Comparison of Nonlinear Models for Prediction of Continuum Damage in Aluminum under Different Loading

Σχετικά έγγραφα
MECHANICAL PROPERTIES OF MATERIALS

Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Dependent Polymers

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

ΜΔΛΔΣΖ ΔΝΓΟΣΡΑΥΤΝΖ Δ ΥΑΛΤΒΔ ΘΔΡΜΖ ΔΛΑΖ

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Department of Mechanical Engineering, University of Tabriz, Iran Department of Mechanical Engineering, University of Tabriz, Iran

High order interpolation function for surface contact problem

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

ADVANCED STRUCTURAL MECHANICS

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΛΕΩΝΙΔΑΣ Α. ΣΠΥΡΟΥ Διδακτορικό σε Υπολογιστική Εμβιομηχανική, Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας.

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

ΕΛΕΓΧΟΣ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ ΧΑΛΥΒ ΙΝΩΝ ΦΟΡΕΩΝ ΜΕΓΑΛΟΥ ΑΝΟΙΓΜΑΤΟΣ ΤΥΠΟΥ MBSN ΜΕ ΤΗ ΧΡΗΣΗ ΚΑΛΩ ΙΩΝ: ΠΡΟΤΑΣΗ ΕΦΑΡΜΟΓΗΣ ΣΕ ΑΝΟΙΚΤΟ ΣΤΕΓΑΣΤΡΟ

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

Figure 1 - Plan of the Location of the Piles and in Situ Tests

Buried Markov Model Pairwise

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Αξιολόγηση Ημιαγώγιμων Υμενίων Σεληνιούχου Καδμίου Σε Υπόστρωμα Νικελίου Για Φωτοβολταϊκές Εφαρμογές

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

* *, ** Koji Masuda* and Takashi Arai*, **

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

Συγκριτική Αξιολόγηση Προσοµοιωµάτων Τοιχείων και Πυρήνων Κτηρίων µε τη Μέθοδο των Πεπερασµένων Στοιχείων και Πειραµατικά Αποτελέσµατα

(Mechanical Properties)

EXPERIMENT RESEARCH OF INFLUENCE OF DYNAMIC LOADING ON PROCESS OF CRACK FORMATION AT BOOTY OF LITHOIDAL BLOCKS T.

! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"

Strain gauge and rosettes

ΜΕΛΕΤΗ ΤΗΣ ΠΛΑΣΤΙΚΟΤΗΤΑΣ ΑΡΓΙΛΟΥΧΩΝ ΜΙΓΜΑΤΩΝ ΜΕ ΠΡΟΣΘΗΚΗ ΣΙΔΗΡΑΛΟΥΜΙΝΑΣ ΑΠΟ ΤΗ ΔΙΕΡΓΑΣΙΑ BAYER

Motion analysis and simulation of a stratospheric airship

Investigation of Different Material Distributions and Thermal Boundary Conditions on Stress Field of FGM Rotating Hollow Disk

Prey-Taxis Holling-Tanner

Διονύσιος Α. ΜΠΟΥΡΝΑΣ 1, Αθανάσιος Χ. ΤΡΙΑΝΤΑΦΥΛΛΟΥ 2, Κωνσταντίνος ΖΥΓΟΥΡΗΣ 3, Φώτιος ΣΤΑΥΡΟΠΟΥΛΟΣ 3

EE512: Error Control Coding

A summation formula ramified with hypergeometric function and involving recurrence relation

Schedulability Analysis Algorithm for Timing Constraint Workflow Models


ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ ΙΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ

CorV CVAC. CorV TU317. 1

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Finite Field Problems: Solutions

Διερεύνηση ακουστικών ιδιοτήτων Νεκρομαντείου Αχέροντα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <

ΜΕΛΕΤΗ ΣΥΜΠΕΡΙΦΟΡΑΣ ΦΛΟΓΩΝ ΠΡΟΠΑΝΙΟΥ ΣΤΑΘΕΡΟΠΟΙΗΜΕΝΩΝ ΣΕ ΕΠΙΠΕΔΟ ΣΩΜΑ ΜΕ ΔΙΑΣΤΡΩΜΑΤΩΜΕΝΗ ΕΙΣΑΓΩΓΗ ΜΙΓΜΑΤΟΣ

ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ


: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Homomorphism in Intuitionistic Fuzzy Automata

Archive of SID. (Tg)

Επώνυμο: Βαϊρακτάρης

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Aluminum Electrolytic Capacitors

ER-Tree (Extended R*-Tree)

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

Homework 8 Model Solution Section

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ. Χρήστος Αθ. Χριστοδούλου. Επιβλέπων: Καθηγητής Ιωάννης Αθ. Σταθόπουλος

Επίδραση υπεργήρανσης στην κυκλική συμπεριφορά τάσης παραμόρφωσης κράματος Αλουμινίου 2024-T3

Aluminum Electrolytic Capacitors (Large Can Type)

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Πολιτικών Μηχανικών Τοµέας οµοστατικής ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΑΣΤΟΧΙΑΣ ΑΠΟ ΛΥΓΙΣΜΟ ΚΑΙ ΠΛΑΣΤΙΚΟΠΟΙΗΣΗ ΣΕ ΜΕΤΑΛΛΙΚΑ ΠΛΑΙΣΙΑ

Εφαρμογές της τεχνολογίας επίγειας σάρωσης Laser στις μεταφορές

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

Τοίχοι Ωπλισμένης Γής: υναμική Ανάλυση Πειράματος Φυγοκεντριστή. Reinforced Soil Retaining Walls: Numerical Analysis of a Centrifuge Test

3o/B Mάθημα: Δικτύωμα / 2D-Truss in Batch

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ

Sheet H d-2 3D Pythagoras - Answers

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

ΕΠΙΧΕΙΡΗΣΙΑΚΟ ΠΡΟΓΡΑΜΜΑ «ΕΚΠΑΙΔΕΥΣΗ ΚΑΙ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗ»

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Εξοικονόμηση Ενέργειας σε Εγκαταστάσεις Δρόμων, με Ρύθμιση (Dimming) ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Proposal on Unstructured Triangular Mesh Generation Method for Singular Stress Field Analysis of Bonded Structures Based on Finite Element Method

MULTILAYER CHIP VARISTOR JMV S & E Series: (SMD Surge Protection)

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Conductivity Logging for Thermal Spring Well

Research on Economics and Management

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Ó³ Ÿ , º 7(205) Ä1486 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ³ μ 1, ƒ. μ μë,. μ,. ŠÊ² ±μ,. Œ ² μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Development of a Tiltmeter with a XY Magnetic Detector (Part +)

«ΕΡΕΥΝΑ ΓΙΑ ΤΗΝ ΗΛΕΚΤΡΟΝΙΚΗ ΠΡΟΩΘΗΣΗ ΜΟΥΣΙΚΟΥ ΥΛΙΚΟΥ ΑΝΕΞΑΡΤΗΤΩΝ ΚΑΛΛΙΤΕΧΝΩΝ»

CONSULTING Engineering Calculation Sheet

Approximation Expressions for the Temperature Integral

, Snowdon. . Frahm.

a,b a f a = , , r = = r = T

Supporting Information

A research on the influence of dummy activity on float in an AOA network and its amendments

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

EΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΙΑΓΡΑΜΜΑΤΑ ΡΟΗΣ ΙΑΣΤΑΣΙΟΛΟΓΗΣΗΣ ΣΥΜΜΕΙΚΤΩΝ ΣΤΟΙΧΕΙΩΝ ΒΑΣΕΙ ΤΟΥ EC4 KAI ΣΥΓΚΡΙΣΗ ΜΕ ΤΟΝ LRFD

Transcript:

;< +:=>3 9): 74 486 4 56 3- / +,( )*! + (##$ %&' () *+, -,/ "! + (##$ %&' () *+, -,/ *+,!! * @?" C"$ : 44677 "#$ 395 - % = + # ; *+, - 9: " ) ; 3 ) 583 % 3 4 3 GH3 L %I J&K GH3 D 3 E?F >!C 3 &' ) 3?@ A >, ) ' ) > + 3 M 3 Q 3 3 D 3?@ A,> 3583 + H F 3 = N H 3 E3 M & Q %I (USDFLD); 3 & 3 3 P+ % ;: + ) O,> ;,! # 3 S, 3 K, 3 I M) ) Q GH $R #,-) + 3M 3!3 F 3 > D$ -KH + ) > 3@?@ MK3 V U3 E?F -, T$ 3 M,> ;, L 3 > 3 > 583% $ P4 N = " :+H+,E:F Comparison of Nonlinear Models for Prediction of Continuum Damage in Aluminum under Different Loading A M A Farsi Mechanical Engineering, Astronautic Research Institute, Iranian Space Research Center, Tehran, Iran A R Sehat Mechanical Engineering, Astronautic Research Institute, Iranian Space Research Center, Tehran, Iran Abstract In this paper, the continuum damage mechanics principles based on onora model and limiter model as a non-linear model are studied Nucleation, development and propagation of damage in Al 583 are investigated Different loading such as cyclic loading, triaxial stress and temperature influence on damage mechanism is investingated The FE simulation of material behavior during failures is carried out by AAQUS software package and USDFLD subroutine The results are validated with experimental tests These comparison show that the simulation results are verified by experimental tests, and the onora model accuracy to behavior modeling is better Also, capability of model to prediction of fracture is not acceptable when the temperature is high Keywords: Continuum Damage Mechanics, FEM, Aluminum 583, onora Model, Limiter Model 3 3 V 3 >' %-, (&' 775 % F ;##$ 4 % ): ; [4] % L! (E?F,) ) @ 3 + H ), ) @ + ;3 ) = = "N % 9&$ ) &R,N [5] IJ KL8/ F ) (##$,) ^V, 3 4 3 - j, Z! ) @ 3 %I 4 4 &' 3 _?# k? M $ & " 3 ) 9R: Q 3,-) Q #3? [6] OR lp >a ) ) R ) -KH W %' -KH NP@ L 3 M %' + no,$ ; S! "C,M ) _) Continuum Damage Mechanic(CDM) * - 9: 3 F P3 = " W " [P3 " \,9 X Y, &Z ]CC W ; P4' ( L 9&$ ) ) + ) 3 3 " W &@, X % -KH = I % ^ ) _F ` *+, ER 3 9?@ A = I, O:? 3 3 " " \, 9 X 3 ;W? &' 3 : a,n 3 C H b S&' E 3 Z E?F ) KH S, ) L 3,) E ) ) 3 &R 9' ), + -C M, 4! " ; G []3 %,3 @ *+,! ): :,) Rf@,) 3 %I ) > ): 3 (##$ [] M, "3 >` ' 3 [3] * farsi@ariacir :

-H&H > ##: [4]! Z D E > -" U [P3,9 X ' 9&$ 3 x 3 ' W 3 " P A " \?@ A = " ]CC 9@ " ; 9Z?@ 3 $ P4 N ) @ [5] F 3 L, X O 9&$ 4 $ " = M 3 & > 4 %' M ) $," ) H O 3 > 3 3 GH3 $ ) + 3?3 = ) O 3 % (P&+ 3 & > " [6] Z []3 =?@ A > [7] \& 4 : S& M 3 M { 93# ( L > ; + H T o ) 4 b @, 3 4 3 ) @ 3 3 4 3 -KH 3, " P A + M 3,> 3 ;##$ 4 P ; % [8] Z % ; + 3, X ;E 3 3 I " ) V K z\ = > "! O U+ A533- pr E 3 P+ % " \ " U 9 E?F 3 % -KH+ ) 3 > ; $ E?F ) 9R: =, X + H 3 3 &E p',! + H F O + M) ) 9R: # 3 $ o ^ 3 $3 [9] # " P = ( X 3 > " > ; Z " &@, X ]C!C GH3 L 3 [] >E M L M >R 3 &@ O: L - [] 3 = N H & ) O 3 ) 33 >' %-, % 3 [] 3 $OR M 3M 3 E4 > ), %I (##$ 4 3 D J &K 3 Z = ) 3, /3 E3,M _) ;Y, J&K GH3 %)U ; 3 3 ( O,> ; Z F M P Z,> }?,> E ): (##$ % # ; 3 J&K GH3 D 3 / 3 *+, ) : +, 3 a@3 583 34 3 + H F 3*+ (E?F ) @ ; S!D 3 ) O %?@ 3D Z,> A) 3! ), ): F 3 3 ]K &' 3 3 = >, ) = ) E3,M 3,> O ' ) 3 I,) { 3583b % p4)e?f ; 3 M - @ (ASTM E8) Z 4 > [7]jC, j, > 3 ;K 3 H NP@ % ) 3 3 3 = " >R Z G j?e ;+ ) 3 4 3 = ) % -KH = " ' 3 o + 3, O: [5], O: p ]$,) + 3 4 9 " U " 4 qk 3?3 [8]! O: : " \ S 93F A ١ 3 3! E P-& # N pr -" U (R 3 + t +, O: 3 SI: ( X ;Y, (K 3)9 " \ T + 9 X,F O: ", M MP+ 3! + H M, % 3 " " P A > 989> L $ ($OR,o $3 qk [9] E x C D " \ ),9 X yp4 D3 3, $3,o N H 3 > ; # 3 $3,3 ;Y,! + E $ #,-), X ]CC = " P > "!r @C D " W &@ 3 >E M >R L M 3 = > ; [] M 3 4 3?@ A ( X > ;! Q ) O 3 > ; I $R, " \ ) HY > ; > %I % b,-) N 3 3 I! $, ) O Z H D! ;E 3 fk E 3 I (, 3?@ A 3 9 X 3,?@ A = I, O:,9 X %-,, > ; [] " \ E3 4 9 3 E) _3 " \ 3 > ; " \ L M ^I =: 3?@ A ; ;Y, > 3@ 3 % -KH (O &: 3 M 3 $ M L k 3 ze3 > [] E A533 U+ % 4 P -@ 3 = " -KH 3 @ I &R M# " \ 9 X,GH3 3 =?@ A > 3 SE 93F 3 D Z > &R P [3] SE & M) Q) O 3! >, $ & GH3 M, O: 9f $ # ) 3 4 > " " \ U - 3 "C &@ 3M?@ A,> # = Rayleigh-Ritz Nonisotropic

$R V + &'$ N O 8: N/* P/-M " (583 %) 3 ; 3 4 3, O:,o _) t + ;-, " P!4 3 3 (D) = X @ I: D = - / = :3 3 3 3 I: _?# k?, O: : -3 A _?# k? 3 ' F $ GH3 : (٢) M J E ;+ H T 3 >' _4 I: " P t + 3 = () G-4 = J E(3)?3 (R 3 L M?3 3 =!"#! = : + L M J E 3 3 : (UE - (' 3 L M L $ L M (O ; 3 ' : (UE 9` = (3) (UE M ;P-4 ]CC qk " & (UE 3 3 O :, X ) " G H 3, + E & : " " JR 3 ;Y, % _3 (Ψ) P&, ) b ) zue : F O 3 3 &@, X y i &@ 3, X %&= '(()) '*& X L x i &@, X ;3-3 (4?3) -C(,M! = : 3 ( L 4 ; (4)?3 3 [], 3 3 9 A : 9 " \ ( L 3 " U (4) ((5)?3)3 - ) 9# - (' + 3 3 H FM -KHT$ %I P(E?F & GH 3 ) " \ $ M?@ A> @ AM L 3 3 M P ) 3{ " +3 + ' ) > 3;Y, H FO,> ) 3O 3 P+% ) : 3 + ( O ~@ J E!4 3 (USDFLD) ; 3 ) P+ % 4 )9 R: Q,> ; 9&$ 3 3 O # ',9&$ Q 3 3 I,M) 4 56 (, { % & 3 (P&+ -3 { P ( : 4 (P&+ &3 @ 3 4 3 ;, {, ^ ; ) E?F E3 GH3 : " \ % + X 3, % # 9&$," ) H F 3 [3] 4@ >' L = ) ;+ ) ' 3 X " = 9 X = 3 D 3 9$ 9` G H 3 ( X I ^ " \ 3 I 4 3, O:,o ) 4 -KH _?# k? M, (R 3 = P+ H ) b, I: f' ;, X % _4 I: J E + H T,o ) 4 a@ 3 _?# k? M, ) 3 4 3,=,-, O: [P3,*+ 3 #, "C I: _) " \ G H 3 M 3, =, # _4 I: # # M D P,,o, O: zu: & : $? -C & 3 P+ (R 3 = X 4 ) _a# $OR 3,o o 9f+,o 3 3 $OR " 3 (9) J E _4 I: D ( ) = () () [5] Z = X J E 3 ()?3> () I: _?# k? A > 3?3 ; ] K 3 3 = X L k? O?3 ) JR 3 3 A () _4 > 3 3 ) = ) e(, -,T, D)+ ) P( T, r, x) x @ K &@ X r T?3 ; (5) 4 K &@ X Crack Nucleation Representative Volume Element

()?3 (R 3 D Z 9 _) [5] ` F = (ab!)(!") (c` ) (ab!) () K n ~fk S 3L t + 3 (3?3) - [ K F 3 4 3 S!?3 3 OR 3 3 : = # ; f =gh!/ [3] $ = N H (3) K F G-4 (),?3 ) H } 3, 3 = _3 # a3 ( $ %I 9 _3 3 > 3 = 3! I l K > : ) (R = : (UE?@ " U ]CC X 3 (7) (6),?3 G 3 Y=( 67 6# Y=- > 9 :;(!"#) <=( > 9) E M b ) ) { ", Mσ A )P M >E ) e 9 ) 3 = 3 Y (6) (7) D3 ; σ @ ( X 3 3 'F F 3 (UE 9 3 " U GH 3 : ) &@, X 3 3 j\ ; " % F )U :G 3 ` 3 3M?@ A,> # = D-D =(D z{ D )( -[ (L ^ L rs ) ( t pq^ trs ) ]a ) D D z{ = ( c`) : (P-P z{ ) 3 lm # k j 3 M 3 4 3 [5] 3 (6)?3 ) O lm = n (6) o t pq L 3 pq $ : _F ` 3 %)U t rs L rs f( v w " 3 3 ) $ M : [] 3 3 v xy +? +Q K,P+ % E! M + 3 4 3-4 % I! " E? 3 O,N ),P+ yp 4N " 3 ' ) z ' ) 4 #9 : 3' ; %I $ ; -,?3 9:P ZP4 9 O(UE (U E 3! ) 9 O(UE 9jG: N 9 : &9 ` ',N 3 E 9 O [4] 6 5 @,, p 3 T O&K,P+% 3M,&, + ) ) 3 P +% 34 3 }#$ ; + H 3 % I ) > 3 )?@ A9Z 9&$ 3 9 ) O C3D8 O 9&$ ) (E?F 3 M 3 (4) (5) X) H, 3?@ " ( ] K H 3 E E3[5] ),% + E MP + 3 I M ) 9# Q %$?# E?F I `: M,,C : G F G * Ġ - Y - { x Ṁ = ( X { D M { εl?3 ; (8) K ( X, X ( X E " F 3 ) 3 (F)j\ 9 ) > &@ 3 @ " \ 4 I,-) Q, ) O []3 4 - ) _) 9 (R 3 9 _) 3 3 9Y +- / 9 " % F V 3 &@, X ) E3 = N (,O,P)+ # (F) [], 3 K X @ K R?3 ; J E ()?3 (R 3 = X 3 ( X?3 = - Q 6R 6S = 9 _)F D (9) () " \ M { λ?3 ; M { -KH { ;3 9-3?3 ; (-λ )" \ = V& 3 ^I " \ 9 _) ;E 3 ) & (UE 9 3 3 _) " % F 3 (F )= ; 3 ]$ _3 " 3 = 9 ;Y, 3 `, O: ) 4 9: a@ 3 % 3 _) _) _3,> []?@ A ( 3! = (E? 3 # ; Z O&K 9 I?@ A + 3 3 3 > %I [3] ]K -KH ()?3 (R 3 Z 3 & _) # = [(! : )("S W ) : ( W!"# )]# YZ [\] ^ [ C <_^ [] () 3 Ramberg-Osgood hardening law 4 Finite Element Method(FEM) 5 AAQUS 6 ANSYS Isotropic hardening kinematic hardening 4

$R V + &'$ ) 9 R: 59 %I 3 M ) @ ~ @ M ) ;, MM) O ',) qk M -M > 4( R 3M M) )9R: # 6 9 )E3> M) E?F 9;Y, ::-JH-)6L/R-4M (F:-)6 L/R L3:-(F ) (mm) 3 5/8 9/3 9/3 9/6 7/ A C D G R T 3 PC 3 ( X qk # " 3! &45 z # : ; ) 3 3 I M) %-, GH3 $ ) D % " T ; 3 >'3 P+% 3 (R > 9 > f ( R 3 ( C! k? ) E?F : 3 ) I D#+ (! k? ) - 3, ) 4 M, ; a FV SDV PH 4 @ ' 3 = X, P +% ; >E+P+ % T 4 @ ST MK3 ~ @ + ) D= X>' $ EF D (USDFLD) ; 3 "3; 33 ) -KH + 3, H, XJ E 3(USDFLD) ; 3, X I fk, ) )E3 ' ~ @ 33 9:+ E 3;Y, qk4 @ Z ; 3 ; [5] O -L/R-M 3 5 5 σ(mpa),> 3S+,-)6 }F 3,) )9R: Q GH$R -5 M ) % I ) ), l K ;Y, 3 %I M (R 3,M) ; 3 I GT-> ", > M - )T ;, O -,/ b -) # 7-LC (3 9) 5 ( )I34 4 6 8 (F:-)6 L/R )3-- S K:US-5M C : L3 (F: -)6 L/R-6M O > M) E?F 3 z\ E?F ) % M) M $ > M) 3 M) ; E?F 3 & GH3 " \ #? + H F :?@ A,> M) ; " 3 GH3,: ) ) 3 & GH3 & ] (R 3 >' 3 D >', ) E?F G L -3 ) ; ;Y, 8F, (44) -JH CS T-3M GT-7-LC (49 ) 583% p 4) E?F>M ) > 4 E3 3(ASTM E8) 3 Solution dependent state variable(sdv) Predefined field variable 5

3 5 σ(mpa) :X:4 L/R L3:-3(F (mm)) 8 A D T 3 = 9&$ &F GH3 Z 79 M) I3 O -JH -)6 : 6 C3 V:4-(F # 36MPa 75 MPa 53 MPa 64 S& M! %$ P M M 3M?@ A,> # = 3 σ(mpa) 5 5 5 ( )I34 5 5 74 -)6 )3 Y:3 - S K:US-9M 5 5 ( )I34 4 6 8 )E3 % M) E?F- M 7F -)6 L/R )3-- S K:US-7M + 7D -)6L/R)3-- SK:US-M :T 5 Z) 3-6 ( R 3,M ) + %I,M) 343 (USDFLD) ; 3 "3 3 P+% & 3' # 3,) )9R: Q ) 9&$ #,M) Q M ) ) 9R: Q 3 4 3,) s 3 I 3 []_4 D! # D$ + H T 4>4 (R 3 ), >' %-, + 3 M,> 3 3 89 }3? { E?F ) % M) @ A M 99 % M) I O 3 >4 3 E3 3 ) E3 % M) E?F f ;Y, Z 9 'F 3 =?@ A,> ; ; 3 4 3! F E }#$ ;! 3 3 P U3 z = N H + 3 M G + H F 4 O S! ^V ; 3M = N H 3 L 3 3 %!C M) ) T ; 3 %I %-,?@ A > F $ %I H 4 5 3 3 %)U 9R: ) Q + H F M %$ S& M 3 =, :X:4 L/R-8M # 3 ' ) ƒ\r 4! 6

$R V + &'$ "P OR 3 3 I ) %-, 33 + # I34 # )?@ OR -Y, ; ; 3 P ' 9&$ 3 Q L - 3 P+ % ) O 3 %I ) D H ) + ; GH3 9: ) O?, 6>4 39 9R: Q F P : ;?@ A,>, ; 3 4 3, & GH3 ) > 3 3@ 3, " U $ M -M =) " U > ; 3K3, > ; X GH3 3, (GH3 % > M) Q # 3 >' X 3 4 3 :OH " \ $ ] GH3 : " M, ( M ) 3) ) ; ; 3 G?@ A, > X C $ @ 3 F 93F F ) T$ + 3M 5 5 5 > ) σ(mpa)!3 P : ; 3 > F ;, 3 > M) > 3 4 5 ε ' 9&$ ) 9R: Q 3 > M) ) 3 Q 9) # ˆ Š Œ 9 Q 3 > 3 ( 5>4 + Q +:3 @> [ )*-4(F ƒ ƒ 64 ~ 36 } 75 E (GPa) 7 ʋ 3 s 5 3>, 5>49 a, T + 3M 3 > 3 3, Z M 8 F :4 3 ( +,/ $ Q"-5(F?@ R 3 > 3 # /9 /95 / /5 75E 75E 73E 68E R >?@ 3 # / /44 / /5 /75 / 5!3 ) %-, š œ ž Ÿž 78E 78E 76E 7E 73E 7E 7E 65E ;-?@ 7 8 F :4 3 ( + Q3 M -F K:US- M 7F -)6 Z) 3 )* 3 CQ 8 F :4 3 +,( +,/ $Q"-6(F >?@ R # 3 % 3 Steps 7F -)6+,: R >?@ # % 3 š œ ž Ÿž /6 54E / 7 55E 3E+8 /3 57E / 4 58E 64E /6 58E / 3 6E 38E /8 64E / 9 64E+8 356E+8 /3 65E / 64E 4E /4 / 5?@ ;- 5 5 5 σ(mpa) 4 6 8 F 8 ( :4 3( + Q3M -F K:US- (F: -)6 Z) M 3) 3 = > 3),N ) 3 & ] GH3 %-, T$ 3M F & GH3 $ T ; 3 (E?F X $ 3 3 GH3 + ) %-, + H, { E?F! (E+ 3 " \ 9 ε

-K H ^ F T$; E " U $ + T$ ; E,> F > F 9 3F F ; M _ ) $ " : 3 # : ; ;! ) : 3?@ @ E 3 (f ( > ) 9)= t + j\@ ; 9U E?F -, ) + H T = X D3?3 ; %)U F 3 t + ; { ; # H }#$ $ }F t + a K3 ; j\ @ ; ;Y,,@ 3 3 + EF : ) 3 P " P + ; -3 Q ; ;Y, " P 9a J &K,> E % I 3 (##$ 4 3 3 ( ##$ ) E3 M : + 3 3 σ(mpa) 74 -)6 L/R )3-- S K:US-4 M -K H + GH L S!, 9' ) =?@ A,> E ;Y, ; 3 G + H!3 " ) ^ V ; V D $ ) M3,> T ; 3 limiter bonora TEST Elongation 5 5 _F 4 ; (##$ -, b ; ER 3 ; 3 4 3 5 3 " M H ak3 ) *+, -,/ 3 3 ) }#$ ; [6] H 4 3 ) %I H 4 5 + 9 R: Q O )3?@ A > F 3 4 Z 69 = # H) 9&$ ;,4 @ ) [5] )?3 ) O 3! ^F ) 9F ' N ) & 3 9: = # (7?3) $ D = E E "! > E i- GH3 3, " U > O 3 = # D i E i (7) &F GH3 " U 7>4 (R 3 = Q ; ) +:33 F +:=>3 )6@ 56: US-7(F ) ' Q >F 93F K, -3 >4 ; Q GH3 3 /36 - /7 /7, = P, ;Y, &' 3 MP+ " \ % + X $ 33 %-, = 3 M,> &F,) EF, (E?F 3 $ " M >' ~fk3 $ " A (R 3 z' ' M 3 ( X E3 M L 3 3 >' $ O { E?F " ) ) + 3 M ), 9$ M _) $ ;K S,3 = { 4 4 @ D#+ 3 I ) @ M _) = _) C ' 9&$ L 9 I34 ' ) &R+ 3 = J&K # M # @ M ]4 3 3 3 ; 33 /58 /6 M) ) X M # { M # ; 3 O H;- N ) = ; O! ;- $ 4 9 }3??# ) &R+) D 3 D$ 3 # ]K (E?F { 3M?@ A,> # = 74 -)6 L/R M"S +:3 \<: +,8: -3 M 3M 3 # ;- 49 3 4 3 3 M / 3 F = # M Pattern 8

$R V + &'$ D 3) O U 3 /3 L )] GH3 %I,> ;!3 9 3 = K C4-8 K #, X J E 3 USDFLD ; 3 I fk, ) ) E3 ' 3 9 : + E 3 ; Y, qk 4 @, X O ~@ 3 3 (USDFLD) ; 3 ) I SUROUTINE USDFLD(FIELD,STATEV,PNEWDT,DIRECT,T,CELE NT, TIME,DTIME,CMNAME,ORNAME,NFIELD,NSTATV, NOEL, LAYER, KSPT,KSTEP,KINC,NDI,NSHR,COORD,JMAC,JMAT YP,MATLAYO) C INCLUDE 'AA_PARAMINC' C CHARACTER*8 CMNAME,ORNAME CHARACTER*3 FLGRAY(5) DIMENSION FIELD(NFIELD),STATEV(NSTATV),DIRECT(3,3), T(3,3),TIME() DIMENSION ARRAY(5),JARRAY(5),JMAC(*),JMATYP(*),COOR D(*) user coding to define FIELD and, if necessary, STATEV and PNEWDT RETURN END : (USDFLD) ; 3, X J E FIELD(NFIELD) T?#, X : " STATEV(NSTATV), X : 3 3 9: : " PNEWDT O 3 ) MP + 3 4 ) MP+ DIRECT(3,3) CELENT TIME() CMNAME NFIELD NSTATV NOEL NPT,, : " > 4 t ' >a ) " 9:, )A &:, ) # fk % K #, X E 9: 3 3, X E, E 3)* :4 3 ( )3-- SK:US-6 M :> 5+,TJ)6Z) + 3 M > F C,, Q ) A T$ 3 K3 z # >F 93F 3 = N H zu : U 3 3 4 3 ; 3 M = T K F x r (&' %I @ ( X } F C(- [ K F) > + H F 3 % + X ) > ; 33 y 93F G 3M! T$ = / 4 q# " ' 3 ^V ; 3 ;##$ %)U 3!3 P : ; > F N\ +> % -K H S! 9' ) = N H 9 > ), %I 3 (##$ SA &' -7,) # ; Z = + 3 3 E4 +)!4 = j E > 3) 3 4 3 % I ' 3 I (R 3 -KH + ) O b ; S!) 583% H 3 3 I,) ; (,9:,*+ A,> )' ) >!C 3 3 I,M) O P +% + H F E? ) 3?@ 3> # ; H%I E?F Q H> '(USDFLD) ; 3 & 3 3 M M ) " 3, 3 I,M), l K ' ) > 3%)U -K H + ) > 3@?@ > $ " GH3 %-, # A,> ; -, + 3M 3!3 F 3,> ; F ) E3 E?F 3 ' M _) L 3 3 %I }#$ ;Y, = 3 M,> ;, = N H,!3 -)3 ) FU3 P A 3E? H! (##$ Tempering 9

[] Pirondi A, onora N, Steglich D, rocks, D Hellmann W, Simulation of failure under cyclic plastic loading by damage models, International Journal of Plasticity, pp 46 7, 6 [] Tvergaard, Viggo Effect of initial void shape on ductile failure in a shear field, Mechanics of Materials, 4 [3] Sehat A R, study on aluminum damage using CDM theory, MSc thesis, Aerospace Research Institute, 3 [4] Reddy J N, An Introduction to the Finite Element Method, McGraw Hill Series in Mechanical Engineering, 6 [5] Abaqus analysis user manual 6 [6] M A Farsi et al Sounding rocket 6 structure analysis, ARI Report, 3 KSTEP NDI COORD H> - # E 9: 9: E &R M P4 E T?# (fk JMAC F4 @ 3 3(GETVRM) 3 X 3M?@ A,> # = N: -9 [] Gross D, Seelig T, Fracture Mechanic: With an introduction to Micromechanics Springer, Second edition, [] Sun C, Jin Z-H, Fracture Mechanics, Elsevier, [3] ui H D, Fracture Mechanics: Inverse Problem and Solutions, Springer, 6 [4] ørvik Tore, Odd Sture Hopperstad, and Ketill O Pedersen Quasi-brittle fracture during structural impact of AA775-T65 aluminium plates, International Journal of Impact Engineering, vol 375, pp 537-55, [5] Lemaitre J, A continuous damage mechanics model for ductile fracture", Journal of Engineering Materials and Technology, vol 7, pp 83-89, 985 [6] Hoff N, The necking and the rupture of rods subjected to constant tensile loads, Journal of Applied Mechanics, vol, No, pp 5-8, 953 [7] Kachanov L M, Rupture time under creep conditions, International Journal of Fracture, No8, pp6 3, 958 [8] Rice J R, Tracy D M, On the ductile enlargement of voids in triaxial stress fields, Journal of the Mechanics and Physics of Solids, Vol 7, No3, pp-7, 969 [9] Wang J, Chow C L, Subcritical crack growth in ductile fracture with continuum, Engineering Fracture Mechanics, Vol33, No, pp39-37, 989 [] Chandrakanth S, Pandey P C, An isotropic damage model for ductile", Engineering Fracture Mechanics, Vol 5, No4, pp457-465, 995 [] N onora, "A nonlinear CDM model for ductile failure, Engineering Fracture Mechanics, Vol 58, No/, pp 8, 997 [] Garrison WM, Moody NR, Ductile fracture, Journal of Physics and Chemistry of Solids, Volume 48, Issue, PP 35 74, 987 [3] onora N, On the effect of triaxial state of stress on ductility using nonlinear CDM model, International Journal of Fracture, Vol 8 8, pp 359 37, 998 [4] T Pardoen, and J W Hutchinson, "An extended model for void growth and coalescence", Journal of the Mechanics and Physics of Solids, Vol 48, pp467 5, [5] ruunig M, Numerical analysis of anisotropic ductile continuum damage, Comput Methods Appl Mech Eng, Vol 9, pp949 9 76, 3 [6] N onora, and Milella, "Constitutive modeling for ductile metals behavior incorporating strain rate, temperature and damage", International Journal of Impact Engineering, Vol 6, pp 35-64, [7] Milella P P, Temperature and strain rate dependence of mechanical behavior of body-centered cubic structure materials, Proc TMS Fall Meeting '98, Chicago, Illinois, 998 [8] enzerga A A, esson J, and Pineau A, Anisotropic ductile fracture, Part II: theory, Acta Materialia, Vol 5, pp4639-465, 4 [9] Mashayekhi M, and ZiaeiRad S, Identification and validation of a ductile damage model for A533 steel, Journal of Materials Processing Technology, Vol 7, pp9-95, 6 [] Thakkar K, and Pandey P, A high-order isotropic continuum damage, International Journal of Fracture, Vol 6, pp 43-46, 7