Introduction to Numerical Analysis. Marek Kręglewski

Σχετικά έγγραφα
FORMULAE SHEET for STATISTICS II

MATRICES WITH CONVOLUTIONS OF BINOMIAL FUNCTIONS, THEIR DETERMINANTS, AND SOME EXAMPLES

met la disposition du public, via de la documentation technique dont les rιfιrences, marques et logos, sont

Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator

Polynomial. Nature of roots. Types of quadratic equation. Relations between roots and coefficients. Solution of quadratic equation

Oscillatory integrals

Chapter 1 Fundamentals in Elasticity

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

TeSys contactors a.c. coils for 3-pole contactors LC1-D

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.

Το άτομο του Υδρογόνου

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o

Αριθμητική Ολοκλήρωση με τις μεθόδους Τραπεζίου/Simpson. Φίλιππος Δογάνης Δρ. Χημικός Μηχανικός ΕΜΠ

Generalized Modified Ratio Estimator for Estimation of Finite Population Mean

!"#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Jeux d inondation dans les graphes

EXERCICIOS DE REFORZO: DETERMINANTES., calcula a matriz X que verifica A X = A 1 B, sendo B =

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

Poularikas A. D. Distributions, Delta Function The Handbook of Formulas and Tables for Signal Processing. Ed. Alexander D. Poularikas Boca Raton: CRC

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

Finite Integrals Pertaining To a Product of Special Functions By V.B.L. Chaurasia, Yudhveer Singh University of Rajasthan, Jaipur

Couplage dans les applications interactives de grande taille

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia

Chapter 22 - Heat Engines, Entropy, and the Second Law of Thermodynamics


Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage

Lecture 5: Numerical Integration

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

Probability and random variables: Bernoulli trials; Poisson Stochastic Processes: independent increments; Wiener & Poisson

Lifting Entry (continued)

Matrices and Determinants

rs r r â t át r st tíst Ó P ã t r r r â

Vers un assistant à la preuve en langue naturelle

i i (3) Derive the fixed-point iteration algorithm and apply it to the data of Example 1.

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Αριθμητική Ολοκλήρωση με τις μεθόδους Τραπεζίου/Simpson. Φίλιππος Δογάνης Δρ. Χημικός Μηχανικός ΕΜΠ

Μοντζλα ςταθερών και τυχαίων επιδράςεων. Κατςιλζροσ Αναςτάςιοσ

Émergence des représentations perceptives de la parole : Des transformations verbales sensorielles à des éléments de modélisation computationnelle

m i N 1 F i = j i F ij + F x

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

derivation of the Laplacian from rectangular to spherical coordinates

Modèles de représentation multi-résolution pour le rendu photo-réaliste de matériaux complexes

SONATA D 295X245. caza

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Geodesic Equations for the Wormhole Metric

Veliine u mehanici. Rad, snaga i energija. Dinamika. Meunarodni sustav mjere (SI) 1. Skalari. 2. Vektori - poetak. 12. dio. 1. Skalari. 2.

MICROMASTER Vector MIDIMASTER Vector

Σύγχρονα συστήµατα προβλέψεων και µοντελοποίησης

Solutions_3. 1 Exercise Exercise January 26, 2017

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Transformations d Arbres XML avec des Modèles Probabilistes pour l Annotation

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Low ESR Tantalum Capacitors (TCR Series)

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

Abstract Storage Devices

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

Math221: HW# 1 solutions

Points de torsion des courbes elliptiques et équations diophantiennes

ITU-R SA (2010/01)! " # $% & '( ) * +,

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

1. Functions and Operators (1.1) (1.2) (1.3) (1.4) (1.5) (1.6) 2. Trigonometric Identities (2.1) (2.2) (2.3) (2.4) (2.5) (2.6) (2.7) (2.8) (2.

!"#$ "%&$ ##%&%'()) *..$ /. 0-1$ )$.'-

ΑΥΤΟΜΑΤΟΠΟΙΗΣΗ ΜΟΝΑΔΑΣ ΘΡΑΥΣΤΗΡΑ ΜΕ ΧΡΗΣΗ P.L.C. AUTOMATION OF A CRUSHER MODULE USING P.L.C.

Modbus basic setup notes for IO-Link AL1xxx Master Block

ACI sécurité informatique KAA (Key Authentification Ambient)

Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées

ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο

Annulations de la dette extérieure et croissance. Une application au cas des pays pauvres très endettés (PPTE)

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

Computing the Gradient

Consommation marchande et contraintes non monétaires au Canada ( )

PARTIAL NOTES for 6.1 Trigonometric Identities

Fourier Transform. Fourier Transform

Notes on the Open Economy

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

( y) Partial Differential Equations

1 B0 C00. nly Difo. r II. on III t o. ly II II. Di XR. Di un 5.8. Di Dinly. Di F/ / Dint. mou. on.3 3 D. 3.5 ird Thi. oun F/2. s m F/3 /3.

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Single Stock Analysis Stock Pair Analysis Portfolio Dates Portfolio Dates Correl Maturity VolRatio Ref Stock Correl Ref Stock

Examples of Cost and Production Functions

τ τ VOLTERRA SERIES EXPANSION OF LASER DIODE RATE EQUATION The basic laser diode equations are: 1 τ (2) The expansion of equation (1) is: (3) )( 1

m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx

tel , version 1-7 Feb 2013

Solve the difference equation

Forêts aléatoires : aspects théoriques, sélection de variables et applications

Για να μιλήσουμε για περισσότερα από ένα πρόσωπα, ζώα ή πράγματα, συνήθως προσθέτουμε το s στο τέλος μίας λέξης. four sisters

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

2010 Offroad Standard & Flame fixed discs

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS

! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"

On Hypersurface of Special Finsler Spaces. Admitting Metric Like Tensor Field

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

Transcript:

Iroduo o Numerl Alss Mre Kręglews

Course oe Wee Wee Wee Wee Wee 5 Wee 6 Wee 7 Wee 8 Wee 9 Wee Wee Wee Wee Wee Wee 5 Soluos o oler equos oe vrle: e seo lgorm. Derel lulus. Te Newo-Rpso meod, e se meod. Iegrl lulus. Numerl egro: rpezodl rule d Smpso s rule. Tlor epso error o umerl meod Numerl dereo: orwrd d wrd-deree ormul. Tree-po ormul o umerl dereo. Il vlue-prolem or derel equos: Euler s meod, e Ruge-Ku meods. Te Rrdso s erpolo. Il vlue-prolem or derel equos: Euler s meod, e Ruge-Ku meods. Poloml erpolo: Newo d Lgrge polomls. Meods or solvg ler ssems: ler ssems o equos, Crmer s rule, Guss elmo. Appromo eor: les-squres ppromo. Ler lger, mr verso d e deerm o mr. Roud-o errors: solue error, relve error, sg dgs.

Course oe LABORATORY CLASSES. MS Eel geerl roduo. Applo o e MS Eel solvg umerl prolems MANUALS:. E. Seer, Mems or emss, Oord.. A. Rlso, Iroduo o umerl lss.

Soluo o equo oe vrle =() START READ, ε, A = = =½(+A/) NO - < ε YES WRITE STOP Tre o operos

Algorm oo START d STOP o sequel lgorm INPUT d OUTPUT operos = SUBSTITUTION operos LOOP? CONDITIONAL opero SUBSTITUTION vrle = epresso Clule e vlue o e epresso d sve uder e me o e vrle

Coverge proess: =½(+/) 8.5.5.5.5.69756.69756.9.9 6 L R Iero proess 6

Dverge proess: =6-*..59.59.79.79-6.5896-6.5896 -.65 -.65-9.55657-9.55657-875.576-875.576-7.595E+ -7.595E+ -5.7686E+ -5.7686E+ -.768E+7 -.768E+7 -.7E+95 8 6 - - L R -6-8 -

Soluo o equo oe vrle Bseo meod Soluo o equo ()=,.e. ser or zero pos o e uo (). Ser or e zero po e rge <,>, w: ) e uo () s ouous ) () ges e sg e rge <,>,.e. ()*()< zero po p p p p

Bseo Algorm START READ,, ε ()*()< YES p=(+)/ ()*(p)< YES =p NO NO WRITE: orre rge =p Tre o operos NO - <ε YES WRITE, STOP

Soluo o equo oe vrle Newo-Rpso meod Te ser o zero po egs po, : ) e uo () d s rs dervve re ouous ) e rs dervve s dere rom zero zero po Te epso Tlor seres:!

Newo-Rpso lgorm START READ, ε = = - ( ) / ( ) NO - < ε YES WRITE STOP Tre o operos

Soluo o equo oe vrle Se Meod Te ser or e zero po egs rom pr o pos(, ), : ) e uo () s ouous ) ( ) ( ), we zero po Te rs dervve rom e Newo-Rpso meod ppromed w epresso:

Se meod lgorm START READ,, ε q =( ) q =( ) = ; = q =q ; q =( ) NO = q ( - ) /(q -q ) - < ε YES WRITE STOP Tre o operos

Derel Clulus Dervve o uo mesure ow rpdl e depede vrle ges w ges o e depede vrle =() Tge le (α) (slope) = - α = - lm lm d d dervve

Derel Clulus Fd e dervve o e uo = Le = - d = ( )-( ) = ( ) -( ) = ( +) -( ) = [( ) + +() ]-( ) = = [ +() ] Aer dvdg I e lm s (.e. ) d d lm Te dervve o e uo = s d/d=

Derel Clulus Dervves o some elemer uos ( s os): Fuo =() Dervve d/d= () - l() l() / s() os() os() -s() Le () d z() re derele uos o : d d z d dz d z d dz d z d d d d d d dz d d z d d / z d d dz z d d z Compose uo (u()) d d d du du * d

Iegrl Clulus prpl s Te dervve F() o () s e uo su df()/d=() Te dee egrl s e sme g s e dervve uo A dee egrl s e lm o sum o erms () d F F

Iegrl Clulus - emples A r moves w os velo v()=5 m/. Clule e dse overs ours. s s v( ) 5m/ * m v d 5d 5 5* 5* m A soe s llg w e elero g() = m/s. A e egg s velo s m/s. Clule e dse e soe overs ewee d d seod o e ll. v v s v g( ) d d os d os d 5 5* 5* 8 6m

Numerl egro T T d m m m T T T m * * T T T m m m *, m m T T T T Trpezodl rule T m

Numerl egro S d m S S S m m m m *, / m m m m S S S S / Smpso s rule S m/ m mus e eve

All egro emple I ( ) d ()= d 68 ()= d 5 5 5 5 5 5 9766,

Numerl egro emple I ( ) d () 6 78 76 T ( ) T ( ) S( ) 78 *78 78 *78 68 695 Clulo resuls T(=) 78 76 T(=) 695 9 S(=) 68 9766,67 I (ure) 68 9766, ()= ()= T( ) T( ) S( ) 76 *6 76 76 *6 76 9766 9 T() T()-I 78 695 Errors o e rpezodl rule error T() T()-I 76 969,6 9,6

Geomer seres /* S S S S S S r r We = ) Te sum s equl o ) s seres epso o e uo

Mlur Seres ) (,,, oss 6 ) "( ) ( d d d d Tus ()! "()! ()!!!! ()! "() ()

Tlor Seres ) (,,, oss 6 ) "( ) ( d d d d Tus ) (! ) "(! ) (!!!! ) (! ) "( ) (

Mlur Seres - emple e, Clule e vlue (6) usg e Mlur seres e " e e * Cll e Tlor seres

Numerl dereo ) ( ) ( lm ) ( ) ( lm Oe-sde ppromo: L R ) ( ) ( ) ( ) ( - + (+) () (-) Te verge o R L (erl dervve): L R ) ( ) ( Deo o dervve

Dereo e error!!!!!!! /:!!! dervve error! : /!! dervve error Oe-sde dervve Cerl dervve _

Clulo o dervve Clule e dervve o l() e po = usg e erl dervve meod d oe-sde meod or dere sep leg : ()=l() l()=/ l()=.986 ()=[(+)-(-)]/(*) () () error ^ error/^.869.657...697.5.5.576.67.9.5.556.5.969....57...5.9.67 ()=[(+)-()]/ + (+) () error error/.869.8768 -.565 -.565 Te deresg sep mmzes e error. Te resuls re dere or dere meods..5.5.576.8 -.5.5 -.56....7898 -.5. -.55

Derel equo s order Derel equo or rdove de Suggesed soluo: Ceg e orreess: Susuo: Le sde equl o rg sde, we: dn d N N dn d e N e e e e Cos deermed rom e l odo: Fl l soluo: rdove de os N e N N N N N e

Rdove de Derel equo or e rdove de dn d N Al soluo: Hl-le perod : N N N e e N e l N l N l

Derel equo e Euler meod Te equo ( s ow uo): Approme epresso or e dervve: Aer rsormo: Smpled oo: d d d d, d, d d d Te ls epresso llows or sep sep lulo o e uo (). Te vlue o e uo e zero sep deermed rom l odo.

Derel equo s order dn N d N dn/d Nl -5. 5-5 66.57. 5-5 67.879. 5-65.. 6.5 -.5 5.5 5.5.5-56.5 8.85 6.6 5.65-78.5 9.7877 7.7 7.85-9.65.978 8.8.965-9.5 8.56 9.9.955-9.7656.9.97656 -.888 6.7797..888 -..8677.. -.7.7875..7 -.65.59..65 -.58.988 5.5.58 -.559.558 6.6.559 -.769.56 7.7.769 -.85.68 8.8.85 -.97. 9.9.97 -.95.785.95 -.77.5 8 6 5.86. N Nl.5.5

Derel equo d order Hrmo osllo F p = m - elero F w = - - poso Assumpo: m= = Te le o ores: F p = F w Tus =- " d d Spe soluos: e e e e e e e Geerl soluo: e e Coss deermed rom l odos F

Derel equo d order e e - Il odos: e e e e Geerl soluo ludg e l odos: e e os

Numerl soluo I d d v d d d dv were : Suesve pplo o pprome epressos or e rs dervve: v v v v v v v v Noo: v v v From e equo resuls:

Numerl soluo I o. For = : m v m s () () v() () -.8997 -.9 -.6799.98865 -.6799 -.98865.9699.985958 -.956 -.98596.55988.89785 -.567 -.89785 5.65985.87 -.68 -.8 6.78598.7778 -.777 -.7778 7.96979.65 -.886 -.65 8.7976.5687 -.97 -.569 9.7897.97 -.995 -.97.89969.895 -.95 -.895.98966.5675 -.875 -.568.57796.985 -.77 -.98.7696 -.58 -.8558.579.85957 -.88 -.987.878 5.9695 -. -.59.6 6.995 -.566 -.9988.566 7.598 -.6975 -.958.6975 8.5695 -.888 -.88.8887 9.879 -.96 -.788.96.67999 -.75 -.6777.75.78896 -.976 -.755.976.87979 -.5979 -.99.5979.69 -.97 -.798.965.597 -.595 -.777.5955 - - - Oe-sde epresso or e dervve 5 5 - - - - v () v() ()

Numerl soluo II d d v d d d dv were : Approme epressos or e erl-dervves: v v v v v v v v Noo: v v v From e equo resuls:

Numerl soluo II o. For = : m v m v v s () () v(+/) () -.655 -.8997.996 -.958 -.99.6799.965877 -.66 -.965877.9699.977 -.58 -.977.55988.86588 -.5559 -.86588 5.65985.7968 -.6597 -.7968 6.78598.7679 -.75 -.7679 7.96979.68 -.886 -.68 8.7976.995 -.897 -.995 9.7897.897 -.976 -.895.89969.5795 -.98977 -.579.98966.959 -.99799 -.955.57796 -. -.99778.6.7696 -.7 -.9858.7.85957 -.685 -.969.685 5.9695 -.898 -.896.8987 6.995 -.597 -.86.5969 7.598 -.6 -.75758.65 8.5695 -.7898 -.658.78976 9.879 -.795 -.555.795.67999 -.86696 -.566.86696.78896 -.96 -.95.96.87979 -.96657 -.9.966569.69 -.997 -.67.9977.597 -.999997.6769.9999975 Cerl dervve.5.5 -.5 5 5 - -.5.5.5 -.5 - -.5 -.5.5.5 - -.5 v () v(+/) ()

Rrdso s erpolo We lulg e umerl resul w e sep, s possle o esme e resul e lm? F p r O r p F() e resul or e sep = F() poel resul or = p e order o e umerl error Le s lule e umerl resul F or wo dere sep legs (q) F F F F p r O p q q O r q p p p q q /* q p

Rrdso s erpolo o. r O q q F F F p s error o ger order d e proess e oued. Te mos reque sep ge q=, d e: r O F F F p p p p p p p p p q q F F q q q F q q F q Susruo o o equos

Rrdso s erpolo emple I d 68 Numerl resuls w e rpezod meod: T() 78 695 T T 695 78 T 695 695 68

Rrdso s erpolo emple ()=l() l()=/ ()=[(+)-(-)]/(*) F() /.8.8.5.59..78857...775.5 -.87..6.9555...65.88 -.5.8.8.969....57 -...9.67 Te erl dervve meod error, us p=. = F()-F()

Te erpolo poloml Te uo () s gve s le,.e. s vlues re ow (+) pos (odes) ( ), ( ), ( ),, ( ). Prolem: d poloml o e - order su s: w( )= ( ) w( )= ( ) w( )= ( ) w () s lled e erpolo poloml. Gols o e erpolo: smple preseo o e uo vlues (oees) eeuo o meml operos usg e poloml deermo o e ermede vlues o e uo

Clulo o e poloml vlue Nurl orm o e poloml w Te Horer s seme o e lulo w

Clulo o e poloml vlue Algorm START red, { }, w= =- w=w*+ =- YES NO wre w STOP

Tre o e lulo w ()=+- + = = = =- = Clule e vlue o e poloml =. w *-= *+= *+= - Te vlue = s.

Newo orm o e poloml Le,,,, - re gve umers, were e vlues o poloml re gve (e d). Aulr polooml p (=,,,,) re deed p () = p () = - p () = (- )(- ) p ()= (- )(- ) (- - ) Te poloml w () s gve s w p How o deerme e oees?

Deermo o e oees () [ l, l+ ] [ l, l+, l+ ] ( ) ( ) ( ) ( ),,,,,,,,,,,,,,

Emple 7 58 5 8 )) ) ( )( ( )( ( 7 5 5 w w p p p p () [, ] [,.., ] [,, ] 5 66 8 7 96 5 58 9 78 7 8 = = 8 = 58 =

Ler erpolo ler uo: w ()= + ( ) = = + (/ ) ( ) = = + (/ ) Clule, - = =( - )/( - ) - = =( )/( - ) w ()= [( )/( - )] + [( - )/( - )] w ()= [( + )/( - )] + [( - )/( - )] w ()= + [( - )/( - )] (- ) I s Newo poloml w () = p () + p (), were p () = = p () = - = ( - )/( - )

Te Ruge ee We erpolg w poloml o g order, eg. o e - order or e uo e rge[-,] or eqds odes ( ) 5 = - + *, =,,,, () w() -.86.86 -.8.588.8.588 -.6..588.68. -...5.759.79855. -..5.5.5.976.68665.5.5.5.8E-5 -.6767-6.6..5 -.5 -.5-5 -.5-7.575-7.675.5.. -.5.5 5 6.5 9.75.9 8.86..6. -.5.5 -.5E-5 -.5-9.75-56.5-8.8-67.96..8.588 -.588.759 -.98 -.6767 7.575.9 8.85 9.779.97.588.86 -.8.68 -.7986.68665 6.6-7.675-8.86-67.96 -.9 -.9.86

Te Ruge ee Compre e epressos or e uo (dr le)d poloml (gre le):.5.5.5 -.5 - -.5.5.5 -.5

Clulo ur Error soures: Errors o pu d Roudg errors Cug errors Smplo o model Rdom errors Asolue d relve erros: Approme vlue E vlue Asolue error Relve error r

Roudg d ug roudg ug,97,,9 -,97 -, -,9 Roudg o deml dgs Error o e umer ½ - Emple:, ½ - =,,5 Roudg o umers edg w dg 5?,5,,5, Error reduo we lulg sum

Errors o luled ques Addo d Suro,,,, m,,,,,8 m,,,,,7,75,5 W s e error o sum? W s e error o deree? m,,,,,9 m,,,,,8,89,5

Errors o luled ques Addo d Suro Smlrl: Te solue error o sum or deree s equl o e sum o solue errors o ompoes.

Reduo o sg dgs %,,,,,,576,576,576,576 r Asolue error Relve error

Errors o luled ques Mulplo d dvso r r r r r r r r r r r r r r Smlrl: r r r r Te relve error o produ or dvso s equl o e sum o relve errors o e ors.

Use o dere rules or e error rser Clule e roos o e lger qudr equo w e ur o 5 sg dgs. 8 8 78 78 7,98 8 7,98,8 Ol sg dgs 8 7,98 55,98 5 sg dgs r,5,8 r,5 55,98 9 6

Use o dere rules or e error rser Te Vee s relos 6 5 6 9 55,98,5,786,5,786 55,98 55,98 7,98 8 7,98 78 78 8 8 r r

Mml errors o luled ques r,,,,,, Te uo s gve All vrles re gve w errors. W s e error o luled qu?

Mml error emple 6%,6,,, r,,,

Sdrd errors o omple epressos,,,,,,,,, s s s s s s s s s A gve uo Te s re sdrd errors o prmeers. W s e sdrd error o omple vlue?

Emple,, s s s s s s s,,, s s s

Ler regresso 5 5 (, ) 5 (, ) 6 8 Ler regresso: =*+ Gol: Deermo o opmum vlues o d. 66

Ler regresso Bs ssumpos: ) Rdom dsruo o roud e srg le ) Te vro σ depede o Les squres meod:, Deermo o m Φ(,) w respe o d :,, 67

68 Ler regresso Soluo o e equos ssem w respe o, :

Ler regresso Esmo o vre or : s Esmo o vre or prmeers d : s s Ler orrelo oee r r ov vr s, S vr S S s Te vlue o r sps rom - o +. r> des posve orrelo, r< egve orrelo ewee d. r= des e l o ler orrelo ewee d. 69

Ler regresso emple -5 - -5 - -5 - -5-5 6 7 8 9 7

[m] [g] * * -*- (-*-)^ -sr -sr - - -..6-8 - 9 -.8.6-5 - 5-7 - 9 - -.8.6-9 -8 8 -..6-8 Sum: 5-65 -68..6 = -.6 g/m = g s^=.5 s=.7 g s^=. s=.55 g/m s^=. s=.66 g sr= 5 ov(,)= -6.8 sr= - vr()= 8. vr()= 69.6 r(,)= -.999 7

More ou regresso - qudrs -5 - -5 - -5 - -5-5 6 7 8 9 IV III I II μ Qudrs: μ I -μ < -μ < (-μ )(-μ )> II -μ > -μ < (-μ )(-μ )< III -μ > -μ > (-μ )(-μ )> IV -μ < -μ > (-μ )(-μ )< ov(, ) ov, 7

r ov vr Ler regresso oee, S vr S S r=- -<r< r= <r< r= 7

Eess ssem o ler equos J J ε ε ε J T T We ser or soluo, were e vlue o T s mml. J J J J J J J J J ε ε J J J J J J J J J J J T T T T T T T T T T T T T T T T T T T T T T Te opl vlues o prmeers w mmze e sum o squres

Emple o e mr represeo 9,5 5, 8 8 5 8 8 6 8 * de 8 6 8 6 8 6 5 8 8 8 8 8 8 8 8 8 J J J J J J J J T T T T

Vre o e vrle 8 J 6 5 8 Vre s, 5,,9 9,5,,7 ε T ε,,9,,7 ε s,,9,,7, 9 Vres d ovre 5,8 s ov(, ) ov(, ) s s,6 8 8 58 8 8 J T J,9* 8 8 58 8 8 8 Ler regresso oee r ov(, ) 58,6*8,, 9 s s

Jo Te model uo e ler regresso = * +. Jo s mr o dervves over prmeers, ll pos o d =,,, J We g e d o e poloml o e d order = + * + *, e e Jo es orm o: J

Deovoluo o omple d Epermel d Te d sould e epressed s sum o Guss urves 5 5 5 5 5 5 P e - eg - poso - wd 78

Te les squres meod { }, =:M, M ed prmeers Te error uo (sum over pos): Φ{ } = j [ j (ep) - j ({ }] Prolem To mmze Φ roug modo o { } usg e srg vlues o prmeers { } 79

Te error uo d Jo 8 e P e P e P N P P e P Deomposo over N ds Elemes o e Jo

Algorm 8 P P P P P P P P J Y Correos o e vlues o prmeers { } J T Y J T J

Te les squres meod 5 5 5 5 5 Kro Psmo rozłożoe słdowe 5 5 5 5 8

Mres

Solvg se o ler equos A A A A A Emple + + = + + = + + = 8 A A 8 A =- = =

Mres d geomerl rsormos verso P mrror releo P roo os s s os P φ Trsormo mres re orogol Q Q Q Q Q T Q Q Q Q Q T os s s os os s s os os s s os Q Q Q Q Q T

Smlr rsormo o mres Mppg A, rsorms : A I veors d re rsormed o veors roug mppg Q, w s mppg o veor o veor? Q I d, Q A AQ Q I e mr Q s o sgulr, us Q Q Q Q AQ AQ B Te mres A B re wo mres rsormed roug smlr rsormo B Q AQ

Emple os s s os Q φ=-5

Emple (, )=(,) (, )=(,-) += -=- -5 (, )= (, )=,,

Crers equo λ slr, A() I() K() K = A λi rers mr o mr A dek = K(λ) = de(a - λi)=a - λi= rers equo K(λ) = λ + - λ - + - λ - + + λ + = Te roos o e poloml K(λ): λ, λ,, λ -, λ re lled egevlues o mr A. I B = Q - AQ, e rers equo or B K = B λi = Q - AQ - Q - IQ = Q - (A - I)Q, d e deerm dek =B - λi= Q - A - λi Q = A - λi= Two mres reled o e oer roug smlr rsormo ve e sme se o egevlues.

Egevlues, de, de I I A B A B

Dgol mr d d d d d d d d d d d d d d d d,,,, I D I D D C we rsorm gve qudr mr A o dgol mr D roug smlr rsormo?

Dgolzo s os s os s os s os s os s os s os s os s os s os s os s os s os s os s os s os os s s os os s s os os s s os os s s os AQ Q A Q Now we se e odgol elemes o zero: 8 os s s os Aer e rsormo:, s os s os

Egevlues d egeveors C - AC s smlr rsormo w dgolzes e mr A. Colums o e mr C o egeveors. I e mr C s orogol, C - =C T, d C - AC = C T AC. os C s 8 s 8 os 8 8 os s 8 8 s os 8 8 Mulplo o e mr A o o sdes e egeveor produes respeve egevlue: os 8 os s os s 8 os s os os os s s os s os s 8 I geerl: 8 8 T A 8 8 8 8 8 8 8 8,,, 8 s s 8 8