Supporting Information. Enhanced energy storage density and high efficiency of lead-free

Σχετικά έγγραφα
Microwave Sintering of Electronic Ceramics

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

MgSn 0.05 Ti 0.95 O 3 SrTiO 3

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Supporting Information

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Polymer-Based Composites with High Dielectric Constant and Low Dielectric Loss

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

ZnO-Bi 2 O 3 Bi 2 O 3

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

Quick algorithm f or computing core attribute

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supporting Information

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

SUPPORTING INFORMATION. Polystyrene-immobilized DABCO as a highly efficient and recyclable organocatalyst for Knoevenagel condensation

Enhancing σ/π-type Copper(I) thiophene Interactions by Metal Doping (Metal = Li, Na, K, Ca, Sc)

Na/K (mole) A/CNK

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Electronic Supplementary Information (ESI)

Research and Applications of Functional Materials of Titanate

Protective Effect of Surface Coatings on Concrete

The Exploitation and Utilization of Magnesium Resources in Salt Lakes

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ

(II) * PACS: a, Hj 300. ) [6 9] ) [10 23] ) [26 30]. . Deng [24,25] Acta Phys. Sin. Vol. 61, No. 15 (2012)

Preparation of Hydroxyapatite Coatings on Enamel by Electrochemical Technique

Table of Contents 1 Supplementary Data MCD

Sample BKC-10 Mn. Sample BKC-23 Mn. BKC-10 grt Path A Path B Path C. garnet resorption. garnet resorption. BKC-23 grt Path A Path B Path C

Development of New High-Purity Alumina

ER-Tree (Extended R*-Tree)

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

Fused Bis-Benzothiadiazoles as Electron Acceptors

FENXI HUAXUE Chinese Journal of Analytical Chemistry. Savitzky-Golay. n = SG SG. Savitzky-Golay mmol /L 5700.

Electronic Supplementary Information

Preparation and Application of Amorphous Alloy Catalyst

Advance in Nanorealgar Studies

Approximation Expressions for the Temperature Integral

The optimization of EV powertrain s efficiency control strategy under dynamic operation condition

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

CuS * CuS. THz. CuS. THz-TDS. CuS. 1 THz = 33 cm - 1. THz. PACS Ci Bd. CuS. THz. THz. CuS. CuS. THz. http / / wulixb. iphy. ac.

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

Supporting Information

Supplementary material

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

The toxicity of three chitin synthesis inhibitors to Calliptamus italicus Othoptera Acridoidea

JOURNAL OF THE CHINESE CERAMIC SOCIETY. TiO 2 X

Phase Segregation of ZnO / ZnMgO Superlattice Affected by Ⅱ-Ⅵ Ratio

Table of Contents PART 1. Chapter 1: Processing and Manufacturing. Preface

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Zn BaZr 0.7 Pr 0.1 Y 0.2 O 3 δ

Progress in Biomimicing of Super2Hydrophobic Surface

High order interpolation function for surface contact problem

Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks

PACS: Pj, Gg

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

27 7 Vol. 27 No CHINESE JOURNAL OF APPLIED CHEMISTRY July CV SEM EIS DTD. MCMB / 0. 01% DTD MCMB /Li. 300 ma h /g 350 ma h /g

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Micro arc Oxidation Technique for Aluminum and its Alloys

Recent advances in coal to chemicals technology developed by SINOPEC

ZnO SnO 2 Ta 2 O 5 ZnO JOURNAL OF THE CHINESE CERAMIC SOCIETY h α-fe/bafe 12 O 19

Supplementary Information for

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Supporting Information

Supporting Information

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

Rapid Raman spectra identification and determination of levofloxacin hydrochloride injection *

N 2. Temperature Programmed Surface Reaction of N 2Nitrosonornicotine on Zeolites and Molecular Sieves

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

LP N to BD* C-C = BD C-C to BD* O-H = LP* C to LP* B =5.

- A. A Biphenol A BPA BPA BPA LLE 5 SPE Electrospinning Kang. Packed-fiber solid-phase extraction PFSPE 1 ml

MODEL EXPERIMENT STUDY ON THE DIFFERENT REINFORCEMENT EFFECTS OF UN-BONDED ANCHOR CABLE AND FULL-LENGTH BONDED ANCHOR CABLE IN ROCK ENGINEERING

100102; 2. Fe Cu Hg. Rapid multi-elemental analysis on four precious Tibetan medicines based on LIBS technique

Acta Phys. Sin. Vol. 61, No. 9 (2012) ) 1) 1) 2) 1) 1) (,, ) 2) (, ) ( ; )

Uncovering the impact of capsule shaped amine-type ligands on. Am(III)/Eu(III) separation

ΣΥΜΠΛΗΡΩΜΑΤΙΚΟ ΥΠΟΜΝΗΜΑ

Preparation of superfine aluminum hydroxide by ion-exchange membrane electrolysis

Journal of Central South University (Science and Technology) May Bragg TU443 A (2011)

Selecting Critical Properties of Terpenes and Terpenoids through Group-Contribution Methods and Equations of State

Supporting Information

Electronic supplementary information for

(ITO) : [1] ITO (GO) (TCFS) [2] (solar cell) (touch panel) (light emitting diode, LED) (E-paper) (low emissivity glass) (electro chromic, EC) [6] [3]

Solid-state reduction properties of carbon-bearing chromite pellets

A strategy for the identification of combinatorial bioactive compounds. contributing to the holistic effect of herbal medicines

Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Supporting Information

( Fe 3 O 4 ) The Preparation Methods of Magnetite Nanoparticles and Their Morphology. Vol. 19 No. 6 June, 2007 PROGRESS IN CHEMISTRY )

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Effects of lime sulphur synthetic solution on leaching characteristic of gold concentrates

MULTILAYER CHIP VARISTOR JMV S & E Series: (SMD Surge Protection)

Effects of chalcogenide glass microstructure defects on its second order nonlinearity

17 min R A (2009) To probe into the thermal property the mechanism of the thermal decomposition and the prospective

mm CECS159. Vol. 36 No. 8 JOURNAL OF BEIJING UNIVERSITY OF TECHNOLOGY. Aug

Transcript:

Supporting Information Enhanced energy storage density and high efficiency of lead-free CaTiO 3 -BiScO 3 dielectric ceramics Bingcheng Luo 1, Xiaohui Wang 1*, Enke Tian 2, Hongzhou Song 3, Hongxian Wang 1, Longtu Li 1* 1 State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China 2 School of Science, China University of Geosciences, Beijing 100083, P. R. China 3 Institute of Applied Physics and Computational Mathematics, Beijing 100094, PR China *E-mail: wxh@tsinghua.edu.cn *E-mail: llt-dms@mail.tsinghua.edu.cn S-1

Figure S1 Grain size distribution counted from the SEM images of 0.9CaTiO 3-0.1BiScO 3 ceramics Figure S2 Relaxed structure of CaTiO 3 -BiScO 3 lattice. S-2

Figure S3 Comparison dielectric breakdown strength, energy storage density and energy storage efficiency of different lead-free dielectric ceramics. S-3

Table S1 Specific results of dielectric breakdown strength, energy storage density and energy storage efficiency of different lead-free dielectric ceramics. Number Lead-free dielectric ceramics for energy storage Energy storage efficiency Dielectric breakdown strength (kv/cm) Energy storage density (J/cm 3 ) 1a 0.9CaTiO 3-0.1BiScO 3, this work 0.904 270.0 1.55 1b 0.95CaTiO 3-0.05BiScO 3, this work 0.906 223.4 0.80 1c 0.8CaTiO 3-0.2BiScO 3, this work 0.825 237.7 0.500 1d 0.7CaTiO 3-0.3BiScO 3, this work 0.812 216.6 0.32 2 0.91BaTiO 3-0.09BiYbO 1 3 0.826 93 0.71 3 2 Core-shell BaTiO 3 @BiScO 3 0.81 120 0.68 4 3 0.85BaTiO 3-0.15Bi(Zn 2/3 Nb 1/3 )O 3 0.935 131 0.79 5 4 BaTiO 3 coated with Al 2 O 3 and SiO 2 0.8 139.2 0.725 6 Ba 0.4 Sr 0.6 TiO 3 -based ceramics 5 0.877 198.8 0.564 7 6 0.85BaTiO 3-0.15Bi(Mg 2/3 Nb 1/3 )O 3 0.92 143.5 1.13 8 7 (Ba 0.4 Sr 0.6 )TiO 3 0.82 180 1.15 9 8 BiFeO 3 -BaTiO 3 -Ba(Mg 1/3 Nb 2/3 )O 3 0.75 125 1.56 10 9 0.88BaTiO 3-0.12Bi(Mg 2/3 Nb 1/3 )O 3 0.88 220 1.81 11 10 Ba(Zr 0.2 Ti 0.8 )O 3 -(Ba 0.85 Ca 0.15 )TiO 3 0.72 170 0.68 12 0.8(K 0.5 Na 0.5 )NbO 3-0.814 295 2.02 11 0.2Sr(Sc 0.5 Nb 0.5 )O 3 13 95 wt%ba 0.4 Sr 0.6 TiO 3-5 wt% MgO 0.885 300 1.5 composite 12 14 13 SiO 2 -coated BaTiO 3 0.538 200 1.2 15 0.10Bi(Mg 1/2 Ti 1/2 )O 3-14 0.90(Na 1/2 Bi 1/2 )TiO 3 16 0.10Bi(Mg 1/2 Ti 1/2 )O 3-14 0.90(Na 1/2 Bi 1/2 )TiO 3 15 17 0.90(Na 0.5 Bi 0.5 )TiO 3-0.10KNbO 3 18 0.9[(0.92Na 0.5 Bi 0.5 )TiO 3-0.08BaTiO 3 ] - 16 0.1NaNbO 3 19 0.94(0.94(Na 1/2 Bi 1/2 )TiO 3-0.06BaTiO 3 ) - 17 0.06KNbO 3 0.88 135 2 0.9 70 0.92 0.823 104 1.17 0.66 70 0.71 0.718 100 0.89 S-4

Table S2 Static dielectric tensor of CaTiO 3 and CaTiO 3 -BiScO 3 from density functional perturbation theory. Static dielectric tensor CaTiO 3 CaTiO 3 -BiScO 3 κ11 6.92 142.7239 κ22 37.78 95.47216 κ33 6.85 71.08469 κ12 0-3.15454 κ13 0-17.5119 κ23 0 12.48837 S-5

Table S3 Calculated Born effective charge tensors of CaTiO 3 -BiScO 3 lattice in unit e. The different ions with the number 1~40 were corresponding to the different position shown in Figure S2 Ions X Y Z Ions X Y Z O1 O2 O3 O4 O5 O6 O7 O8 O11 1-3.870 0.334 1.636 1-1.784-0.155-0.046 2 0.306-2.096 0.195 2 0.059-5.539-0.224 3 1.466 0.258-3.424 3 0.009-0.222-1.705 O12 1-3.570-0.128-1.688 1-1.625 0.027 0.386 2-0.102-1.902-0.135 2-0.071-4.422-0.427 3-1.340-0.173-3.098 3 0.081-0.502-3.090 O13 1-3.480 0.187 1.192 1-3.401-0.056 1.614 2 0.265-2.409 0.363 2 0.012-1.716-0.083 3 0.918 0.448-3.001 3 1.558 0.002-3.595 O14 1-3.453 0.181-1.089 1-3.653-0.042-1.725 2 0.021-2.247-0.366 2 0.070-1.710 0.041 3-0.906-0.533-3.244 3-1.634-0.076-3.589 O15 1-3.760 0.157 1.541 1-3.021-0.032 1.439 2 0.084-2.136-0.216 2-0.073-1.884-0.108 3 1.345-0.185-3.043 3 1.391-0.088-3.567 O16 1-3.753-0.063-1.412 1-3.520-0.356-1.313 2-0.052-2.023 0.222 2-0.370-1.915-0.101 3-1.343 0.376-3.240 3-1.332-0.106-2.930 O17 1-3.942-0.838 1.075 1-3.771 0.142 1.611 2-0.665-2.229-0.176 2 0.097-1.723 0.032 3 0.900-0.223-2.797 3 1.577-0.025-3.438 O18 1-3.264-0.031-1.566 1-3.656 0.168-1.535 2-0.016-1.852 0.144 2 0.112-1.684-0.034 3-1.312 0.110-3.151 3-1.580 0.049-3.321 S-6

O9 O10 O19 1-2.637-0.194-0.189 1-3.112 0.114 1.360 2-0.285-4.677 0.102 2 0.112-1.954-0.182 3-0.214-0.105-1.549 3 1.416-0.128-3.486 O20 1-1.656 0.052 0.126 1-3.641-0.154-1.399 2 0.092-5.296 0.280 2-0.112-1.939-0.131 3-0.025 0.249-1.906 3-1.392-0.077-3.066 O21 O22 O23 O24 Ti1 Ti2 Ti3 Ti4 Ti5 Ti7 1-1.948-0.029-0.179 1 5.697 0.070-0.123 2-0.090-4.625 0.106 2-0.063 6.337-0.311 3 0.006 0.059-2.181 3 0.631 0.636 5.977 Ca1 1-1.607 0.039 0.118 1 2.647-0.109-0.238 2 0.046-5.529 0.163 2 0.044 2.233-0.191 3 0.039 0.003-1.864 3-0.101-0.263 2.467 Ca2 1-2.004-0.099-0.201 1 2.503-0.026 0.059 2-0.101-4.436 0.302 2-0.016 2.707-0.121 3 0.049 0.357-2.469 3 0.069 0.055 2.108 Ca3 1-1.721-0.048 0.116 1 2.352-0.023-0.147 2-0.157-4.748-0.292 2-0.061 2.487-0.180 3-0.036-0.161-2.182 3-0.160-0.054 2.673 Ca4 1 6.461-0.025-0.403 1 2.744 0.042-0.015 2 0.238 6.295 0.858 2 0.016 2.383-0.046 3 0.396-0.016 6.140 3-0.166 0.062 2.349 Ca5 1 6.902 0.491 0.055 1 2.312-0.006 0.129 2 0.192 6.572-0.308 2 0.084 2.415 0.004 3-0.542 0.910 5.382 3 0.225 0.181 2.789 Ca6 1 5.871 0.113-0.353 1 2.618 0.137-0.203 2 0.018 6.261-0.668 2-0.016 2.599 0.253 3 0.316 0.403 5.780 3-0.141 0.253 2.463 Ca7 1 6.784-0.179 0.128 1 2.134 0.087 0.166 2-0.236 6.214 0.358 2 0.092 2.385 0.182 3-0.142-0.422 4.801 3 0.262-0.083 3.065 Bi 1 6.524 0.081-0.451 1 4.742 0.029 0.537 S-7

Ti6 2 0.293 6.294 0.470 2 0.138 4.572 0.268 3 0.446-0.704 6.431 3 0.322-0.127 3.899 Sc 1 6.611 0.203 0.487 1 4.934-0.05384 0.50282 2 0.281 5.854-0.648 2-0.186 5.05437 0.60782 3-0.494 0.468 6.451 3-0.553-0.6098 5.24396 References (1) Shen, Z.; Wang, X.; Luo, B.; Li, L. BaTiO3-BiYbO3 Perovskite Materials for Energy Storage Applications. J. Mater. Chem. A 2015, 3 (35), 18146 18153. (2) Wu, L.; Wang, X.; Li, L. Core-Shell BaTiO3@BiScO3 Particles for Local Graded Dielectric Ceramics with Enhanced Temperature Stability and Energy Storage Capability. J. Alloys Compd. 2016, 688, 113 121. (3) Wu, L.; Wang, X.; Li, L. Lead-Free BaTiO3-Bi(Zn2/3Nb1/3)O3 Weakly Coupled Relaxor Ferroelectric Materials for Energy Storage. RSC Adv. 2016, 6 (17), 14273 14282. (4) Liu, B.; Wang, X.; Zhao, Q.; Li, L. Improved Energy Storage Properties of Fine- Crystalline BaTiO3 Ceramics by Coating Powders with Al2O3 and SiO2. J. Am. Ceram. Soc. 2015, 98 (8), 2641 2646. (5) Liu, B.; Wang, X.; Zhang, R.; Li, L. Energy Storage Properties of Ultra Fine- Grained Ba0.4Sr0.6TiO3-Based Ceramics Sintered at Low Temperature. J. Alloys Compd. 2017, 691, 619 623. (6) Wang, T.; Jin, L.; Li, C.; Hu, Q.; Wei, X. Relaxor Ferroelectric BaTiO3- Bi(Mg2/3Nb1/3)O3 Ceramics for Energy Storage Application. J. Am. Ceram. Soc. 2014, 98 (2), 559 566. (7) Song, Z.; Zhang, S.; Liu, H.; Hao, H.; Cao, M.; Li, Q.; Wang, Q.; Yao, Z.; Wang, Z.; Lanagan, M. T. Improved Energy Storage Properties Accompanied by Enhanced Interface Polarization in Annealed Microwave-Sintered BST. J. Am. Ceram. Soc. 2015, 98 (10), 3212 3222. (8) Zheng, D.; Zuo, R.; Zhang, D.; Li, Y. Novel BiFeO3 BaTiO3 Ba(Mg1/3Nb2/3)O3 Lead-Free Relaxor Ferroelectric Ceramics for Energy-Storage Capacitors. J. Am. Ceram. Soc. 2015, 98 (9), 2692 2695. (9) Hu, Q.; Jin, L.; Wang, T.; Li, C.; Xing, Z.; Wei, X. Dielectric and Temperature S-8

Stable Energy Storage Properties of 0.88BaTiO3 0.12Bi(Mg1/2Ti1/2)O3 Bulk Ceramics. J. Alloys Compd. 2015, 640, 416 420. (10) Puli, V. S.; Pradhan, D. K.; Chrisey, D. B.; Tomozawa, M.; Sharma, G. L.; Scott, J. F.; Katiyar, R. S. Structure, Dielectric, Ferroelectric, and Energy Density Properties of (1 x)bzt xbct Ceramic Capacitors for Energy Storage Applications. J. Mater. Sci. 2013, 48 (5), 2151 2157. (11) Qu, B.; Du, H.; Yang, Z. Lead-Free Relaxor Ferroelectric Ceramics with High Optical Transparency and Energy Storage Ability. J. Mater. Chem. C 2016, 4 (9), 1795 1803. (12) Huang, Y. H.; Wu, Y. J.; Qiu, W. J.; Li, J.; Chen, X. M. Enhanced Energy Storage Density of Ba0.4Sr0.6TiO3 MgO Composite Prepared by Spark Plasma Sintering. J. Eur. Ceram. Soc. 2015, 35 (5), 1469 1476. (13) Zhang, Y.; Cao, M.; Yao, Z.; Wang, Z.; Song, Z.; Ullah, A.; Hao, H.; Liu, H. Effects of Silica Coating on the Microstructures and Energy Storage Properties of BaTiO3 Ceramics. Mater. Res. Bull. 2015, 67, 70 76. (14) Chen, P.; Chu, B. Improvement of Dielectric and Energy Storage Properties in Bi(Mg1/2Ti1/2)O3-Modified (Na1/2Bi1/2)0.92Ba0.08TiO3 Ceramics. J. Eur. Ceram. Soc. 2016, 36 (1), 81 88. (15) Luo, L.; Wang, B.; Jiang, X.; Li, W. Energy Storage Properties of (1 x)(bi0.5na0.5)tio3 xknbo3 Lead-Free Ceramics. J. Mater. Sci. 2014, 49 (4), 1659 1665. (16) Xu, Q.; Li, T.; Hao, H.; Zhang, S.; Wang, Z.; Cao, M.; Yao, Z.; Liu, H. Enhanced Energy Storage Properties of NaNbO3 Modified Bi0.5Na0.5TiO3 Based Ceramics. J. Eur. Ceram. Soc. 2015, 35 (2), 545 553. (17) Wang, B.; Luo, L.; Jiang, X.; Li, W.; Chen, H. Energy-Storage Properties of (1 x)bi0.47na0.47ba0.06tio3 xknbo3 Lead-Free Ceramics. J. Alloys Compd. 2014, 585, 14 18. S-9