Bipolar Model Standardization Mextram 503.2

Σχετικά έγγραφα
NPN SILICON OSCILLATOR AND MIXER TRANSISTOR

AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM

NPN Silicon RF Transistor BFQ 74

PRELIMINARY DATA SHEET NPN EPITAXIAL SILICON TRANSISTOR FOR MICROWAVE HIGH-GAIN AMPLIFICATION

Lecture Stage Frequency Response (1/10/02) Page 210-1

SURFACE MOUNT NPN SILICON HIGH FREQUENCY TRANSISTOR

NPN SILICON GENERAL PURPOSE TRANSISTOR

Διπολικό Τρανζίστορ Bipolar Junction Transistor (BJT)

Ηλεκτρονική ΙΙΙ Παύλος - Πέτρος Σωτηριάδης. Επανάληψη μέρος 2 ο. Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών

Microelectronic Circuit Design Third Edition - Part I Solutions to Exercises

Aluminum Electrolytic Capacitors (Large Can Type)

Bipolar Transistors ιπολικά τρανζίστορ

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Capacitors - Capacitance, Charge and Potential Difference

Electrical Specifications at T AMB =25 C DC VOLTS (V) MAXIMUM POWER (dbm) DYNAMIC RANGE IP3 (dbm) (db) Output (1 db Comp.) at 2 f U. Typ.

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Ι

Aluminum Electrolytic Capacitors

DISCONTINUED NE680 SERIES NPN SILICON HIGH FREQUENCY TRANSISTOR SILICON TRANSISTOR FEATURES DESCRIPTION

First Sensor Quad APD Data Sheet Part Description QA TO Order #

High Performance Voltage Controlled Amplifiers Typical and Guaranteed Specifications 50 Ω System

IXBH42N170 IXBT42N170

NE680 SERIES. from this datasheet are not NPN SILICON HIGH FREQUENCY TRANSISTOR SILICON TRANSISTOR FEATURES DESCRIPTION

4.8 V NPN Common Emitter Medium Power Output Transistor. Technical Data AT-31625

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

NPN SILICON HIGH FREQUENCY TRANSISTOR 00 (CHIP) 35 (MICRO-X)

SURFACE MOUNT NPN SILICON HIGH FREQUENCY TRANSISTOR

LR Series Metal Alloy Low-Resistance Resistor

4.6 Autoregressive Moving Average Model ARMA(1,1)

FEATURES APPLICATION PRODUCT T IDENTIFICATION PRODUCT T DIMENSION MAG.LAYERS

AT Low Current, High Performance NPN Silicon Bipolar Transistor

3 V, 900 MHz LOW NOISE SI MMIC AMPLIFIER

Bulletin 1489 UL489 Circuit Breakers

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

The following part numbers from this datasheet are not recommended for new design. Please call sales office for PLEASE NOTE: details: NE68135

MULTILAYER CHIP VARISTOR JMV S & E Series: (SMD Surge Protection)

2R2. 2 (L W H) [mm] Wire Wound SMD Power Inductor. Nominal Inductance Packing Tape & Reel. Design Code M ±20%

RSDW08 & RDDW08 series

3 V, 1500 MHz Si MMIC WIDEBAND AMPLIFIER

Si Photo-transistor Chip TKA124PT

C4C-C4H-C4G-C4M MKP Series AXIAL CAPACITORS PCB APPLICATIONS

Metal Oxide Varistors (MOV) Data Sheet

EE101: Resonance in RLC circuits

LR Series Metal Alloy Low-Resistance Resistor

3 V, 900 MHz Si MMIC AMPLIFIER

C121. External Dimensions (L W) (mm) 0603 [0201] [0402] [0603] [0805]

+85 C Snap-Mount Aluminum Electrolytic Capacitors. High Voltage Lead free Leads Rugged Design. -40 C to +85 C

Aspects of High-Frequency Modelling with EKV3

Τρανζίστορ Επίδρασης Πεδίου Field-effect transistors (FET)

Gearmotor Data. SERIES GM9000: We have the GM9434H187-R1

HIS series. Signal Inductor Multilayer Ceramic Type FEATURE PART NUMBERING SYSTEM DIMENSIONS HIS R12 (1) (2) (3) (4)

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Σχεδίαση-Κατασκευή-Μέτρηση γραμμικού ενισχυτή UHF 09197ΥΣ. Με εφαρμογή στην τηλεόραση, αναλογική-ψηφιακή. ΚΑΘΗΓΗΤΗΣ: ΦΟΙΤΗΤΗΣ:

Μικροηλεκτρονική - VLSI

NPI Unshielded Power Inductors

Data sheet Thin Film Chip Inductor AL Series

NPN SILICON HIGH FREQUENCY TRANSISTOR

LR(-A) Series Metal Alloy Low-Resistance Resistor

HFC SERIES High Freq. Wound Ceramic Chip Inductors

Fractional Colorings and Zykov Products of graphs

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

Chilisin Electronics Singapore Pte Ltd

The Simply Typed Lambda Calculus

Metal thin film chip resistor networks

Chapter 5. Exercise Solutions. Microelectronics: Circuit Analysis and Design, 4 th edition Chapter 5 EX5.1 = 1 I. = βi EX EX5.3 = = I V EX5.

Strain gauge and rosettes

Ceramic PTC Thermistor Overload Protection

No Item Code Description Series Reference (1) Meritek Series CRA Thick Film Chip Resistor AEC-Q200 Qualified Type

SPECIFICATIONS. PRODUCT NAME: AC COB15W LED module (3120) General Customer MODEL NAME: CUSTOMER P/N: DATE:

SMD Power Inductor. - SPRH127 Series. Marking. 1 Marking Outline: 1 Appearance and dimensions (mm)

BMA SERIES Subminiature Blind Mate Connectors

SMD Transient Voltage Suppressors

Multilayer Ceramic Chip Capacitors

Terminal Contact UL Insulation Designation (provided with) style form system approval Flux tight

MAX4147ESD PART 14 SO TOP VIEW. Maxim Integrated Products 1 MAX4147 EVALUATION KIT AVAILABLE ; Rev 1; 11/96 V CC V EE OUT+ IN+ R t SENSE IN-

SMC SERIES Subminiature Coaxial Connectors

Chapter 6 ( )( ) 8 ( ) ( )( ) Exercise Solutions. Microelectronics: Circuit Analysis and Design, 4 th edition Chapter 6. EX6.

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Multilayer Ceramic Chip Capacitors

65W PWM Output LED Driver. IDLV-65 series. File Name:IDLV-65-SPEC

High Frequency Chip Inductor / CF TYPE

Matrices and Determinants

Rating to Unit ma ma mw W C C. Unit Forward voltage Zener voltage. Condition

SPBW06 & DPBW06 series

Lecture 26: Circular domains

SMC SERIES Subminiature Coaxial Connectors

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

4.8 V NPN Silicon Bipolar Common Emitter Transistor. Technical Data AT-38086

IXBK64N250 IXBX64N250

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

2.5 GHz SILICON MMIC WIDE-BAND AMPLIFIER

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Ηλεκτρονική Φυσική & Οπτικοηλεκτρονική

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

SCOPE OF ACCREDITATION TO ISO 17025:2005

Solutions to Exercise Sheet 5

Multilayer Chip Inductor

Radio Frequency Technologies for Innovative Solutions

GenX3 TM 300V IGBT IXGA42N30C3 IXGH42N30C3 IXGP42N30C3 V CES = 300V I C110. = 42A V CE(sat) 1.85V t fi typ. = 65ns

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

B37631 K K 0 60

Transcript:

Bipolar Model Standardization Mextram 53.2 W.J. Kloosterman J.C.J. Paasschens D.B.M. Klaassen Laboratories, Eindhoven c Electronics N.V. 1999

Outline (1) Introduction Extended Mextram circuit model Results process A Mextram 53.2 Current and charge at onset of quasi-saturation Mextram 54. process C process D process E Remarks

Introduction (2) bipolar vertical NPN/PNP compact transistor model discrete and integrated circuit model analog/digital, RF/power applications low/high voltage, low/high frequency Survey of modelled effects modelling of I c including high injection, bias dependent Early effect modelling of I b including non ideal base current charge storage effects explicit modelling inactive regions (parasitic PNP) extensive modelling of the collector region including quasi-saturation, hot carrier effect, avalanche multiplication temperature effect

Introduction (3) noise modelling geometric scaling rules are not part of the model (in contrast with MOS compact models) public domain since 1993 http://www.semiconductors.philips.com/ Models/ documentation source code new release in june 2

Extended Equivalent Circuit Mextram (4) Substrate R sub Rcc Collector Isub Repi R bc R bv Base I n R e Emitter substrate resistance R sub (depending on circuitry) self-heating is a feature of the in-house circuit simulator T dut = TEMP + R th (I c V ce + I b V be )

Results: Process A (5) process A: Single Poly BiCMOS process emitter size:.6 5.4µm double base contact, R p = 1k maximum cut off frequency f T :1GHzat5VoltV ce (6 GHz at 5 mv V ce )

Process A: Cap Temp=25, 125 Mextram 53.2 (6) 12 Cbe 12 Cbc 5 Ccs 1 1 4 Cbe [ff] 8 6 Cbc [ff] 8 6 Ccs [ff] 3 2 4 4 1 2 4 3 2 1 1 Vbe[V] 2 13 11 9 7 5 3 1 1 Vbc[V] 13 11 9 7 5 3 1 1 Vcs[V] 1 Cbe_ 1 Cbc_ 4 Ccs_ 9 9 38 Cbe_[fF] 8 7 Cbc_[fF] 8 7 Ccs_[fF] 36 34 6 6 32 5 25 5 75 1 125 15 Temp[C] 5 25 5 75 1 125 15 Temp[C] 3 25 5 75 1 125 15 Temp[C]

Process A: fgummel Vbc= Temp=25, 5, 75, 125, 15 Mextram 53.2 (7) 1 1 Ic Ib Is 1 2 Ic [A] 1 6 Ib [A] 1 6 1 7 Is [A] 1 6 1 7 1 7 1 8 1 8 1 8 1 9.2.4.6.8 1. 1.2 Vbe[V] 1 9 1 1.2.4.6.8 1. 1.2 Vbe[V] 1 9 1 1.2.4.6.8 1. 1.2 Vbe[V] Ic/Ib[ ] 2 175 15 125 1 75 5 Ie/Ib 25.2.4.6.8 1. 1.2 Vbe[V] dic/dvbe/ic [1/V] 5 4 3 2 1 (dic/dvbe)/ic.2.4.6.8 1. 1.2 Vbe[V] (dib/dvbe)/ib [1/V] 5 4 3 2 1 (dib/dvbe)/ib.2.4.6.8 1. 1.2 Vbe[V]

Process A: rgummel Vbe= Temp=25, 5, 75, 125, 15 Mextram 53.2 (8) 1 1 Ie Ib Is 1 2 Ie [A] 1 6 Ib [A] 1 6 1 7 Is [A] 1 6 1 7 1 7 1 8 1 8 1 8 1 9.2.4.6.8 1. 1.2 Vbc[V] 1 9 1 1.2.4.6.8 1. 1.2 Vbc[V] 1 9 1 1.2.4.6.8 1. 1.2 Vbc[V] Ie/Ib[ ] Ie/Ib 1..9.8.7.6.5.4.3.2.1..2.4.6.8 1. 1.2 Vbc[V] Ie/(Ib+Is) [ ] Ie/(Ib+Is) 1 9 8 7 6 5 4 3 2 1.2.4.6.8 1. 1.2 Vbc[V] (die/dvbc)/ie [1/V] 5 4 3 2 1 (die/dvbc)/ie.2.4.6.8 1. 1.2 Vbc[V]

Process A: foutput-vbe Vbe=.65 Temp=25, 5, 75, 125, 15 Mextram 53.2 (9) 1 1 Ic Ib Ic [A] 1 2 1 6 2 4 6 8 1 12 Vcb[V] Ib [A] 1 6 1 7 1 8 1 9 2 4 6 8 1 12 Vcb[V] 3 Ic/Ib Ic/(dIc/dVcb) Mult=(Ib_ Ib)/Ic 25 1 Ic/Ib[ ] 2 15 1 Vef[V] 75 5 Mult[ ] 5 25 2 4 6 8 1 12 Vcb[V] 2 4 6 8 1 12 Vcb[V] 2 4 6 8 1 12 Vcb[V]

Process A: foutput-vbc Vbc=.65 Temp=25, 5, 75, 125, 15 Mextram 53.2 (1) 1 1 Ie Ib Is 1 2 Ie [A] Ib [A] 1 6 Is [A] 1 6 1 7 1 8 1 7 1 8 1 6 1 2 3 4 Veb[V] 1 9 1 2 3 4 Veb[V] 1 9 1 2 3 4 Veb[V] 5 Ie/Ib 3 Ie/(Ib+Is) 6 Ie/(dIe/dVeb) 4 25 5 Ie/Ib[ ] 3 2 Ie/(Ib+Is) [ ] 2 15 1 Ver[V] 4 3 2 1 5 1 1 2 3 4 Veb[V] 1 2 3 4 Veb[V] 1 2 3 4 Veb[V]

Process A: foutput-ib Temp=25 Ib=1, 2, 3, 4 ua Mextram 53.2 (11) 3 Ic Is 1.1 Vbe 25 1.5 Ic [ma] 2 15 1 Is [A] 1 6 1 7 1 8 Vbe [V] 1..95.9 5 1 9.85 1 2 3 4 5 6 7 8 Vce[V] 1 1..5 1. 1.5 2. Vce[V].8 1 2 3 4 5 6 7 8 Vce[V] 15 Ic/Ib 1 1 dic/dvce 5 Ic/(dIc/dVce) 125 4 Ic/Ib[ ] 1 75 5 g_out [mho] 1 2 Vef [V] 3 2 25 1 1 2 3 4 5 6 7 8 Vce[V] 1 2 3 4 5 6 7 8 Vce[V] 1 2 3 4 5 6 7 8 Vce [V]

Process A: Temp=25 f=1 GHz, Vce=.2,.5,.8, 2, 5 V Mextram 53.2 (12) 25 Hfe=Ic/Ib 1 R_bb 2 8 15 6 Ic/Ib 1 Rb 4 5 2 1 2 1 1 1 2 1 1 1 1 1 ft 1 11 F_uni 8 1 9 ft[hz] 6 1 9 4 1 9 F_uni[Hz] 1 1 1 9 2 1 9 1 1 2 1 1 1 8 1 2 1 1

Process A: Temp=25 f=1ghz Vce=.2 2,.8, 5 +Mextram 53.2 (13) 1 R(Y11) 1 1 R(Y12) 1 R(Y21) 1 R(Y22) 1 1 1 2 1 1 1 1 R(Y11) [A/V] 1 2 R(Y12) [A/V] R(Y21) [A/V] 1 2 R(Y22) [A/V] 1 2 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 I(Y11) 1 1 I(Y12) 1 I(Y21) 1 1 I(Y22) I(Y11) [A/V] 1 2 I(Y12) [A/V] 1 2 I(Y21) [A/V] 1 1 1 2 I(Y22) [A/V] 1 2 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1

Current and charge at onset of quasi-saturation: Mextram 54 (14) Base widening starts when internal b-c junction becomes forward biased; i.e V B2 C 2 = V dc. We can calculate the current I ck where this happens; I ck = V d c V B2 C 1 SCR Cv Vd c V B2 C 1 + I hc SCR Cv V dc V B2 C 1 + I hc R cv Now this current can be used to determine when Q bc and Q epi should start to increase. This then determines the position of the top of f T. possible solution: Q bc + Q epi = τ xi x i W epi = 1 ( xi W epi ) 2 I c 1 + a xi ln 1 { [ ]} 1 + exp Ic /I ck 1 a xi Xi / Wepi.9.8.7.6.5.4.3.2.1 Mextram 53.2 Alternative Vcb = 1, 3, 5.5.1.15.2 Ic

Process A: Temp=25 f=1 GHz, Vce=.2,.5,.8, 2, 5 V Mextram 54. (15) 25 Hfe=Ic/Ib 1 R_bb 2 8 15 6 Ic/Ib 1 Rb 4 5 2 1 2 1 1 1 2 1 1 1 1 1 ft 1 11 F_uni 8 1 9 ft[hz] 6 1 9 4 1 9 F_uni[Hz] 1 1 1 9 2 1 9 1 1 2 1 1 1 8 1 2 1 1

Process A: Vce=.8 f=1 GHz, Temp=25 2, 5, 75, 125, 15 Mextram 54. (16) 25 Hfe=Ic/Ib 1 R_bb 2 8 15 6 Ic/Ib 1 Rb 4 5 2 1 2 1 1 1 2 1 1 1 1 1 ft 1 11 F_uni 8 1 9 ft[hz] 6 1 9 4 1 9 F_uni[Hz] 1 1 1 9 2 1 9 1 1 2 1 1 1 8 1 2 1 1

Results: Process C (17) process C: NPN on SOI, no parasitic PNP zero substrate current emitter size: 1. 5.µm double base contact, R p = 12k maximum cut off frequency f T :1GHzat6VoltV ce large amount of self-heating: R th = 25 o C/W

Process C: fgummel Vbc= Temp=27, 75, 125 Mextram 53.2 (18) 1 1 Ic Ib 1 2 Ic [A] 1 6 Ib [A] 1 6 1 7 1 7 1 8 1 8 1 9.2.4.6.8 1. 1.2 Vbe[V] 1 9 1 1.2.4.6.8 1. 1.2 Vbe[V] Ic/Ib[ ] 2 175 15 125 1 75 5 Ie/Ib 25.2.4.6.8 1. 1.2 Vbe[V] (dic/dvbe)/ic [1/V] 5 4 3 2 1 (dic/dvbe)/ic.2.4.6.8 1. 1.2 Vbe[V] (dib/dvbe)/ib [1/V] 5 4 3 2 1 (dib/dvbe)/ib.2.4.6.8 1. 1.2 Vbe[V]

Process C: foutput-ib Temp=27 Ib=1, 3, 5, 7, 9 ua Mextram 53.2 (19) 8 Ic 1.1 Vbe 6 1.5 1. Ic [ma] 4 2 Vbe [V].95.9.85 2 4 6 8 1 Vce[V].8 2 4 6 8 1 Vce[V] Ic/Ib[ ] 2 175 15 125 1 75 5 Ic/Ib 25 2 4 6 8 1 Vce[V] g_out [A/V] dic/dvce 2 4 6 8 1 Vce[V] Vef [V] 1 8 6 4 2 Ic/(dIc/dVce) 2 4 6 8 1 Vce[V]

Process C: Temp=27 f=993mhz Vce=.5 2, 1., 2., 6. Volt Mextram 53.2 (2) 5 R_bb 1 1 1 ft 4 8 1 9 R_bb[Ohm] 3 2 ft[hz] 6 1 9 4 1 9 1 2 1 9 1 2 1 1 2 Ic [A]

Results: Process D (21) process D: NPN of a double poly BiCMOS process with selective implanted collector (SIC) emitter size:.55 3.45µm single base contact, R p = 9k f T :25GHzat1VoltV ce F max : 25 GHz at.9 Volt V ce

Process D: fgummel+rgummel Temp=-5, 25, 62.5, 137.5, 2 Mextram 53.2 (22) Ic [A] 1 1 1 2 1 6 1 7 1 8 Ic: Vbc=.36 Volt 1 9 1 1.3..3.6.9 Vce[V] Ib [A] 1 6 1 7 1 8 1 9 1 1 Ib: Vbc=.36 Volt 1 11 1 12.3..3.6.9 Vce[V] Is [A] 1 1 1 2 1 6 1 7 1 8 Is: Vbc=.36 Volt 1 9 1 1.3..3.6.9 Vce[V] Ie: Vbe=.36 V Ib: Vbe=.36 V Is: Vbe=.36 V Ie [A] 1 6 1 7 Ib [A] 1 6 1 7 Is [A] 1 6 1 7 1 8 1 8 1 8 1 9 1 9 1 9 1 1 1 11.6.3..3.6.9 Vec[V] 1 1 1 11.6.3..3.6.9 Vec[V] 1 1 1 11.6.3..3.6.9 Vec[V]

Process D: Temp=25, freq=1.8ghz, Vce=.2,.4,.9, 1.5 Volt Mextram 53.2 (23) 1 1 R(Y11) 1 1 R(Y12) 1 1 R(Y21) 1 1 R(Y22) 1 2 1 2 1 2 1 2 R(Y11) [A/V] R(Y12) [A/V] R(Y21) [A/V] R(Y22) [A/V] 1 7 1 6 1 7 1 6 1 7 1 6 1 7 1 6 1 1 I(Y11) 1 1 I(Y12) 1 1 I(Y21) 1 1 I(Y22) 1 2 1 2 1 2 1 2 I(Y11) [A/V] I(Y12) [A/V] I(Y21) [A/V] I(Y22) [A/V] 1 7 1 6 1 7 1 6 1 7 1 6 1 7 1 6

Process D: Temp=25, freq=1.8ghz, Vce=.2,.4,.9, 1.5 Volt Mextram 53.2 (24) 14 hfe 5 R_bb 12 4 Ic/Ib [ ] 1 8 6 R_bb [Ohm] 3 2 4 2 1 1 6 1 6 3 ft 1 11 F_uni 25 ft [GHz] 2 15 1 F_uni [Hz] 1 1 1 9 5 1 6 1 8 1 6

Results: Process E (25) process E: NPN of a BiCMOS process emitter size:.6 4.8µm Sheet resestance base, R p 1k

Process E: Mextram 53.2 (26) 15 Ic/Ib: Vbc=,1, 2 Volt 1. Ie/Ib: Vbe=. V 5 Ie/(Ib+Is): Vbe=. V 125.8 4 Ic/Ib [ ] 1 75 5 Ie/Ib [ ].6.4 Ie/(Ib+Is) [ ] 3 2 25.2 1 1 1 1 9 1 8 1 7 1 6 Ic [A]. 1 1 1 9 1 8 1 7 1 6 Ie [A] 1 1 1 9 1 8 1 7 1 6 Ie [A] 4 Ic/(dIc/dVce): Ib=4,12,2 ua 5 Ie/(dIe/dVec): Ib=4,12,2 ua 2 ft: Vbc=, 1, 2, 4 Volt 3 4 15 Vef [V] 2 Ver [V] 3 2 ft [GHz] 1 1 1 5 1 2 3 4 5 Vce [V]..4.8 1.2 1.6 2. Vec [V] 1 6 1 2 1 1 Ic [A]

Process E: Vcb=.V, Vbe=.7,.8,.9, 1. Volt Temp=21.4 Mextram 53.2 (27) 1 1 R(Y11) R(Y12) 1 1 R(Y21) R(Y22) 1 2 1 2 R(Y11) [A/V] R(Y12) [A/V] 1 6 R(Y21) [A/V] R(Y22) [A/V] 1 7 1 6 1 7 1 8 1 9 1 1 Freq[Hz] 1 8 1 7 1 8 1 9 1 1 Freq [Hz] 1 6 1 7 1 8 1 9 1 1 Freq [Hz] 1 6 1 7 1 8 1 9 1 1 Freq [Hz] 1 1 I(Y11) 1 1 I(Y12) 1 1 I(Y21) 1 1 I(Y22) 1 2 1 2 1 2 1 2 I(Y11) [A/V] I(Y12) [A/V] I(Y21) [A/V] I(Y22) [A/V] 1 6 1 7 1 8 1 9 1 1 Freq [Hz] 1 6 1 7 1 8 1 9 1 1 Freq [Hz] 1 6 1 7 1 8 1 9 1 1 Freq [Hz] 1 6 1 7 1 8 1 9 1 1 Freq [Hz]

Remarks (28) We have characterized 5 of the 6 transistors Mextram 53.2 parameter set + substrate resistance + self-heating parameters simulated data for all measurements are provided Current data of process B (SiGe) can not be used for benchmarking DC and AC data are measured on different wafers in time. At least 2 parameter sets are needed Request to place simulated data + parameters of VIBIC, Hicum and Mextram on CMC web site in the same format and filenames as the measured data. Benchmarking of Mextram 54 will be done for the same data sets.