39 19 : 39 46 2005 Lactobacillus johnsonii 1 1 2 2 1 2 Effect of Fermented Milk Containing Lactobacillus johnsonii La1 on the Human Natural Immune System and Safety for the Excessive Administration Toshihiko YAMANO 1 *, Yoichi FUKUSHIMA 1, Mamiko TAKADA 2 and Hisakazu IINO 2 1* Nestlé Japan Ltd. Nutrition Business Group, 2 Showa Women s University 27 Lactobacillus johnsonii La1 L. johnsonii La1 1 10 9 cfu /120 g L. johnsonii La11 1 120 g 21 21 p 0.001 p 0.05 29 p 0.05 10 L. johnsonii La1 3 1 3 360 g 14 p 0.005 L. johnsonii La1 Abstract To elucidate the effect of fermented milk containing Lactobacillus johnsonii La1 on human blood phagocytic activity, a double-blind placebo controlled cross-over trial was conducted. Twenty-seven healthy Japanese volunteers were randomly divided into 2 groups, and either of test fermented milk containing L. johnsonii La1 (1 10 9 cfu /120 g) or placebo fermented milk without L. johnsonii La1 was administered daily for 21 days. At the end of the first period, blood phagocytic activity in the subjects administered test fermented milk increased significantly compared to that of before intake. Although phagocytic activity in the subjects administered placebo fermented milk also increased, the activity was low compared to that of the subjects administered test fermented milk. Blood phagocytic activities in the both groups were maintained at high levels after the 29 days wash-out period. At the end of the second period, phagocytic activity in the subjects administered test fermented milk was significantly higher than before intake. For confirmation of safety against excess dosage, 3 cups (360 g)/day of the test fermented milk was administered to 10 healthy persons for 14 days. Blood phagocytic activity significantly increased after administration of test fermented milk, and no adverse effects were observed in the medical check-up, blood and urine tests. These results suggest that ingestion of fermented milk containing L. johnsonii La1 is effective at reinforcing the natural immune system of humans without any safety concerns for excessive administration. Key words : lactobacilli ; healthy Japanese ; probiotics ; fermented milk ; blood phagocytic activity ; immunity ; safety 2004 4 9 140 0002 2 2 20 NYK Tennoz Building, 2 2 20 Higashi-shinagawa, Shinagawa-ku, Tokyo 140 0002, Japan
40 19 1 2005 16, 39, 40, 42 21, 24 Bifidobacterium Lactobacillus in vitro 14, 28, 31 2, 15 Lactobacillus johnsonii La1 Caco-2 HT29 4, 7 5, 41 34 13 L. johnsonii La1 9, 35 IgA 25, 27 L. johnsonii La1 1 1 10 9 cfu 9 L. johnsonii La1 L. johnsonii La1 3 Table 1. Composition of placebo and test fermented milk. Test Placebo per 120 g fermented milk Energy 102 kcal 102 kcal Protein 4.6 g 4.6 g Lipids 3.6 g 3.6 g Carbohydrates 12.9 g 12.9 g Na 60 mg 60 mg Ca 128 mg 128 mg S. thermophilus 1 10 7 cfu 1 10 7 cfu L. johnsonii La1 1 10 9 cfu 0 Final ph is below 4.5 1. 1 120 g L. johnsonii La1 1 10 9 cfu Streptococcus thermophilus LC1 L. johnsonii La1 Table 1 2. 27 21 59 8 19 44.2 10 24 55 5 5 41.1 3. a 27 A 13 5 8 42.2 B 14 3 11 46.2 2 Fig. 1 21 Day 1 I Day 1 Day 21 A B 1 1 21 Day 51 Day 71 A B 21 Day 0 22 50 72 4 b 10 1 3 14 Day 1 Day 0
Lactobacillus johnsonii La1 41 Fig. 1. Test schedule. A randomized double-blind placebo controlled cross-over trial was conducted. After 21 days of non-intake period, either test fermented milk containing L. johnsonii La1 (1 10 9 cfu /120 g) or placebo fermented milk was administered daily for 21 days in the test and placebo periods, respectively. 15 2 4. 8 100 µl FITC PHAGOTEST Orpegen Pharma 20 µl 1 10 9 /ml 20 1 37 0 10 DNA FACScalibur TM ; Becton Dickinson 0 5. MCH MCHC MCV A 1C SE-9000 AST ALT ALP LAP γ-gtp AMY HDL-C LDL-C CPK CRP Na Cl K Ca Fe 7600 ph US3100 6. SPSS 11.0 J Wilcoxon 5 Day 50 Day 0 p 0.001 Fig. 2 B Day 22 Day 0 p 0.001 A p 0.001 Day 22 B A p 0.05 Day 50 A B Day 0 p 0.001 p 0.05 A Day 72 Day 50
42 19 1 2005 Fig. 2. Effect of fermented milk containing L. johnsonii La1 on blood phagocytic activity. a : p<0.001 : Compared with Day 0. b : p<0.005 : Compared with Day 50. c : p<0.05 : Compared between groups A and B. MCV Table 2 Fig. 3. Effect of 3 times excessive administration of fermented milk containing Lactobacillus johnsonii La1 on blood phagocytic activity. a : p<0.005 : Compared with Day 0. p 0.005 B Fig. 2 Day 0 22 50 72 Fig. 3 Day 15 Day 0 p 0.005 Day 0 15 2 NK T B T B L. johnsonii La1
Lactobacillus johnsonii La1 43 Table 2. Analytical results of blood from subjects with excessive intake of fermented milk containing L. johnsonii La1. Test item standard value Day 0 Day 15 Blood components analysis Erythrocyte ( 10 4 /µl) 427 570 467.6 32.4 466.0 32.2 Hemoglobin 13.5 17.6 14.4 1.1 14.2 1.2 Hematocrit 39.8 51.8 42.1 2.4 42.5 2.5 Leukocyte ( 10 2 /µl) 39 98 47.8 8.3 52.0 17.9 Platelet ( 10 4 /µl) 13.1 36.2 23.8 3.5 23.7 2.6 MCH (pg) 28.0 34.6 30.7 1.2 30.4 1.2 MCHC ( ) 31.6 36.6 34.1 0.9 33.3 1.1 MCV (fl) 82.7 101.6 90.0 3.0 91.3 3.0 a Hemoglobin A 1C ( ) 4.3 5.8 4.8 0.3 4.9 0.3 Blood biochemical analysis Total protein (g/dl) 6.5 8.3 7.3 0.4 7.5 0.3 Albumin (g/dl) 3.8 5.3 4.4 0.2 4.4 0.2 Total bilirubin (mg/dl) 0.2 1.2 0.7 0.2 0.7 0.2 AST (IU/l) 8 38 20.2 4.3 20.5 3.5 ALT (IU/l) 4 43 18.6 10.5 20.1 9.2 ALP (IU/l) 110 354 184.0 61.5 189.8 61.5 LAP (IU/l) 30 70 51.0 6.7 52.4 7.4 γ -GTP (IU/l) 16 84 26.2 12.6 25.0 9.9 AMY (IU/l) 38 136 88.7 30.0 87.1 27.6 HDL-C (mg/dl) 40 77 68.3 18.7 65.7 18.8 LDL-C (mg/dl) 70 139 136.8 34.5 140.9 37.6 Insulin (µu/ml) 3.0 15.0 6.3 3.5 5.4 1.6 Total choresterol (mg/dl) 130 219 235.5 45.7 227.7 41.1 CPK (IU/l) 70 139 113.8 33.3 111.9 42.8 CRP (mg/dl) <0.6 0.1 0.0 0.1 0.0 Triglyceride (mg/dl) 30 149 235.5 45.7 227.7 41.1 Fasting blood glucose (mg/dl) 60 109 85.8 8.3 87.9 6.1 Uric acid (mg/dl) 3.5 7.7 5.8 0.8 5.5 0.7 Urea nitrogen (mg/dl) 8.0 22.0 11.6 1.8 11.6 2.0 Creatinine (mg/dl) 0.8 1.2 0.9 0.1 0.9 0.1 Na (meq/l) 135 180 141.7 1.9 142.5 0.8 Cl (meq/l) 98 110 102.0 1.3 102.8 1.4 K (meq/l) 3.5 5.3 4.1 0.2 4.1 0.4 Ca (meq/l) 8.4 10.2 9.5 0.3 9.1 0.3 Fe (meq/l) 58 188 126.4 26.5 114.3 29.8 a : p<0.01 Compared with Day 0. 1 1 21 29 Day 50 Day 0 29 S. thermophilus 9
44 19 1 2005 Day 22 L. johnsonii La1 GALT M 10, 36 L. johnsonii La1 TGF-β mrna Caco-2 in vitro 18 IFN-γ IL-12 NK 19, 20 LTA 1, 6, 23 L. johnsonii La1 LTA HT29 44 L. johnsonii La1 LTA Caco-2 3, 11, 30 M L. johnsonii 22 L. acidophilus 32, 33 L. johnsonii La1 LTA L. johnsonii La1 IFN-γ IL-12 S. thermophilus S. hermophilus LTA LTA 17, 20 LTA 29 LTA L. johnsonii La1 8, 37 Bifidobacterium Lactobacillus 12, 26, 43 Bifidobacterium Lactobacillus Lactobacillus L. johnsonii La1 L. johnsonii La1 1 1 10 9 cfu 9 L. johnsonii La1 1 3 14 1 1 10 9 cfu L. johnsonii La1 1 1 10 9 cfu 80
Lactobacillus johnsonii La1 45 60 1994 2001 L. johnsonii La1 38 in vitro 18, 29 L. johnsonii La1 1 Arakaki R, Sugawara S, Nakashima H, Kotani S, Takada H. 1998. A lipoteichoic acid fraction of Enterococcus hiae activates cultured human monocytic cells via a CD14- independent pathway to promote cytokine production, and the activity is inhibited by serum components. FEMS Immunol Med Microbiol 22 : 283 291. 2 Arunachalam K, Gill HS, Chandra RK. 2000. Enhancement of natural immunity function by dietary consumption of Bifidobacterium lactis HN019. Eur J Clin Nutr 54 : 1 4. 3 Beachey EH, Giampana CS, Abraham SN. 1998. Bacterial adherence : adhesin receptor-mediated attachment of pathogenic bacteria to mucosal surfaces. Am Rev Respir Dis 138 : 6 8. 4 Bernet MF, Brassart D, Neeser JR, Servin AL. 1994. Lactobacillus acidophilus LA 1 binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria. Gut 35 : 483 489. 5 Bernet-Camard MF, Lievin V, Brassart D, Neeser JR, Servin AL Hudault S. 1997. The human Lactobacillus acidophilus strain La1 secretes a nonbacteriocin antibacterial substance(s) active in vitro and in vivo. Appl Environ Microbiol 63 : 2747 2753. 6 Bhankdi ST, Klonisch T, Nuber P, Fischer W. 1991. Stimulation of monokine production by lipoteichoic acids. Infect Immun 59 : 4614 4620. 7 Blum S, Reniero R, Schiffrin EJ, Crittenden R, Mattila- Sandholm T, Ouwehand AC, Salminen S, Von Wright A, Saarela M, Saxelin M, Collins K, Morelli L. 1999. Adhesion studies for probiotics : need for validation and refinement. Trends Food Sci Technol 10 : 405 410. 8 Crabbe P A, Bazin H, Eyssen H, Heremans JF. 1968. The normal microbial flora as a major stimulus for proliferation of plasma cells synthesizing IgA in the gut. Int Arch Allergy 34 : 362 365. 9 Donnet-Hughes A, Rochat F, Serrant P, Aeschlimann JM, Shiffrin EJ. 1999. Modulation of nonspecific mechanisms of defense by lactic acid bacteria : effective dose. J Dairy Sci 82 : 863 869. 10 Ebert EC. 1989. Proliferative responses of human intraepitherial lymphocytes to various T-cell stimuli. Gastoroenterol 97 : 1372 1381. 11 Granato D, Perotti F, Masserey M, Rouvet M, Golliard M, Servin A, Brassart D. 1999. Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment of Lactobacillus johnsonii La1 to human enterocyte-like Caco-2 cells. Appl Environ Microbiol 65 : 1071 1077. 12 Fukushima Y, Kawata Y, Hara H, Terada A, Mitsuoka T. 1998. Probiotic formula enhances intestinal immunoglobulin A production in healthy children. Int J Food Microbiol 42 : 39 44. 13 2002 LC1 Food Style 21 6(9) : 68 71. 14 Gill HS, Cross, ML, Rutherfurd KJ, Gopal PK. 2001. Dietary probiotic supplementation to enhance cellular immunity in the elderly. Br J Biomed Sci 57 : 94-96. 15 Gill HS, Rutherfurd KJ, Prasad J, Gopal PK. 2000. Enhancement of natural and acquired immunity by Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019). Br J Nutr 83 : 167 176. 16 Gilliland SE, Speck ML, Nauyok Jr. GF, Giesbrecht FG. 1978. Influence of consuming fermented milk containing Lactobacillus acidophilus on fecal flora of healthy males. J Dairy Sci 61 : 1 10. 17 Haller D, Bode C, Hammes WP. 1999. Cytokine secretion by stimulated monocytes depends on the growth phase and heat treatment of bacteria : a comparative study between lactic acid bacteria and invasive pathogens. Microbiol Immunol 43 : 925 935. 18 Haller D, Bode C, Hammes WP, Pfeifer A, Schiffrin EJ, Blum S. 2000. Non-pathongenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures. Gut 47 : 79 87. 19 Haller D, Blum S, Bode C, Hammes WP, Schiffrin EJ. 2000. Acivation of human blood mononuclear cells by non pathogenic bacteria in vitro : evidence of NK cells as primary targets. Infect Immun 68 : 752 759. 20 Haller D, Serrant P, Granato D, Shiffrin EJ, Blum S. 2002. Activation of human NK cells by staphylococci and Lactobascilli requires cell contact-dependent costimula-
46 19 1 2005 tion by autologous monocytes. Clin Diagn Lab Immunol 9 : 649 657. 21 Hata Y, Yamamoto M, Ohni M, Nakajima K, Nakamura Y, Takano T. 1996. A placebo- controlled study of the effect of sour milk on blood pressure in hypertensive subjects. Am J Clin Nutr 64 : 767 771. 22 Johnson JL, Phelps CF, Cummins CS, London J, Gasser F. 1980. Taxonomy of Lactobacillus acidophilus group. Int J Syst Bacteriol 30 : 53-68. 23 Keller R, Fischer W, Keist R, Basatti S. 1992. Macrophage response to bacteria : induction of marked secretory and cellular activities by lipoteichoic acids. Infect Immun 60 : 3664 3672. 24 Kiessling G, Schneider J, Jahreis G. 2002. Long-term consumption of fermented dairy products over 6 months increases HDL cholesterol. Eur J Clin Nutr 56 : 843 849. 25 Link-Amster H, Rochat F, Saudan KY, Mignot O, Aeschlimann JM. 1994. Modulation of a specific humoral immune response and changes in intestinal flora mediated through fermented milk intake. FEMS Immunol Med Microbiol 10 : 55 64. 26 Lee J, Ametani A, Enomoto A, Sato Y, Motoshima H, Ike F, Kaminogawa S. 1993. Screening for immunopotentiating activity of food microorganisms and enhancement of immune response by Bifidobacterium adolescentis M101-4. Biosci Biotechnol Biochem 57 : 2127 2132. 27 Marteau P, Vaerman J-P, Dehennin J-P, Bord S, Brassart D, Pochat P, Desjeux J-P, Rambaud J-C. 1997. Effects of intrajejunal perfusion and chronic ingestion of Lactobacillus johnsonii strain La1 on serum concentrations and jejunal secretions of immunoglobulins and serum proteins in healthy humans. Gastroenterol Clin Biol 21 : 293 298. 28 Matsuzaki T, Chin J. 2000. Modulating immune responses with probiotic bacteria. Immunol Cell Biol 78 : 67 73. 29 Mattila-Sandholm T, Blum S, Collins JK, Crittenden R, de Vos W, Dunne C, Fonden R, Grenov G, Isolauri E, Kiely B, Marteau P, Morrelli L, Ouwehand A, Reniero R, Saarela M, Salminen S, Saxelin M, Shiffrin EJ, Shanahan F, Vaughan E, Von Wright A. 1999. Probiotics : towards the efficacy. Trends Food Sci Technol 10 : 393 399. 30 Op den Camp HJ, Oosterhof A, Veerkamp JH. 1985. Interaction of bifidobacterial lipoteichoic acid with human intestinal epithelial cells. Infect Immun 47 : 332 334. 31 Perdigon G, de Macias ME, Alvarez S, Oliver G, de Ruiz Holgado AP. 1998. Systemic augmentation of immune response in mice by feeding fermented milks with Lactobacillus casei and Lactobacillus acidophilus. Immunology 63 : 17. 32 Perdigon G, Medina M, Vintini E, Valdez JC. 2000. Intestinal pathway of internalization of lactic acid bacteria and gut mucosal immunostimulation. Int J Immunopathol Pharmacol 13 : 141 150. 33 Plant L, Conway P. 2001. Association of Lactobacillus spp. with Peyer s patches in mice. Clin Diagn Lab Immunol 8 : 320 324. 34 Prasad J, Gill H, Smart J, Gopal PK. 1998. Selection and characterization of Lactobacillus and Bifidobacterium strains for use as probiotics source. Int Dairy J 8 : 993 1002. 35 Schiffrin EJ, Rochat F, Link-Amster H, Aeschlimann JM, Donnet-Hughes A. 1995. Immunomodulation of Human Blood Cells following the ingestion of lactic acid bacteria. J Dairy Sci 78 : 491 497. 36 Solis PB, Lemonnier D. 1993 Induction of human cytokines by bacteria used in dairy foods. Nutr Res 13 : 1127. 37 Sudo N, Sawamura S, Tanaka K, Aida Y, Kudo C, Koga Y. 1997. The requirement of intestinal bacterial flora for the development of an IgE production system fully susceptible to oral tolerance induction. J Immunol 159 : 1739 1745. 38 Shu Q, Zhou JS, Rutherfurd KJ, Birtles MJ, Prasad J, Gopal PK, Gill HS. 1999. Probiotic lactic acid bacteria (Lactobacillus acidophilus HN017, Lactobacillus rhamnosus HN001and Bifidobacterium lactis HN019) have no effects on the health of mice. Int Dairy J 9 : 831 836. 39 1998 11 : 117 122. 40 1994 Lactobacillus casei p.79 103, 41 Tuomola EM, Ouwehand AC, Salminen SJ. 1999. The effect of probiotic bacteria on the adhesion of pathogens to human intestinal mucas. FEMS Immunol Microbiol 26 : 137 142. 42 Yaeshima T, Takahashi S, Matsumoto N, Ishibashi N, hayasawa H, Iino H. 1997. Effect of yogurt containing Bifidobacterium BB536 on the intestinal environment, fecal characteristics and defecation frequency : a comparison with standard yogurt. Biosci Microflora 16(2) : 73 77. 43 Yasui H, Nagaoka N, Mike A, Hayakawa K, Ohwaki M. 1992. Detection of Bifidobacterium stains that induce large quantities of IgA. Micro Ecol Health Dis 5 : 155 162. 44 Vidal K, Donnet-Hughes A, Granato D. 2002. Lipoteichoic acids from Lactobacillus johnsonii strain La1 and Lactobacillus acidophilus strain La10 antagonize the responsiveness of human intestinal epithelial HT29 cells to lipopolysaccharide and gram-negative bacteria. Infect Immun 70 : 2057 2064.