder): J dω µ ω Jω µω initial cnditin: ω( 0) a

Systems mdelling rtatinal mechanical mtin that is, the mdel f this system is a differential equatin (f 1 st rder): J dω ω(0) µω a Jω µω,

Systems mdelling rtatinal mechanical mtin Nw, giving values t J and µ: J 0,5 kg/m µ N m /rad/s J dω ω(0) µω a Jω µω,

Systems mdelling rtatinal mechanical mtin Nw, giving values t J and µ: J 0,5 kg/m µ N m /rad/s J dω ω(0) µω a Jω µω,

Systems mdelling rtatinal mechanical mtin dω ω(0) 4 ω a ω 4 ω,

a seismgraph

Systems mdelling seismgraph i (t) b displacement with respect t inertial space; (t) mass displacement with respect t inertial space; y(t) mass displacement with respect t the b. y(t) [ (t) - i (t)]

Systems mdelling seismgraph b displacement mass m displacement input utput

Systems mdelling Again, by Newtn s nd Law m and therefre, µ ( ) i k( Sir Isaac Newtn, 1643-177 i ), m( ) µ ( i ) i k( i ) m i, y (t) y (t) y(t)

Systems mdellling seismgraph thus, r, m y µ y k y m i, d y dy d m µ k y m i,

seismgraph Systems mdelling µ µ b (0) y, a y(0), m y k y m y ky dy y d m i

a hydraulic serv-mtr

Systems mdelling hydraulic serv-mtr input f the system utput f the system

Systems mdelling hydraulic serv-mtr we btain, r, m y (t) µ A K ρ y (t) AK K 1 (t), m d y µ A K ρ dy AK K 1 (t),

Systems mdelling hydraulic serv-mtr m y (t) µ A K ρ y (t) AK K 1 (t), A pistn area [m ]; ρ il density [kg/m 3 ]; Q flw rate f il that ges t the pwer cylinder (mass flw rate) [kg/s]; P (P 1 P ) pressure difference in the pwer cylinder (pressure drp) [N/m ]. Q K 1 K P

a thermal system

Systems mdelling sistema thermal térmic system input utput

Systems mdelling thermal system we btain, where, dθ RC θ(t) h i (t) heat input rate [cal/s]; R h (t), θ(t) heat utput temperature [ºC]; R thermal resistance (gain f the system) [ºC s/cal]; C thermal capacitance (heat capacity) [cal/ºc]; T RC time cnstant f the system [s]. i

ther eamples

Systems mdelling by partial differential equatins: t u k u y u z u k ( u u yy u zz ) system linear cntinuus, time invariant, with memry and causal this system describes the space wave prpagatin

Systems mdelling r by difference equatins: [ n ] [ n ] ( ) n [ n ] y 4 discrete system, nnlinear, time variant, withut memry and causal.

This system describes the dynamic f the evlutin f AIDS Mre cmple systems are represented nt nly by ne, but by several equatins. Systems mdelling [ ] [ ] [ ] v m k t N k m k k m k m k s µ µ µ ω µ ω µ λ θ θ 1 1 1 4 3 3 4 3 3 0 1 4 1 1 3 0 1 4 1 1 4 1 1 1 1 1 3 1 4 1 ) ( ) ( ) ( ) (1 ) ( ) ( ),, ( & & & &

Thank yu! Felippe de Suza felippe@ubi.pt