CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

Σχετικά έγγραφα
Latent variable models Variational approximations.

Latent variable models Variational approximations.

Estimators when the Correlation Coefficient. is Negative

Other Test Constructions: Likelihood Ratio & Bayes Tests

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ

Exam Statistics 6 th September 2017 Solution

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

Article Multivariate Extended Gamma Distribution

( ) S( x ) 2 ( ) = ( ) ( ) = ( ) ( )

t. Neymann-Fisher factorization: where g and h are non-negative function. = is a sufficient statistic. : t( y)

Homework for 1/27 Due 2/5

Post Graduate Diploma in Applied Statistics (PGDAST)

Multi-dimensional Central Limit Theorem

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

On Inclusion Relation of Absolute Summability

Studies on Properties and Estimation Problems for Modified Extension of Exponential Distribution

Outline. Detection Theory. Background. Background (Cont.)

The Simply Typed Lambda Calculus

C.S. 430 Assignment 6, Sample Solutions

Solution Series 9. i=1 x i and i=1 x i.

Markov Processes and Applications

ΧΡΟΝΟΙ ΑΝΑΜΟΝΗΣ ΜΕΧΡΙ ΤΗΝ ΠΡΩΤΗ ΕΜΦΑΝΙΣΗ ΣΧΗΜΑΤΙΣΜΩΝ ΣΕ ΜΙΑ ΔΙΔΙΑΣΤΑΤΗ ΑΚΟΛΟΥΘΙΑ ΤΡΙΤΙΜΩΝ ΔΟΚΙΜΩΝ

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

Models for Probabilistic Programs with an Adversary

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit


EE512: Error Control Coding

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Examples of Cost and Production Functions

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Finite Field Problems: Solutions

Inverse trigonometric functions & General Solution of Trigonometric Equations

Μηχανική Μάθηση Hypothesis Testing

Multi-dimensional Central Limit Theorem

Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

ST5224: Advanced Statistical Theory II

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

2 Composition. Invertible Mappings

Βασικές έννοιες θεωρίας πιθανοτήτων

The Heisenberg Uncertainty Principle

IIT JEE (2013) (Trigonomtery 1) Solutions

4.6 Autoregressive Moving Average Model ARMA(1,1)

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Ψηφιακή Επεξεργασία Εικόνας

On Hypersurface of Special Finsler Spaces. Admitting Metric Like Tensor Field

Three-Dimensional Experimental Kinematics

Statistical Inference I Locally most powerful tests

1. For each of the following power series, find the interval of convergence and the radius of convergence:

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa

p n r

Solutions to Exercise Sheet 5

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Homework 8 Model Solution Section

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Εδώ θα θέσουμε τα θεμέλια της εκτίμησης κατά Bayes αρχίζοντας με τα μονοπαραμετρικά μοντέλα δηλαδή όταν ϑ : Ω Θ.

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

LAD Estimation for Time Series Models With Finite and Infinite Variance

( y) Partial Differential Equations

Bounding Nonsplitting Enumeration Degrees

Areas and Lengths in Polar Coordinates

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Homework 3 Solutions

Εδώ θα θέσουμε τα θεμέλια της εκτίμησης κατά Bayes αρχίζοντας με τα μονοπαραμετρικά μοντέλα δηλαδή όταν ϑ : Ω Θ.

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

F19MC2 Solutions 9 Complex Analysis

1. Matrix Algebra and Linear Economic Models

Every set of first-order formulas is equivalent to an independent set

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Example Sheet 3 Solutions

Fourier Series. Fourier Series

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

derivation of the Laplacian from rectangular to spherical coordinates

Matrices and Determinants

Markov Processes and Applications

Areas and Lengths in Polar Coordinates

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

TMA4115 Matematikk 3

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

α & β spatial orbitals in

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

w o = R 1 p. (1) R = p =. = 1

Presentation of complex number in Cartesian and polar coordinate system

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

Notes on the Open Economy

Lecture 2. Soundness and completeness of propositional logic

ιαφάνειες ιαλέξεων 1-1

PARTIAL NOTES for 6.1 Trigonometric Identities

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Homework 4.1 Solutions Math 5110/6830

Transcript:

CS 675 Itroducto to Mache Learg Lecture 7 esty estmato Mlos Hausrecht mlos@cs.tt.edu 539 Seott Square

ata: esty estmato {.. } a vector of attrbute values Objectve: estmate the model of the uderlyg robablty dstrbuto over varables X X usg eamles true dstrbuto X samles {.. } estmate ˆ X

ML arameter estmato Model ˆ X X ata {.. } Mamum lelhood ML Fd that mamzes ma.. log Log lelhood has the same mamum as lelhood log Ideedet eamles

ML arameter estmato Model ˆ X X ata {.. } Mamum lelhood ML Fd that mamzes ma Log lelhood has the same mamum as lelhood log log The otmum satsfes: d log d 0 It ca be ofte solved aalytcally

MA arameter estmato Model ˆ X X ata {.. } Mamum a osteror robablty Fd that mamzes ma Lelhood of data ror dstrbuto va Bayes theorem ormalzg factor Cojugate choces: ror dstrbuto o the arameters matches the data dstrbuto osteror s the same tye of the dstrbuto as the ror

MA arameter estmato Model ˆ X X ata {.. } Mamum a osteror robablty Fd that mamzes ma The otmum satsfes: d d log 0 or d d 0 It ca be ofte solved aalytcally

Beroull dstrbuto Model for radom varable wth two outcomes Radom varable: Two outcomes: 0 or strbuto: where s the robablty of Eamle: Co toss Outcomes: Head à Tal à 0 à robablty of a Head

Beroull dstrbuto ata : d samle of outcomes co fls Lelhood of data: Loglelhood of data: l - umber of s - umber of 0s log log ML estmate: ML

Beroull dstrbuto ata : d samle of outcomes co fls osteror of data: Lelhood Cojugate ror: osteror: Γ Γ Γ Beta Beta

Bomal dstrbuto models couts of occurreces of bary outcomes orderdeedet sequece of trals Model: robablty of a outcome head robablty of a outcome 0 tal robablty dstrbuto fucto: Eamle roblem: co fls where each co fl ca have two results: head or tal * 3* - umber of outcomes - umber of outcomes

Bomal dstrbuto: Bomal dstrbuto

Mamum lelhood ML estmate. Lelhood of data: Log-lelhood!!! log log!!! log log l Costat from the ot of otmzato!!! ML ML Soluto: The same as for Beroull ad wth d sequece of eamles

osteror desty osteror desty ror choce Lelhood osteror MA estmate ma arg MA va Bayes rule Γ Γ Γ Beta Γ Γ Γ Beta MA

Multomal dstrbuto Eamle: multle rolls of a dce wth 6 results Outcome: couts of occurreces of ossble outcomes of trals: - a umber of tmes a outcome has bee see Model arameters: s.t. - robablty of a outcome robablty dstrbuto: ML estmate:!!! ML! Multomal dstrbuto

osteror ad MA estmate Choce of the ror: rchlet dstrbuto.... r r MA.. MA estmate: osteror desty.. Γ Γ r rchlet s the cojugate choce for the multomal samlg!!!!

rchlet dstrbuto rchlet dstrbuto: Assume: 3.. Γ Γ r 3

Other dstrbutos The same deas ca be aled to other dstrbutos Tycally we choose dstrbutos that behave well so that comutatos lead to ce solutos Eoetal famly of dstrbutos Cojugate choces for some of the dstrbutos from the eoetal famly: Bomal Beta Multomal - rchlet Eoetal Gamma osso Iverse Gamma Gaussa - Gaussa mea ad Wshart covarace

Gaussa ormal dstrbuto Model of a real-valued outcome Gaussa: ~ σ arameters: - mea σ - stadard devato esty fucto: σ e[ Eamle: σ π σ ] 0.4 0.35 0 0.3 0.5 0. 0.5 0. 0.05 0-4 -3 - - 0 3 4

arameter estmates Loglelhood ML estmates of the mea ad varace: ML varace estmate s based Ubased estmate: ˆ ˆ ˆ σ log σ σ l ˆ ˆ σ ˆ σ σ σ E E

Multvarate ormal dstrbuto Multvarate ormal: ~ arameters: - mea - covarace matr esty fucto: e d / / π T Eamle:

arttoed Gaussa strbutos Multvarate Gaussa: Eamle: recso matr What are the dstrbutos for margals ad codtoals? a a b

arttoed Codtoals ad Margals Codtoal desty: Margal esty:

arttoed Codtoals ad Margals

arameter estmates Loglelhood ML estmates of the mea ad covaraces: Covarace estmate s based Ubased estmate: ˆ T ˆ ˆ ˆ log l T ˆ ˆ ˆ E E T ˆ ˆ ˆ

osteror of a multvarate ormal Assume a ror o the mea that s ormally dstrbuted: The the osteror of s ormally dstrbuted T d / / e π e * / / T d π e / / T d π

osteror of a multvarate ormal The the osteror of s ormally dstrbuted e / / T d π

Other dstrbutos Gamma dstrbuto models desty over o-egatve umbers: λ a b λ a b λ e a for λ [ 0 ] Γ a b

Other dstrbutos Eoetal dstrbuto: A secal case of Gamma for a λ b e b Uform dstrbuto: λ b a b for [ a b] b a osso dstrbuto: models a umber of evets occurrg a secfc tme terval λ λ e λ for { 0 }!

Sequetal Bayesa arameter estmato Sequetal Bayesa aroach Uder the d the estmates of the osteror ca be comuted cremetally for a sequece of data ots If we use a cojugate ror we get bac the same osteror Assume we slt the data the last elemet ad the rest The: d d A ew ror

Eoetal famly Eoetal famly: all robablty mass / desty fuctos that ca be wrtte the eoetal ormal form e[ ] T f η h η t Z η η a vector of atural or caocal arameters t a fucto referred to as a suffcet statstc h a fucto of t s less mortat Zη a ormalzato costat a artto fucto { T Z η h e η t } d Other commo form: [ η t A ] T f η h e η log Z η A η

Eoetal famly: eamles Beroull dstrbuto π π π π e log log π π π e{ log π } e log π Eoetal famly [ ] T f η h e η t Z η arameters π η log ote π η π e t Z η η h π e

Eoetal famly: eamles Uvarate Gaussa dstrbuto Eoetal famly arameters e log e σ σ σ σ π / / σ σ η t π / h log 4 e log e η η η σ σ η Z [ ] e t h Z f T η η η ] e[ σ π σ σ