Chapter 10: Failure. Titanic on April 15, 1912 ISSUES TO ADDRESS. Failure Modes:

Σχετικά έγγραφα
MECHANICAL PROPERTIES OF MATERIALS

Chapter 8: Mechanical Properties of Metals

(Mechanical Properties)

Dr. D. Dinev, Department of Structural Mechanics, UACEG

INDEX. Introduction (ch 1) Theoretical strength (ch 2) Ductile/brittle (ch 2) Energy balance (ch 4) Stress concentrations (ch 6)

Homework 8 Model Solution Section

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Dependent Polymers

Aluminum Electrolytic Capacitors

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Aluminum Electrolytic Capacitors (Large Can Type)

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

CH-4 Plane problems in linear isotropic elasticity

Chapter 7 Transformations of Stress and Strain

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

EXPERIMENTAL AND NUMERICAL STUDY OF A STEEL-TO-COMPOSITE ADHESIVE JOINT UNDER BENDING MOMENTS

Contents. Preface... xv Acknowledgments... xix About the Authors... xxi Nomenclature... xxiii

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

University of Waterloo. ME Mechanical Design 1. Partial notes Part 1

Lecture 21: Scattering and FGR

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Το σχέδιο της μέσης τομής πλοίου


b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

6.4 Superposition of Linear Plane Progressive Waves

Strain gauge and rosettes

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Solution to Review Problems for Midterm III

Graded Refractive-Index

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

ADVANCED STRUCTURAL MECHANICS

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

Matrices and Determinants

Mao KURUMATANI, Tatsuya YUMOTO, Kenjiro TERADA, Takashi KYOYA and Mitsuyoshi AKIYAMA

Swirl diffusers, Variable swirl diffusers Swirl diffusers

Fourier Analysis of Waves

Lifting Entry (continued)

+85 C Snap-Mount Aluminum Electrolytic Capacitors. High Voltage Lead free Leads Rugged Design. -40 C to +85 C

5.0 DESIGN CALCULATIONS

Μηχανουργική Τεχνολογία & Εργαστήριο Ι

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Section 8.3 Trigonometric Equations

DuPont Suva 95 Refrigerant

Inverse trigonometric functions & General Solution of Trigonometric Equations

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

Sampling Basics (1B) Young Won Lim 9/21/13

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.


CONSULTING Engineering Calculation Sheet

Rectangular Polar Parametric

D Alembert s Solution to the Wave Equation

E T E L. E e E s G LT. M x, M y, M xy M H N H N x, N y, N xy. S ijkl. V v V crit

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Assalamu `alaikum wr. wb.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Electronic Supplementary Information (ESI)

GF GF 3 1,2) KP PP KP Photo 1 GF PP GF PP 3) KP ULultra-light 2.KP 2.1KP KP Fig. 1 PET GF PP 4) 2.2KP KP GF 2 3 KP Olefin film Stampable sheet

TRIAXIAL TEST, CORPS OF ENGINEERS FORMAT

Using the Jacobian- free Newton- Krylov method to solve the sea- ice momentum equa<on

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Chapter 2. Stress, Principal Stresses, Strain Energy

SPECIAL FUNCTIONS and POLYNOMIALS

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

Boundary-Layer Flow over a Flat Plate Approximate Method

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

ΜΔΛΔΣΖ ΔΝΓΟΣΡΑΥΤΝΖ Δ ΥΑΛΤΒΔ ΘΔΡΜΖ ΔΛΑΖ

4.4 Superposition of Linear Plane Progressive Waves

E62-TAB AC Series Features

Spherical Coordinates

20/01/ of 8 TOW SSD v3. C 2.78AC Σ Cumul. A*C. Tc 1 =A14+1 =B14+1 =C14+1 =D14+1 =E14+1 =F14+1 =G14+1 =H14+1 =I14+1 =J14+1 =K14+1

FRACTURE MECHANICS. Piet Schreurs. Eindhoven University of Technology Department of Mechanical Engineering Materials Technology September 5, 2013

Grey Cast Irons. Technical Data

SMD Transient Voltage Suppressors

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Differential equations

L p approach to free boundary problems of the Navier-Stokes equation

Oscillatory Gap Damping

RECIPROCATING COMPRESSOR CALCULATION SHEET ISOTHERMAL COMPRESSION Gas properties, flowrate and conditions. Compressor Calculation Sheet

Durbin-Levinson recursive method

Ευθύμης ΛΕΚΚΑΣ 1. 3 o Πανελλήνιο Συνέδριο Αντισεισμικής Μηχανικής & Τεχνικής Σεισμολογίας 5 7 Νοεμβρίου, 2008 Άρθρο 2109

Second Order Partial Differential Equations

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ΜΗΧΑΝΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΜΕΤΑΛΛΩΝ II

TUBO LED T8 LLUMOR PROLED 25W 150CM

IV. ANHANG 179. Anhang 178

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

2 4 5

Thermistor (NTC /PTC)

Transcript:

Chapter10:Failure ISSUESTOADDRESS FailureModes: 1 LECTURER: PROF. SEUNGTAE CHOI TitaniconApril15, 1912 RMS Titanic was a British passenger liner that sank in the North Atlantic Ocean on 15 April 1912 after colliding with an iceberg during her maiden voyage from Southampton, UK to New York City, US. The sinking of Titanic caused the deaths of 1,502 people in one of the deadliest peacetime maritime disasters in history. (http://en.wikipedia.org/wiki/rms_titanic) 2 LECTURER: PROF. SEUNGTAE CHOI

10.3DuctileFracture(Rupture) Classificationoffracturebehavior Callister &Rethwisch 9e. AR EL 3 LECTURER: PROF. SEUNGTAE CHOI ModeratelyDuctileFracture(Rupture) Stagesinthecupandconefracture Callister &Rethwisch 9e. Analysisof MetallurgicalFailures 4 LECTURER: PROF. SEUNGTAE CHOI

10.4 Brittle Fracture Brittle Fracture I. Transgranular Fracture (Cleavage Fracture) 5 Ǥ ͳͳǥ ǡ Callister & Rethwisch 9e. LECTURER: PROF. SEUNGTAE CHOI II. Intergranular Fracture II. Intergranular Fracture: Ǥ Ǥ ͳǥ ʹǤ Ǥ Ǥ ͳͳǥ ǡ Callister & Rethwisch 9e. 6 LECTURER: PROF. SEUNGTAE CHOI

10.5PrincipleofFractureMechanics AnAtomicViewofFracture Bonding energy: E b Pdx x0 Interatomic force-displacement relation: x P Pc sin For small displacements, forcedisplacement relationship is linear: x Pc cx0 PPc kx, where k= E= E c Surface energy: 1 x sin dx 2 0 Es c x s c c 7 LECTURER: PROF. SEUNGTAE CHOI 0 StressConcentrationEffectofFlows StressconcentrationaroundanellipticholebyC.E.Inglis (1913) x a y b 2 2 2 2 1 0 2 b a x 2 MAX a yy (A) 0 2 1 b a a 02 1 0 2 1 a 2 0 a 0 b A a x 1 0 0 Theaboveequationshowthatasb 0(theellipsebecomesacrack)astress singularity( ~1/r) developsatthecracktip. 8 LECTURER: PROF. SEUNGTAE CHOI

StressAnalysisofCracks ThreeModesofFracture Stressfieldsnearacracktip K m I I KII II KIII III 2 (m) f( ) f( ) f ( ) Amr g ( ) 2r 2r 2r m0 I I II III : stress tensor K : Mode I stress intensity factor K : Mode II stress intensity factor K : Mode III stress intensity factor II III f,f, and f : dimensionless functions of 9 LECTURER: PROF. SEUNGTAE CHOI StressFieldsnearaCrackTip Stressfieldsnearacracktip 1sin 2 sin 3 2 11 K I 22 cos 2 1 sin 2 sin 3 2 2r 12 sin 2 cos 3 2 sin 2 2 cos 2 cos 3 2 11 K II 22 sin 2 cos 2 cos 3 2 2r 12 cos 2 1 sin 2 sin 3 2 31 K sin 2 III 32 2r cos 2 K I: Mode I stress intensity factor K II: Mode II stress intensity factor K III: Mode III stress intensity factor 10 LECTURER: PROF. SEUNGTAE CHOI

DesignCriteria Stressapproach : applied stress : ultimate stregth u u Fracturemechanics approach K I K IC KI: stress intensity factor (SIF) calculated value due to loading KIC: fracture toughness material property yy KI 2r r 11 LECTURER: PROF. SEUNGTAE CHOI ExamplesofStressIntensityFactors Acenteredcrackinaninfiniteplate: underuniformuniaxialstress Apennyshapedcrackinaninfinite domain KI a a KI 2 12 LECTURER: PROF. SEUNGTAE CHOI

ElasticEnergy Strainenergydensity: u d 0 Internalenergyofadeformablebody: U udv d dv V V 0 Linearelasticmaterials(Hooke slaw): 1 kk or 2 kk E E ( and:lamé constant) Strainenergydensityoflinearelasticmaterials: 1 u d 0 2 Internalenergyoflinearelasticmaterials: V 1 U d dv dv 0 2 V 13 LECTURER: PROF. SEUNGTAE CHOI ConservationofEnergy 14 LECTURER: PROF. SEUNGTAE CHOI

EnergyBalanceDuringCrackGrowth Thefirstlawofthermodynamics(Lawofconservationofenergy) W U U E P E P W : Work done by the applied load U : Elastic energy U : Plastic energy : Surface energy Applied traction A A t A t A a 2a a U A A A P E where =U W Thereductionofpotentialenergyisequaltotheenergydissipatedinplastic workandsurfacecreation. Forbrittlematerials,U P 0. 2 A A S 15 LECTURER: PROF. SEUNGTAE CHOI GriffithEnergyBalance Griffith(1920)usedthestressanalysisofInglis (1913)toshow 2 2 2 ab a 0 E A E 4aBS 2S A Griffithfracturestress a 2a a f 2E S a 12 B ModifiedGriffithfracturestress f 2E( P S) a 12 P : plastic work per unit area of surface 16 LECTURER: PROF. SEUNGTAE CHOI

EnergyReleaseRate Energyreleaserate,G:Ameasureofthe energyavailableforanincrementofcrack extension(irwin,1948) A Itisalsocalledthecrackextensionforceor thecrackdrivingforce. FromtheGriffithenergybalance,thecrack extensionoccurswheng reachesacritical value,i.e., 2 a c 2 S, A E A whereg c isameasureofthefracture toughnessofthematerial. 17 LECTURER: PROF. SEUNGTAE CHOI 10.6FractureToughnessTesting Standard:ASTME399,D5045 Specimen:CompactTension(CT) Calculation K PQ fx BW IC 1/ 2 K IC :Fracturetoughness P Q :Criticalload f(x)= 8.34 atx=0.45 9.66 atx=0.50 11.35 atx=0.55 x=a/w,(0.45<x<0.55) K IC B, a 2.5 yield 2 18 LECTURER: PROF. SEUNGTAE CHOI

PlasticEffectonCrackTip Yielding zone size: r y 1 K I 2 y 2 Plastic zone size ry rp r 2 1 K I rp 2r y for plane stress y 2 1 K I rp 2r y for plane strain 3 y Ductile fracture : sufficient plastic deformation before fracture Brittle fracture : small plastic deformation before fracture 19 LECTURER: PROF. SEUNGTAE CHOI 3DAspectsofPlasticZone 20 LECTURER: PROF. SEUNGTAE CHOI

VariationofK C withspecimenthickness K C Plane stress Transition region Plane strain K IC Specimen thickness 21 LECTURER: PROF. SEUNGTAE CHOI FractureToughnessRanges K IC (MPam 0.5 ) Callister&Rethwisch 9e. ASMHandbook FractureMechanics ofceramics Ceram.Eng.Sci.Proc. 22 LECTURER: PROF. SEUNGTAE CHOI

ImpactTesting Impactloading: final height Callister&Rethwisch 9e. TheStructureandPropertiesof MaterialsMechanicalBehavior initial height 23 LECTURER: PROF. SEUNGTAE CHOI InfluenceofTemperatureonImpactEnergy DuctiletoBrittleTransitionTemperature(DBTT)... T y E Callister&Rethwisch 9e. 24 LECTURER: PROF. SEUNGTAE CHOI

LibertyShipduringWorldWarII 25 LECTURER: PROF. SEUNGTAE CHOI LibertyShipduringWorldWarII JohnP.Gaines EmpireDuke 26 LECTURER: PROF. SEUNGTAE CHOI

Patterning by Controlled Cracking K. H. Nam, I. H. Park, & S. H. Ko, Patterning by controlled cracking, Nature, Vol. 485, pp. 221-224, 2012. 27 LECTURER: PROF. SEUNGTAE CHOI Fragmentation of Ice in the Arctic Ocean 28 LECTURER: PROF. SEUNGTAE CHOI

10.7CyclicStressesFatigue Fatigue=failureunderappliedcyclicstress. Callister&Rethwisch 9e. Stressvarieswithtime. Keypoints:Fatigue... Callister&Rethwisch 9e. 29 LECTURER: PROF. SEUNGTAE CHOI 10.8TheSNCurve Fatiguelimit,S fat : Forsomematerials, S fat Callister&Rethwisch 9e. Callister&Rethwisch 9e. 30 LECTURER: PROF. SEUNGTAE CHOI

10.9CrackInitiationandPropagation RateofFatigueCrackGrowth:Crackgrowsincrementally da dn ( K ) m ~ a Failedrotatingshaft Callister&Rethwisch 9e. UnderstandingHowComponentsFail 31 LECTURER: PROF. SEUNGTAE CHOI 10.10FactorsThatAffectFatigueLife 1.Imposecompressivesurfacestresses (tosuppresssurfacecracksfromgrowing) Callister&Rethwisch 9e. m m m bad bad better better Callister &Rethwisch 9e. 32 LECTURER: PROF. SEUNGTAE CHOI

10.12GeneralizedCreepBehavior Creepphenomenon:Time dependentandpermanent deformationofmaterialswhen subjectedtoconstantloador stress. e t et) 33 LECTURER: PROF. SEUNGTAE CHOI CreepFractureMechanism Schematicdrawingofthreefracturemechanismsinahightemperaturecreep regime [Abe et al., Creep-Resistant Steels, 2008] 34 LECTURER: PROF. SEUNGTAE CHOI

10.13StressandTemperatureEffects Occursatelevatedtemperature,T>0.4T m (ink) tertiary secondary primary elastic Callister&Rethwisch 9e. 35 LECTURER: PROF. SEUNGTAE CHOI SecondaryCreep Strainrateisconstantatagiven(T,s) StrainrateincreaseswithincreasingT, Stress(MPa) 200 100 40 20 10 n Q c s K2 exp RT 10 2 10 1 1 Steadystatecreeprate(%/1000hr) e s 427C 538 C 649 C Callister&Rethwisch 4e. Metals Handbook:PropertiesandSelection: StainlessSteels,ToolMaterials,and SpecialPurposeMetals 36 LECTURER: PROF. SEUNGTAE CHOI

ArrheniusEquation TheArrheniusequation(SvanteArrhenius,1889) E a k Aexp RT or E B k Aexp kbt k T A E a R E B k B 37 LECTURER: PROF. SEUNGTAE CHOI 10.14DataExtrapolationMethods TheLarson Millerparameterisameansofpredictingthelifetimeofmaterial vs.timeandtemperatureusingacorrelativeapproachbasedonthearrhenius rateequation. LarsenMillerparameterP LM isusedtorepresentcreepstressrupturedata. n Qc s K2 exp RT l Qc A exp t RT l Qc ln lna t RT Qc TB lnt where R A B ln l P LM T C log t r 38 LECTURER: PROF. SEUNGTAE CHOI

PredictionofCreepRuptureLifetime T s t r T (20 logt r ) P LM Tt r Callister&Rethwisch 9e. Trans.ASME74 ( 1073K)(20 logt ) t r r 3 24x10 39 LECTURER: PROF. SEUNGTAE CHOI SUMMARY Engineeringmaterialsnotasstrongaspredictedbytheory Flawsactasstressconcentratorsthatcausefailureatstresseslowerthan theoreticalvalues. Sharpcornersproducelargestressconcentrationsandprematurefailure. FailuretypedependsonTand: 40 LECTURER: PROF. SEUNGTAE CHOI