2 Cosmological Models with Idealized Matter

Σχετικά έγγραφα
Physics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems.

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Tutorial Note - Week 09 - Solution

Laplace s Equation in Spherical Polar Coördinates

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

Analytical Expression for Hessian

Matrix Hartree-Fock Equations for a Closed Shell System

Example 1: THE ELECTRIC DIPOLE

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

8πε0. 4πε. 1 l. πε0 Φ =

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar

ANTENNAS and WAVE PROPAGATION. Solution Manual

Approximation of distance between locations on earth given by latitude and longitude

Synthetic Aperture Radar Processing

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Solutions Ph 236a Week 2

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

r = x 2 + y 2 and h = z y = r sin sin ϕ

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

Fundamental Equations of Fluid Mechanics

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

Oscillatory integrals

1 Full derivation of the Schwarzschild solution

PhysicsAndMathsTutor.com

Answer sheet: Third Midterm for Math 2339

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Chapter 7b, Torsion. τ = 0. τ T. T τ D'' A'' C'' B'' 180 -rotation around axis C'' B'' D'' A'' A'' D'' 180 -rotation upside-down C'' B''

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

The Laplacian in Spherical Polar Coordinates

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

2 Composition. Invertible Mappings

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Solutions_3. 1 Exercise Exercise January 26, 2017

Statistical Inference I Locally most powerful tests

Section 8.3 Trigonometric Equations

Areas and Lengths in Polar Coordinates

Curvilinear Systems of Coordinates

Strain and stress tensors in spherical coordinates

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Physics/Astronomy 226, Problem set 5, Due 2/17 Solutions

九十七學年第一學期 PHYS2310 電磁學期中考試題 ( 共兩頁 )

Geodesic Equations for the Wormhole Metric

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

CRASH COURSE IN PRECALCULUS

Every set of first-order formulas is equivalent to an independent set

derivation of the Laplacian from rectangular to spherical coordinates

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΧΑΟΤΙΚΕΣ ΚΙΝΗΣΕΙΣ ΓΥΡΩ ΑΠΟ ΜΑΥΡΕΣ ΤΡΥΠΕΣ

Reminders: linear functions

Finite Field Problems: Solutions

Section 9.2 Polar Equations and Graphs

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Optimal Placing of Crop Circles in a Rectangle

Inverse trigonometric functions & General Solution of Trigonometric Equations

4.2 Differential Equations in Polar Coordinates

1 String with massive end-points

Dark matter from Dark Energy-Baryonic Matter Couplings

Scale effects modeling in bubbles and trusses using first strain gradient elasticity

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Spherical Coordinates

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK

Uniform Convergence of Fourier Series Michael Taylor

4.6 Autoregressive Moving Average Model ARMA(1,1)

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Cosmological Space-Times

Slide 1 of 18 Tensors in Mathematica 9: Built-In Capabilities. George E. Hrabovsky MAST

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

Example Sheet 3 Solutions

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

General Relativity (225A) Fall 2013 Assignment 5 Solutions

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Durbin-Levinson recursive method

Math221: HW# 1 solutions

Section 7.6 Double and Half Angle Formulas

Parametrized Surfaces

VANISHING VISCOSITY SOLUTIONS OF THE COMPRESSIBLE EULER EQUATIONS WITH SPHERICAL SYMMETRY AND LARGE INITIAL DATA

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

D Alembert s Solution to the Wave Equation

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

ΦΥΣ Διαλ Σήμερα...? q Λογισμό μεταβολών (calculus of variations)

Second Order RLC Filters

Review Exercises for Chapter 7

I Feel Pretty VOIX. MARIA et Trois Filles - N 12. BERNSTEIN Leonard Adaptation F. Pissaloux. ι œ. % α α α œ % α α α œ. œ œ œ. œ œ œ œ. œ œ. œ œ ƒ.

Transcript:

Cosmologicl Models with Idelized Mtte. Model spces: Constuction Spces nd spcetimes of high symmety ply vey impotnt ole in cosmologicl modelbuilding, nd s emples solvble models of genel eltivity. The most impotnt ones cn be consideed s diffeent odd sots of sphees, so we stt with those. d sphee 4 i = Spheicl coodintes = cos = sin sinθ cosφ = sin 4 = sin sinθ sinφ dl = d i }{{} = d sin dθ sin θdφ Qusi-flt coodintes Wite 4 = i Eecise i= d d d 4 = 4 d 4 = dl = d i d 4 i= d = d dθ sin θdφ d = dθ sin θdφ du = u dθ sin θdφ, u = u Confoml coodintes It is often useful to wite ds = f ds flt if tht is possible. Penose digms... lte. Stting fom out pevious fom, we will hve this if we use η in plce of such tht d = f dη = f η dη d = η

leding to η = tn u with sinu =. Wite = sinu; q d du = = sinu u dη d log tn = η = d logη. o, fte some lgeb: 4 dl = dη η dθ sin θdφ η f = η sin u = u u η 4 sin cos = 4 η η The sphee suppots the symmety SO4.. d hypeboloid spce of constnt negtive cuvtue figue Spheicl coodintes i = i= Qusi-flt coodintes Confoml coodintes = cosh = sinh cosθ... dl = d d = d sinh dθ sin θdφ = =... d dl = dθ sin θdφ du = u dθ sin θdφ u 4 dl = dη η dθ sin θdφ η

with η = tnh u, sinhu = Suppots symmety SO,, i.e. Loentz symmety, cting puely sptilly! To bing this out, use = coshλ = cosφ = sinhλ = sinφ Tnsltions λ this invint. dl = d dφ dλ λ constnt, coisponding to boosts in the oiginl vibles, leve. de-sitte spcetime figue 4 = = cosh cosλ = cosh sinλ cosθ = cosh sinλ sinθ cosφ 4 = cosh sinλ sinθ sinφ = sinh Spheicl coodintes ds = d d i i = d cosh dλ sin λ dθ sin θdφ }{{} unit -sphee?: eponentil epnsion!; minimum dius; sphees Qusi-flt coodintes d = d = d ds = dλ sin λ dθ sin θdφ

Light-font coodintes Sepete out plnes,, 4 = = = = = }{{} ds = d d d d = d d ds d d = d d To emove the ugly coss-tem, intoduce v = f. So dv = f d fd dv = f d ff dv f d d = dv f d ff d f The -tem cncels if f f =, f = ± >. Thus with v ds d = d dv Now with e t/ d = dv which is n epnding flt sptil metic. ds = dt e t/ dv Confoml coodintes d ds = dv 4 d so with u ds = du dv u de-sitte spce hs the symmety SO4, fom the hypeboloid definition. In the light-font coodintes we hve tnsltion symmeties v v const. Whee do these sit? See Appendi. We ll hve much moe to sy bout de-sitte spce lte infltion. 4

. FW Fiedmn-obetson-Wlke spcetimes These e constucted by choosing one of the mimlly symmetic pces nd letting its ovell scle vy with time. Thus whee ds = dt tdl dl = du u dθ sin θdφ κu K = K = K = hypebolic sections flt sections spheicl sections These model spcetimes e homogeneous nd isotopic, but evolving. They supply inteesting fist models fo the obseved univese veged ove lge scles.. Cuvtue Clcultions Ou mste fomuls with coect signs e e fν ω µ ef = µ e e ν ν e e µ e µ e eρ ρ e ν e f µν αβ = F µν b e α e b β b F µν = µ ω ν b b ω c ω c ν ω µ ω µ c ν b ω ν c µ v This is best eploited fo g µν digonl by using cetin qusi-ctesin viebeins e α = δ α g so e α = η α g η fν δ e st tem: g f }{{ ν } µg e symmetic in e f η ef nd tem: η fν g f δ µ e ν g e = η fν g f δ µ e ν g e η fν η η eρ η g g g δ f η eρ g d tem: µ ν f e ρ g f = µ e ρ g f }{{} f,ν,µ, ll equl So ωµ ef = δµ f η eρ ge ρ g f δµ e η fρ g f ρ g e mnemonic: µ mtches on inde, the othe diffeentites its g Emple : d sphee wm-up e θ = = g e φ = sinθ = g ω = δ e only, but g = θ µ ω φ = cosθ δ f= η ρ g g F θφ = θ ω φ vnishing = sinθ sinθ {}}{{}}{ θφ = sinθ e θ e φ = θφ 5

By the wy, this is the guge field of mgnetic monopole guge goup SO = U! Emple : d sphee e χ = e θ = sinχ e φ = sinχ sinφ ω = ω = cosχ ω = ω χ χ θ φ = ω θ = ω φ = cosχ sinθ Thus F F F F χθ χφ = χ ω = sinχ θ = χ ω = sinχ sinθ φ = θ ω ω ω = cosχ cosθ cosχ cosθ = θφ φ θ φ = θ ω ω ω = sinθ cos χ sinθ = sin χ sinθ θφ φ θ φ F µν b = e µ e ν b e µ b e ν? The ntisymmety on indices µ, ν nd, b is utomtic! o µν b = δ µ α δ ν β δ µ β δ ν α ν β = δν β = 6 Emple : FW cosmology sptilly flt cse Note: Mid-Ltin indices e sptil, ely Ltin indices e intenl The only non-zeo ω is c c e t = e i = δ i t ds = dt t d c c ω i = δ i ȧ The non-vnishing components of the field stength e leding to the icci tenso components c c c F i = ω i = δ i ä cd F ij = ωi c ωj d ωj c ωi d = δ c d c i δ j δ k δi d ȧ ä c = = F i e i c l cl l i = F ij e c e j d F c e l i c ȧ ä = δ i l ä = 6 6 ȧ 6

.4 FW Dynmics The field equtions in g αβ e µ ν δν µ = 8πG ν We intepet T i i µ = ρ, T = pδ j j Check : fo electomgnetism, T µ =, p = ρ Fom the peceding clcultion ȧ 8πGρ = ä ȧ 8πGp = ȧ ä 8πGp ρ = Anothe impotnt nd ppeling eqution comes fom diffeentiting the fist of these nd eliminting: ȧ ä ȧ 8πG ρ = 6 ȧ = 8πG ρ p o simply ȧ ρ = ρ p Anothe inteesting thing is to see who s esponsible fo cceletion: ä 8πGρ p = 6 Thee is simple intepettion of nd : : Imgine test pticle long fo the ide. Gvity outside cncels Bikhoff theoem. Consevtion of pticle s enegy v {}}{ G 4π m ρ m = mk 8πGρ ȧ = k We hve this with k = : neutl binding, citicl escpe velocity! The non-zeo vlues of k ise in FW spces with hypebolic k > o? spheicl k < sptil sections - see the poblem set. : Imgine wok done by n epnding fluid ginst pessue; tke it fom mss-enegy d 4π d 4π dt ρ = p dt d d ρ = p dt dt ȧ ρ = ρ p 7

Appendi : Tnsltions within SO4, Wite the metic in block fom: J g = J The condition fo ne-identity tnsfomtion b S = c d to leve the metic invint is S T T gs g; b T c T d T J J c b d o to st ode T J J = Jb c T = b T J c = d T d = With = d = the tnsfomtions b T b tnslte vectos J s by b Tbs, i.e. with things J spelled out completely α δ α β γ b = ; so b T J = β η δ η φ γ φ nd αs βs γs Δ = bs = δs ηs φs α δ Δs = b T J = β η γ φ Tnsfomtions with δ = α, η = β, φ = γ leve fied while tnslting s though α Δs = β γ So s/ is tnslted in the conventionl wy. In ou pevious nottion this is This eplins v. s,, 4 = = v 8