Identification of a critical determinant that enables efficient fatty acid synthesis in oleaginous fungi

Σχετικά έγγραφα
Supplementary figures for MED13 dependent signaling from the heart confers leanness by enhancing metabolism in adipose tissue and liver.

Supplementary Table 1. Primer sequences used for RT-qPCR validation of the microarray data. Primer. direction. Forward

A strategy for the identification of combinatorial bioactive compounds. contributing to the holistic effect of herbal medicines

Supporting Information. Experimental section

ΙΑΤΑΡΑΧΕΣ ΜΕΤΑΒΟΛΙΣΜΟΥ ΛΙΠΑΡΩΝ ΟΞΕΩΝ

Selecting Critical Properties of Terpenes and Terpenoids through Group-Contribution Methods and Equations of State

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Sar1B-mediated Regulation of Triglyceride and Cholesterol

Guo_Fig. S1. Atg7 +/+ Atg7 -/- FBP_M+6 DHAP_M+3. Glucose Uptake Rate G6P_M+6. nmol/ul cell/hr

J. Dairy Sci. 93: doi: /jds American Dairy Science Association, 2010.

Supplementary figures

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

Αξιοποίηση Φυσικών Αντιοξειδωτικών στην Εκτροφή των Αγροτικών

Table S1: Inpatient Diet Composition

Supplementary Appendix

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ. Πτυχιακή εργασία

Μελέτη της έκφρασης του ογκοκατασταλτικού γονιδίου Cyld στον καρκίνο του μαστού

Identification of Fish Species using DNA Method

abs acces acces Sample test results. Actual results may vary. Antioxidants B-Vitamins Minerals Order Today At Results Overview

Electronic Supplementary Information:

Daewoo Technopark A-403, Dodang-dong, Wonmi-gu, Bucheon-city, Gyeonggido, Korea LM-80 Test Report

Figure 3 Three observations (Vp, Vs and density isosurfaces) intersecting in the PLF space. Solutions exist at the two indicated points.

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

ΠΑΥΛΙΝΑ ΠΕ11 25,5 ΚΑΒΑΛΑΣ ΑΝΑΤ. ΑΤΤΙΚΗ

Φύλλο1. ΠΕΡΙΟΧΗ ΠΡΟΣΛΗΨΗΣ ΑΒΡΑΜΙΔΟΥ ΜΑΡΙΚΑ ΔΗΜΗΤΡΙΟΣ Γ Αθηνών ΑΒΡΑΜΙΔΟΥ ΣΟΦΙΑ ΔΗΜΗΤΡΙΟΣ Λασίθι ΑΓΓΕΛΗ ΑΝΔΡΟΜΑΧΗ ΒΑΣΙΛΕΙΟΣ

Supplementary Table 1. Primers used for RT-qPCR analysis of striatal and nigral tissue.

Electronic Supplementary Information (ESI)

Science of Sericulture

Overlapping sets of transcripts from host and non-host interactions of tomato are expressed early during non-host resistance

Simon et al. Supplemental Data Page 1

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ

Table S1. All regions of WCC enrichment at p<0.001 and z score >3.09

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis

Dietary success of a new key fish in an overfished ecosystem: evidence from fatty acid and stable isotope signatures

ΠΕΡΙΦΕΡΕΙΑΚΗ ΕΝΟΤΗΤΑ ΑΤΤΙΚΗΣ ΚΕΝΤΡΙΚΟΥ ΤΟΜΕΑ 17 ΠΕ ΑΤΤΙΚΗΣ ΚΕΝΤΡΙΚΟΥ ΤΟΜΕΑ 33 ΔΕ ΑΤΤΙΚΗΣ ΚΕΝΤΡΙΚΟΥ ΤΟΜΕΑ 41 ΠΕ/ΤΕ ΑΤΤΙΚΗΣ ΚΕΝΤΡΙΚΟΥ ΤΟΜΕΑ 69 ΥΕ

Salmonella produce microrna-like RNA fragment Sal-1 in the infected cells to. facilitate intracellular survival

Τεχνικές παρασκευής ζεόλιθου ZSM-5 από τέφρα φλοιού ρυζιού με χρήση φούρνου μικροκυμάτων και τεχνικής sol-gel

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Table 2 Suggested prediction methods to use for a given set of available input parameters per each examined soil hydraulic property) a.


Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Supporting Information

PHOS π 0 analysis, for production, R AA, and Flow analysis, LHC11h

Supporting Information

; +302 ; +313; +320,.

Math 6 SL Probability Distributions Practice Test Mark Scheme

encouraged to use the Version of Record that, when published, will replace this version. The most /BCJ

Supporting Information

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Supplementary Materials: Detection of 191 Taxifolin Metabolites and Their Distribution in Rats Using HPLC-ESI-IT-TOF-MS n

ΑΠΟΜΟΝΩΣΗ, ΤΑΥΤΟΠΟΙΗΣΗ ΜΕΘΑΝΟΤΡΟΦΩΝ ΜΙΚΡΟΟΡΓΑΝΙΣΜΩΝ ΚΑΙ ΒΙΟΛΟΓΙΚΗ ΜΕΤΑΤΡΟΠΗ ΜΕΘΑΝΙΟΥ ΣΕ ΜΕΘΑΝΟΛΗ

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

Supporting Information

ΜΟΡΙΑ ΠΙΝΑΚΑ ΣΕΙΡΑ ΠΙΝΑΚΑ ΠΕΡΙΟΧΗ ΤΟΠΟΘΕΤΗΣΗΣ ΠΙΝΑΚΑΣ ΑΑ ΕΠΩΝΥΜΟ ΟΝΟΜΑ ΠΑΤΡΩΝΥΜΟ ΚΛΑΔΟΣ ΤΡΙΤΕΚΝΟ Σ ΔΙΕΥΘΥΝΣΗ ΕΚΠ/ΣΗΣ

Strain gauge and rosettes

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Ειδικό πρόγραμμα ελέγχου για τον ιό του Δυτικού Νείλου και την ελονοσία, ενίσχυση της επιτήρησης στην ελληνική επικράτεια (MIS )

ΕΚΘΕΣΗ ΑΝΑΛΥΣΗΣ ΕΛΑΙΟΛΑ ΟΥ REPORT OF OLIVE OIL ANALYSIS

Supplementary Material for The Cusp Catastrophe Model as Cross-Sectional and Longitudinal Mixture Structural Equation Models

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

Γεωπονικό Πανεπιςτήμιο Αθηνών Τμήμα Αξιοποίηςησ Φυςικών Πόρων και Γεωργικήσ Μηχανικήσ

DuPont Suva 95 Refrigerant

ΠΑΤΡΩΝΥΜΟ / ΟΝΟΜΑ ΣΥΖΥΓΟΥ 1 ΑΓΟΡΑΣΤΟΥ ΜΑΡΙΑ ΤΟΥ ΔΗΜΗΤΡΙΟΥ 2 ΑΘΑΝΑΣΙΑΔΗΣ ΙΩΑΝΝΗΣ ΤΟΥ ΠΑΥΛΟΥ 3 ΑΚΤΣΟΓΛΟΥ ΣΩΚΡΑΤΗΣ ΤΟΥ ΓΕΩΡΓΙΟΥ

Προσομοίωση BP με το Bizagi Modeler


IL - 13 /IL - 18 ELISA PCR RT - PCR. IL - 13 IL - 18 mrna. 13 IL - 18 mrna IL - 13 /IL Th1 /Th2

DuPont Suva 95 Refrigerant

Friend or foe: differential responses of rice to invasion by mutualistic or. pathogenic fungi revealed by RNAseq and metabolite profiling

Supplementary information:

Διερεύνηση ακουστικών ιδιοτήτων Νεκρομαντείου Αχέροντα

The Free Internet Journal for Organic Chemistry

Αξιολόγηση των Φασματικού Διαχωρισμού στην Διάκριση Διαφορετικών Τύπων Εδάφους ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σπίγγος Γεώργιος

The toxicity of three chitin synthesis inhibitors to Calliptamus italicus Othoptera Acridoidea


Homework 3 Solutions

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Supporting Information

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

[11].,, , 316 6, ,., 15.5%, 9.8%, 2006., IDF,, ,500, 2,830.,, ,200.,,, β, [12]. 90% 2,,,,, [13-15].,, [13,

The effect of curcumin on the stability of Aβ. dimers

ΜΔΛΔΣΖ ΔΝΓΟΣΡΑΥΤΝΖ Δ ΥΑΛΤΒΔ ΘΔΡΜΖ ΔΛΑΖ

Effect of Genotype and Environment on Salvia miltiorrhiza Roots Using LC/MS Based Metabolomics

SAMSUNG ELECTRONICS CO., LTD TEST REPORT SAMSUNG ELECTRONICS CO., LTD. 1, Samsung-Ro, Giheung-Gu, Yongin-Si, Gyeonggi-Do 17113, Korea

1 h, , CaCl 2. pelamis) 58.1%, (Headspace solid -phase microextraction and gas chromatography -mass spectrometry,hs -SPME - Vol. 15 No.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

ΤΜΗΜΑ ΕΚΠΑΙ ΕΥΤΙΚΗΣ ΚΑΙ ΚΟΙΝΩΝΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΚΑΤΕΥΘΥΝΣΗ: ΣΥΝΕΧΙΖΟΜΕΝΗ ΕΚΠΑΙ ΕΥΣΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Current Status of PF SAXS beamlines. 07/23/2014 Nobutaka Shimizu

ΜΕΛΕΤΗ ΑΝΤΙΔΡΑΣΗΣ ΕΣΤΕΡΟΠΟΊΗΣΗΣ ΓΑΛΑΚΤΙΚΟΥ ΟΞΕΟΣ ΜΕ ΑΙΘΑΝΟΛΗ ΓΙΑ ΠΑΡΑΓΩΓΗ ΓΑΛΑΚΤΙΚΟΥ ΑΙΘΥΛΕΣΤΕΡΑ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΙΑΤΡΙΚΗ ΣΧΟΛΗ. ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «Ιατρική Ερευνητική Μεθοδολογία» ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Ανάκτηση Πληροφορίας

(Biomass utilization for electric energy production)

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Transcript:

Identification of a critical determinant that enables efficient fatty acid synthesis in oleaginous fungi Haiqin Chen, Guangfei Hao, Lei Wang, Hongchao Wang, Zhennan Gu, Liming Liu, Hao Zhang, Wei Chen, and Yong Q. Chen Fold change Genes 5 - - 2 2-3 3-4 4-5 9 78 452 55 3 Log Fold -4 : 4 A B E K L M a b A B E K L M c d e f g h Figure S Overall transcriptional regulation during lipogenesis in M. alpina. Gene transcription changes were compared among samples A, B, E, K, L and M using

sample E (3 min prior to nitrogen exhaustion) as the reference point. The smallest non zero FPKM was.53. Therefore,.5 FPKM was considered as the detection limit and used to replace for log transformation. The number of genes with >5 fold change is indicated at the top. Hierarchical clustering of differentially expressed genes (3328) and samples (A, B, E, K, L, and M) is shown on the left. Eight gene clusters (a, b, c, d, e, f, g, h) were identified and the average expression pattern for each cluster is shown on the right.

Group Gene PK (2.7..4) PCK (4...49) 4 PDH (.2.4.) 5 OGDH (.2.4.2) SUCLG (6.2..4) 7 ACLY (2.3.3.8) 8 ACS (6.2..) 9 ALDH (.2..3) ADH (...2) GPAT (2.3..5) DGAT (2.3..2) ACSL (6.2..3) 4 2 3 G6PD (...49) PGD (...44) HK (2.7.., ALDO (4..2.3) GAPDH (.2..2) ENO (4.2..) ACO (4.2..3) IDH (...42) 6 MDH (...37) 2 CRAT (2.3..7) 3 LIP (3...3) up-regulation down-regulation unchanged not identified M. alpina M. circinelloides R. oryzae C. reinhardtii A. nidulans similarity % 95% 75% 36% Figure S2 Similarity in core gene expression. Transcriptional regulation of the 32 core genes involved in carbon flux and NADPH metabolism illustrated in Figure 2 were compared among M. circinelloides, R.oryzae, C. reinhardtii and A. nidulans and M. alpina.

Expression level (log 2 -ΔΔCt ) Expression level (log 2 -ΔΔCt ) 2.5..5. -.5 3.5..5 -. -.5 -..5. PK (2.7..4) 2 PCK (4...32, 4...49) 7. ACLY (2.3.3.8) Expression level (log 2 -ΔΔCt ) - 2 ACO (4.2..3) IDH (...42) - 8. ACS (6.2..).5. -.5 4 -..5. -.5 9 2..5..5. HK/GCK (2.7.., 2.7..2) PDH (.2.4.) - ALDO (4..2.3) -2 5.5..5. -.5 2 ALDH (.2..3) ADH (...2) OGDH (.2.4.2) SUCLG (6.2..4) 2 -.5..5. -.5 GAPDH (.2..2) 2 3 4. 2 ACSL (6.2..3) CRAT (2.3..7).5 LIP (3...3) 2..5. -.5 -.5. G6PD (...49) PGD (...44) -. -. -.5 A B E K L M A B E K L M A B E K L M A B E K L M A B E K L M Expression level (log 2 -ΔΔCt ).5. -.5 -. ENO (4.2..) -.5 6.5 MDH (...37)..5. -.5 -. -.5 2 GPAT (2.3..5) DGAT (2.3..2) Figure S3 Expression similarities of the core genes in M. alpina, M. circinelloides and R. oryzae. The twenty-three genes involved in carbon flux and NADPH metabolism illustrated in Figure 2 of M. alpina, M. circinelloides and R. oryzae were analyzed by qrt-pcr during lipogenesis. Different symbols indicate different genes with the same annotation. The error bars represent standard deviations. The full names of the enzymes are indicated in the legend of Figure 2.

.4.2 AA (nmol/g DW /h)..8.6.4.2. WT ΔG6PD ΔPGD ΔALDH4A ΔPYCR ΔNIT-6 ΔargC ΔHMGCR Figure S4 The effect of different NADPH-generating genes on AA production. The effect of different NADPH generating genes on AA production were simulated by single gene deletion using MOMA. WT: wide type, G6PD: glucose-6-phosphate dehydrogenase (EC...49), PGD: phosphogluconate dehydrogenase (EC...44), ALDH4A: -pyrroline-5-carboxylate dehydrogenase (EC.5..2), PYCR: pyrroline-5- carboxylate (EC.5..2), NIT-6: nitrite (EC.7..4), argc: N- Acetyl-gamma-glutamyl-phosphate (EC.2..38), HMGCR: hydroxymethylglutaryl-coa (EC...34).

G6PD G6PD2 G6PD3 PGD ME ME2 Expression level (change fold).7.6.5.4.3.2.. MA-G6PD-S MA-G6PD-S2 MA-G6PD-S3 MA-G6PD-S MA-G6PD-S2 MA-G6PD-S3 MA-G6PD-S MA-G6PD-S2 MA-G6PD-S3 MA-PGD-S MA-PGD-S2 MA-PGD-S3 MA-ME-S MA-ME-S2 MA-ME-S3 MA-ME2-S MA-ME2-S2 MA-ME2-S3 Figure S5 Confirmation of RNA knockdown. Three mutants from each RNAi experiments were analyzed by qrt-pcr with the wild-type M. alpina as control. Samples were taken from cultures growing in 5 ml flasks with ml of Kendrick medium stirred at 2 rpm for 96 h at 28 C. Three independent experiments were performed and the bars represent the standard deviations. p <.5 compared to the wild-type control.

Table S. Summary of transcriptome data Library Sample A B E K L M Raw RNA sequencing reads (million) 35.73 37.3 56.66 55.6 52.49 33.2 Mapped RNA sequencing reads (million) 27.33 25.24 44.4 45.62 44.47 24.23 Predicted gene models covered 974 967 394 724 785 9945 A: 2 h, B: -2 h, E: -3 min, K: + h, L: +2 h and M: +48 h

Table S2. Predicted NADPH anabolic reactions Rxn EC Enzyme Formula μ=.3 R.2..5 aldehyde dehydrogenase [NAD(P)[c] +] + nadp[c] + acal[c] -> 2 h[c] + nadph[c] + ac[c].4 R2...42 Isocitrate dehydrogenase (NADP[c] +) nadp[c] + icit[c] -> akg[c] + nadph[c] + co2[c] R3...42 Isocitrate dehydrogenase (NADP[c] +) nadp[c] + icit[c] -> akg[c] + nadph[c] + co2[c] R4...49 glucose-6-phosphate dehydrogenase nadp[c] + dg6p[c] <=> h[c] + nadph[c] + d6pgl[c].4 R5...44 Phosphogluconate dehydrogenase nadp[c] + d6pgc[c] -> co2[c] + nadph[c] + rl5p[c].4 (decarboxylating) R6...4 malate dehydrogenase (oxaloacetatedecarboxylating) nadp[m] + mal[m] -> pyr[m] + nadph[m] + co2[m].555 (NADP[m] +) R7...4 malate dehydrogenase (oxaloacetatedecarboxylating) nadp[c] + mal[c] -> pyr[c] + nadph[c] + co2[c] (NADP[m] +) R8...- unknown hcoa[m] + nadp[m] -> nadph[m] + h[m] + 3ocoa[m] R9 no ec malcoa[m] + nadph[m] + 2 h[m] <=> 3ocoa[m] + nadp[m] + h2o[m] R no ec malcoa[c] + nadph[c] + 2 h[c] <=> 3ocoa[c] + nadp[c] + R...- unknown hcoa[m] + nadp[m] -> nadph[m] + h[m] + 3ocoa[m] R2.2..6 succinate-semialdehyde dehydrogenase h2o[m] + succsal[m] + nadp[m] -> 2 h[m] + nadph[m] + succ[m] R3...2 L-arabinose h[c] + nadph[c] + larab[c] <=> nadp[c] + laol[c] R4...2 D-Ribose h[c] + nadph[c] + rib[c] <=> nadp[c] + ribol[c] R5.5..2 -pyrroline-5-carboxylate dehydrogenase sp5c[c] + nadp[c] + 2 -> glu[c] + nadph[c] + h[c] R6.5..2 -pyrroline-5-carboxylate dehydrogenase sp5c[m] + nadp[m] + 2 h2o[m] -> glu[m] + nadph[m] + h[m] R7.5..2 -pyrroline-5-carboxylate dehydrogenase glugsal[c] + nadp[c] + -> glu[c] + nadph[c] + 2 h[c].56 R8.2..4 glutamate-5-semialdehyde dehydrogenase 2 h[c] + nadph[c] + glup[c] <=> nadp[c] + pi[c] + glugsal[c] R9.5..2 -pyrroline-5-carboxylate dehydrogenase sp5c[c] + nadp[c] + 2 -> glu[c] + nadph[c] + h[c] R2.5..2 Pyrroline-5-carboxylate pro[c] + nadp[c] <=> 2 h[c] + nadph[c] + sp5c[c].56 R2.3..3 Prephenate dehydrogenase (NADP[c] +) nadp[c] + phen[c] -> co2[c] + nadph[c] + 4hppyr[c] R22.4..2 aspartate dehydrogenase asp[c] + nadp[c] -> 2 h[c] + nadph[c] + iasp[c].3 R23.8..2 ferredoxin-nadp+ nadp[c] + h[c] + refdox[c] -> nadph[c] + oxfdox[c] R24.5..3 Dihydrofolate nadp[c] + dhf[c] <=> h[c] + nadph[c] + fot[c] R25 4.2.3.2;...53 6-pyruvoyltetrahydropterin synthase/sepiapterin ahtd[c] + 2 nadph[c] + 2 h[c] -> bh4[c] + 2 nadp[c] + pppi[c] R26.5..34 6,7-dihydropteridine bh4[c] + nadp[c] -> bh2[c] + nadph[c] + h[c]

R27.5..5 methylenetetrahydrofolate dehydrogenase nadp[c] + metthf[c] <=> nadph[c] + methf[c].9 (NADP[c] +) R28.3..- Oxidos ccdol[m] + nadp[m] -> techol[m] + nadph[m] + h[m] R29.3..- Oxidos cdtbe[m] + nad[m] -> dtbe[m] + nadh[m] + h[m] R3...2 alcohol dehydrogenase (NADP[c] +) 6hyac[c] + nadp[c] -> adsde[c] + nadph[c] + h[c] R3.2..5 aldehyde dehydrogenase [NAD(P)[m] +] aldmde[m] + nadp[m] + h2o[m] -> capmde[m] + nadph[m] + h[m] R32.4.3. salicylate hydroxylase + co2[c] + nadp[c] + ccl[c] <=> o2[c] + 2 h[c] + nadph[c] + sali[c] R33.2..5 aldehyde dehydrogenase [NAD(P)[c] +] + nadp[c] + acal[c] -> 2 h[c] + nadph[c] + ac[c].4 R34...7 C-4 sterol decarboxylase (cg26);sterol-4alphacarboxylate nadp[c] + dcda[c] -> co2[c] + nadph[c] + cdol[c] 3-dehydrogenase (decarboxylating) R35.4.2.6 lathosterol oxidase epst[c] + nadp[c] -> ergod[c] + nadph[c] + h[c] R36...2;...72 NADP-dependent alcohol nadp[c] + gl[c] <=> h[c] + nadph[c] + glyal[c] dehydrogenase/glycerol dehydrogenase R37.5.. Saccharopine dehydrogenase (NADP[c] +, L- glutamate forming) h2o[m] + nadp[m] + sacp[m] <=> glu[m] + h[m] + nadph[m] + amasa[m].5

Table S3. Predicted NADPH catabolic reactions Rxn EC Enzyme Formular μ=.3 R...2 Alcohol dehydrogenase (NADP[c] +) h[c] + nadph[c] + acal[c] -> nadp[c] + eth[c] R2...27 GDP-L-fucose synthase gdman[c] + nadph[c] + h[c] -> glfuc[c] + nadp[c] R3...79 glyoxylate (NADP[c] +) glx[c] + nadph[c] + h[c] -> glya[c] + nadp[c] R4...2 D-Xylose (xyra) (xylitol h[c] + nadph[c] + xyl[c] -> nadp[c] + xol[c] dehydrogenase) R5.4..3 glutamate synthase (NADH) akg[c] + gln[c] + h[c] + nadph[c] -> 2 glu[c] + nadp[c] R6.4..3 glutamate dehydrogenase [NAD(P)[m] +] akg[m] + nh3[m] + nadph[m] + h[m] -> glu[m] + nadp[m] + h2o[m] R7.4..3 glutamate dehydrogenase [NAD(P)+] akg[c] + nh3[c] + nadph[c] + h[c] -> glu[c] + nadp[c] + R8...86 (R)-2,3-Dihydroxy-3-methylbutanoate:NADP+ hmobut[m] + nadph[m] + h[m] -> nadp[m] + dmbut[m] oxido R9.2..3 L-aminoadipate-semialdehyde dehydrogenase 2 h[m] + nadph[m] + ama[m] -> h2o[m] + nadp[m] + amasa[m] R.5..2 Pyrroline-5-carboxylate 2 h[c] + nadph[c] + phc[c] -> hpro[c] + nadp[c] R.4.3.9 Kynurenine 3-monooxygenase o2[c] + h[c] + nadph[c] + kyn[c] -> + nadp[c] + hkyn[c] R2...25 shikimate dehydrogenase h[c] + nadph[c] + dhsk[c] -> nadp[c] + sme[c] R3...86 (R)-2,3-Dihydroxy-3-methylpentanoate:NADP+ rhmopt[m] + nadph[m] + h[m] -> dmvat[m] + nadp[m].6 oxido (isomerizing) R4...86 (R)-2,3-Dihydroxy-3-methylpentanoate:NADP+ rhmopt[c] + nadph[c] + h[c] -> dmvat[c] + nadp[c] oxido (isomerizing) R5.8..9 thioredoxin (NADPH) h[c] + nadph[c] + othio[c] -> nadp[c] + rthio[c] R6.8..7 glutathione-disulfide h[c] + nadph[c] + gssg[c] -> nadp[c] + 2 gsh[c] R7.7..4 nitrite [NADPH] 5 h[c] + 3 nadph[c] + hno2[c] -> + 3 nadp[c] + nh4oh[c] R8.8..2 Sulfite (NADPH) 3 h[c] + 3 nadph[c] + slfi[c] -> 3 + 3 nadp[c] + h2s[c] R9...65 pyridoxine 4-dehydrogenase pdxal[c] + nadph[c] + h[c] -> vb6[c] + nadp[c] R2...69 2-dehydropantoate 2- h[m] + nadph[m] + akp[m] -> nadp[m] + pant[m].3 R2... B-ketoacyl-ACP synthase (c,), fatty acyl 6 h[c] + 4 nadph[c] + 3 malcoa[c] -> 2 + 2 co2[c] + 4 CoA synthase R22... B-ketoacyl-ACP synthase (c,), fatty acyl CoA synthase nadp[c] + 2 coa[c] + chcoa[c] 6 h[m] + 4 nadph[m] + 3 malcoa[m] -> 2 h2o[m] + 2 co2[m] + 4 nadp[m] + 2 coa[m] + chcoa[m]

R23.5..3 Dihydrofolate h[c] + nadph[c] + dhf[c] -> thf[c] + nadp[c] R24.5..3 Dihydrofolate 2 h[c] + 2 nadph[c] + fot[c] -> 2 nadp[c] + thf[c] R25.4.3.- 2-octaprenyl-6-methoxyphenol hydroxylase o2[m] + nadph[m] + hm[m] -> h2o[m] + nadp[m] + h[m] + hmb[m] R26.4.3.- ubiquinone biosynthesis monooxygenase hmmb[m] + o2[m] + nadph[m] + h[m] -> hmhmb[m] + Coq7 nadp[m] + h2o[m] R27 2.5..2 Squalene synthase 2 fpp[c] + nadph[c] + 3 h[c] -> 2 ppi[c] + sql[c] + nadp[c] R28.4.3.32 squalene monooxygenase sql[c] + o2[c] + nadph[c] + h[c] -> s23e[c] + nadp[c] + R29.4.3.9 zeaxanthin epoxidase atxin[c] + nadph[c] + h[c] + o2[c] -> vlxin[c] + nadp[c] + R3.4.3.9 zeaxanthin epoxidase zextin[c] + nadph[c] + h[c] + o2[c] -> axtin[c] + nadp[c] + R3...33 dtdp-4-dehydrorhamnose dtdp6m[c] + h[c] + nadph[c] -> nadp[c] + dtdpdm[c] R32...57 3-hydroxybutyryl-CoA dehydrogenase c4hcoa[c] + nadp[c] <=> aaccoa[c] + nadph[c] + h[c] R33.4.-.- Sterigmatocystin biosynthesis monooxygenase o2[m] + h[m] + nadph[m] + avn[m] -> h2o[m] + nadp[m] + havn[m] R34.4.-.- Sterigmatocystin biosynthesis monooxygenase o2[c] + h[c] + nadph[c] + avn[c] -> + nadp[c] + havn[c] R35.4.3.7 phenol 2-monooxygenase 3csol[m] + o2[m] + nadph[m] + h[m] -> 23dlne[m] + nadp[m] + h2o[m] R36.4.3.7 phenol 2-monooxygenase pnol[m] + o2[m] + nadph[m] + h[m] -> ccl[m] + nadp[m] + h2o[m] R37.4.3.7 phenol 2-monooxygenase rsnol[m] + o2[m] + nadph[m] + h[m] -> btol[m] + nadp[m] + h2o[m] R38.4.3.7 phenol 2-monooxygenase 3csol[c] + o2[c] + nadph[c] + h[c] -> 23dlne[c] + nadp[c] + R39.4.3.7 phenol 2-monooxygenase pnol[c] + o2[c] + nadph[c] + h[c] -> ccl[c] + nadp[c] + R4.4.3.7 phenol 2-monooxygenase rsnol[c] + o2[c] + nadph[c] + h[c] -> btol[c] + nadp[c] + R4.4.3.- Oxidos 4eol[m] + nadph[m] + h[m] + o2[m] -> eal[m] + nadp[m] + h2o[m] R42.4.3.- Oxidos bendl[m] + nadph[m] + h[m] + o2[m] -> btol[m] + nadp[m] + h2o[m] R43.4.3.- Oxidos sali[m] + nadph[m] + o2[m] + h[m] -> 25dhba[m] + nadp[m] + h2o[m] R44.4.3.8 dimethylaniline monooxygenase tafen[c] + o2[c] + nadph[c] + h[c] -> tafnox[c] + nadp[c] +

R45.4.3.8 dimethylaniline monooxygenase tafen[p] + o2[p] + nadph[p] + h[p] -> tafnox[p] + nadp[p] + h2o[p] R46..-.- Aflatoxins biosynthesis;,3,6,8-tetra hydroxy h[c] + nadph[c] + vera[c] -> nadp[c] + dmst[c] naphthalene R47..-.- Aflatoxins biosynthesis;,3,6,8-tetra hydroxy h[c] + nadph[c] + verb[c] -> + nadp[c] + dhdmst[c] naphthalene R48... beta-ketoacyl-[acyl-carrier protein](acp) c4hacp[m] + nadp[m] <=> aacacp[m] + nadph[m] + h[m] R49... beta-ketoacyl-[acyl-carrier protein](acp) c6hacp[m] + nadp[m] <=> c6oacp[m] + nadph[m] + h[m] R5... beta-ketoacyl-[acyl-carrier protein](acp) c8hacp[m] + nadp[m] <=> c8oacp[m] + nadph[m] + h[m] R5... beta-ketoacyl-[acyl-carrier protein](acp) chacp[m] + nadp[m] <=> coacp[m] + nadph[m] + h[m] R52... beta-ketoacyl-[acyl-carrier protein](acp) c2hacp[m] + nadp[m] <=> c2oacp[m] + nadph[m] + h[m] R53... beta-ketoacyl-[acyl-carrier protein](acp) c4hacp[m] + nadp[m] <=> c4oacp[m] + nadph[m] + h[m] R54... beta-ketoacyl-[acyl-carrier protein](acp) c6hacp[m] + nadp[m] <=> c6oacp[m] + nadph[m] + h[m] R55... 3-oxoacyl-[acyl-carrier-protein] aacacp[c] + nadph[c] + h[c] <=> c4hacp[c] + nadp[c].62 R56 2.3..86 fatty-acyl-coa synthase c4dacp[c] + nadph[c] + h[c] <=> c4acp[c] + nadp[c].62 R57... 3-oxoacyl-[acyl-carrier-protein] c6oacp[c] + nadph[c] + h[c] <=> c6hacp[c] + nadp[c].62 R58 2.3..86 fatty-acyl-coa synthase c6dacp[c] + nadph[c] + h[c] <=> c6acp[c] + nadp[c].62 R59... 3-oxoacyl-[acyl-carrier-protein] c8oacp[c] + nadph[c] + h[c] <=> c8hacp[c] + nadp[c].62 R6 2.3..86 fatty-acyl-coa synthase c8dacp[c] + nadph[c] + h[c] <=> c8acp[c] + nadp[c].62 R6... 3-oxoacyl-[acyl-carrier-protein] coacp[c] + nadph[c] + h[c] <=> chacp[c] + nadp[c].62 R62 2.3..86 fatty-acyl-coa synthase cdacp[c] + nadph[c] + h[c] <=> cacp[c] + nadp[c].62 R63... 3-oxoacyl-[acyl-carrier-protein] c2oacp[c] + nadph[c] + h[c] <=> c2hacp[c] + nadp[c].62 R64 2.3..86 fatty-acyl-coa synthase c2dacp[c] + nadph[c] + h[c] <=> c2acp[c] + nadp[c].62 R65... 3-oxoacyl-[acyl-carrier-protein] c4oacp[c] + nadph[c] + h[c] <=> c4hacp[c] + nadp[c].62 R66 2.3..86 fatty-acyl-coa synthase c4dacp[c] + nadph[c] + h[c] <=> c4acp[c] + nadp[c].62 R67... 3-oxoacyl-[acyl-carrier-protein] c6oacp[c] + nadph[c] + h[c] <=> c6hacp[c] + nadp[c].62 R68 2.3..86 fatty-acyl-coa synthase c6dacp[c] + nadph[c] + h[c] <=> c6acp[c] + nadp[c].62

R69...33 very-long-chain 3-oxoacyl-CoA c8ocoa[c] + nadph[c] + h[c] <=> c8hcoa[c] + nadp[c].56 R7.3..93 very-long-chain enoyl-coa c8dcoa[c] + nadph[c] + h[c] <=> c8coa[c] + nadp[c].56 R7...33 very-long-chain 3-oxoacyl-CoA c2ocoa[c] + nadph[c] + h[c] <=> c2hcoa[c] + nadp[c].2 R72.3..93 very-long-chain enoyl-coa c2dcoa[c] + nadph[c] + h[c] <=> c2coa[c] + nadp[c].2 R73...33 very-long-chain 3-oxoacyl-CoA c22ocoa[c] + nadph[c] + h[c] <=> c22hcoa[c] + nadp[c]. R74.3..93 very-long-chain enoyl-coa c22dcoa[c] + nadph[c] + h[c] <=> c22coa[c] + nadp[c]. R75...33 very-long-chain 3-oxoacyl-CoA c24ocoa[c] + nadph[c] + h[c] <=> c24hcoa[c] + nadp[c] R76.3..93 very-long-chain enoyl-coa c24dcoa[c] + nadph[c] + h[c] <=> c24coa[c] + nadp[c] R77.4.3.7 sterol 4-demethylase lnst[c] + 3 o2[c] + 3 nadph[c] + 2 h[c] -> dctol[c] + for[c] + 3 nadp[c] + 4 R78.3..72 lanosterol delta24- lnst[c] + nadph[c] + h[c] -> dhstro[c] + nadp[c] R79.3..7 delta4-sterol ;C-4 sterol h[c] + nadph[c] + dctol[c] -> nadp[c] + dcdol[c] (cg24) R8.4.3.72 methylsterol monooxygenase;c-4 sterol methyl 3 o2[c] + 2 h[c] + 3 nadph[c] + dcdol[c] -> 4 + 3 oxidase (cg25) nadp[c] + dcda[c] R8...27 3-keto-steroid h[c] + nadph[c] + cdol[c] -> nadp[c] + mzymst[c] R82.3..72 delta24-sterol zymst[c] + nadph[c] + h[c] -> ac8bol[c] + nadp[c] R83.4.2.6 lathosterol oxidase ac7bol[c] + nadph[c] + h[c] + o2[c] -> pvd3[c] + nadp[c] + 2 R84.3..72 delta24-sterol acdbol[c] + nadph[c] + h[c] -> ac7bol[c] + nadp R85.3..2 7-dehydrocholesterol pvd3[c] + nadph[c] + h[c] -> chtrol[c] + nadp[c] R86.3..72 delta24-sterol 7strol[c] + nadph[c] + h[c] -> pvd3[c] + nadp[c] R87.4.3.7 sterol 4-demethylase obl[c] + 3 o2[c] + 3 nadph[c] + 2 h[c] -> amt3bol[c] + for[c] + 3 nadp[c] + 4 R88.3..7 Delta4-sterol amt3bol[c] + nadph[c] + h[c] -> mefol[c] + nadp[c] R89.3..2 7-dehydrocholesterol dhrsol[c] + nadph[c] + h[c] -> isol[c] + nadp[c] R9.3..7 delta24(24())-sterol h[c] + nadph[c] + egteol[c] -> nadp[c] + egstr[c] R9.4.2.6 C-5 sterol desaturase (ERG3) nadph[c] + epst[c] -> 3 h[c] + nadp[c] + ergod[c] R92.4.2.6 lathosterol oxidase acdbol[c] + nadph[c] -> 7dstrol[c] + nadp[c] + 3 h[c] R93.3..2 7-dehydrocholesterol 7dstrol[c] + nadph[c] + h[c] -> nadp[c] + dmstrol[c] R94... Acylglycerone-phosphate 4 h[c] + nadph[c] + at3p2[c] -> nadp[c] + agl3p[c] R95...2 3-Dehydrosphinganine h[c] + nadph[c] + dhsph[c] -> nadp[c] + sph[c] R96.4.-.- C4-hydroxylase sph[c] + nadph[c] + h[c] + o2[c] -> nadp[c] + psph[c] +

R97.4.-.- C4-hydroxylase o2[c] + h[c] + nadph[c] + dcer2[c] -> + nadp[c] + pcer2[c] R98.3..27 hexadecanal:nadp+ delta2-oxido c6e[c] + nadph[c] + h[c] -> c6a[c] + nadp[c] R99.4.-.- sphingolipid delta-4 desaturase o2[c] + h[c] + nadph[c] + dcer2[c] -> + nadp[c] + pcer2[c] R.4.4. dimethylallyl diphosphate c24(6)[c] + o2 + nadph[c] + 2 h[c] -> 45eet[c] + nadp[c] + R.4.4. Cytochrome P45 c24(6)[c] + o2 + nadph[c] + 2 h[c] -> 2eet[c] + nadp[c] + R2.4.4. Cytochrome P45 c24(6)[c] + o2 + nadph[c] + 2 h[c] -> 89eet[c] + nadp[c] + R3.4.4. Cytochrome P45 c24(6)[c] + o2 + nadph[c] + 2 h[c] -> 56eet[c] + nadp[c] + R4.4.4. Cytochrome P45 c24(6)[c] + o2 + nadph[c] + 2 h[c] -> 6hete[c] + nadp[c] + R5.4.9. delta 9 desaturase c8acp[m] + o2[m] + nadph[m] + 3 h[m] -> c8acp[m] + 2 h2o[m] + nadp[m] R6.6.2.4 NADPH--cytochrome P45 nadph[c] + 2 feri[m] -> h[m] + nadp[c] + 2 fero[m] R7.4.- C4-hydroxylase sph[c] + nadph[c] + h[c] + o2[c] -> nadp[c] + psph[c] + R8.4.9. delta 9 desaturase c6coa[c] + o2[c] + nadph[c] + h[c] -> c6coa[c] + 2 + nadp[c] R9.4.9. delta 9 desaturase c8coa[c] + o2[c] + nadph[c] + h[c] -> c8coa[c] + 2.52 + nadp[c] R.4.9.- delta 2 desaturase c8coa[c] + o2[c] + nadph[c] + h[c] -> c82coa[c] + 2.42 + nadp[c] R.4.9.- delta 5 desaturase c82coa[c] + o2[c] + nadph[c] + h[c] -> c83(3)coa[c] + 2 + nadp[c] R2.4.9.3 delta 6 desaturase c82coa[c] + o2[c] + nadph[c] + h[c] -> c83(6)coa[c] +.39 nadp[c] + 2 R3.4.9.3 delta 6 desaturase c83(3)coa[c] + o2[c] + nadph[c] + h[c] -> c84(3)coa[c] + nadp[c] + 2 R4.4.9. delta 9 desaturase c2coa[c] + o2[c] + nadph[c] + h[c] -> c2coa[c] + 2 + nadp[c] R5...33 very-long-chain 3-oxoacyl-CoA c22ocoa[c] + nadph[c] + h[c] <=> c22hcoa[c] + nadp[c]

R6.3..93 very-long-chain enoyl-coa c22dcoa[c] + nadph[c] + h[c] <=> c22coa[c] + nadp[c] R7...33 very-long-chain 3-oxoacyl-CoA c23(6)ocoa[c] + nadph[c] + h[c] <=> c23(6)hcoa[c] +.35 nadp[c] R8.3..93 very-long-chain enoyl-coa c23(6)dcoa[c] + nadph[c] + h[c] <=> c23(6)coa[c] +.35 nadp[c] R9...33 very-long-chain 3-oxoacyl-CoA c24(3)ocoa[c] + nadph[c] + h[c] <=> c24(3)hcoa[c] + nadp[c] R2.3..93 very-long-chain enoyl-coa c24(3)hcoa[c] <=> c24(3)dcoa[c] + R2.4.9.- delta 5 desaturase c23(6)coa[c] + o2[c] + nadph[c] + h[c] -> c24(6)coa[c] +.35 nadp[c] + 2 R22.4.9.- delta 5 desaturase c24(3)coa[c] + 2 o2[c] + nadph[c] + 3 h[c] -> c25(3)coa[c] + nadp[c] + 4 R23.4.9.- delta 5 desaturase c24(6)coa[c] + o2[c] + nadph[c] + h[c] -> c25(3)coa[c] + 2 + nadp[c] R24...33 very-long-chain 3-oxoacyl-CoA c225(3)ocoa[c] + nadph[c] + h[c] <=> c225(3)hcoa[c] + nadp[c] R25.3..93 very-long-chain enoyl-coa c225(3)hcoa[c] <=> c225(3)dcoa[c] + R26...33 very-long-chain 3-oxoacyl-CoA c245(3)ocoa[c] + nadph[c] + h[c] <=> c245(3)hcoa[c] + nadp[c] R27.3..93 very-long-chain enoyl-coa c245(3)hcoa[c] <=> c245(3)dcoa[c] + R28.4.9.3 delta 6 desaturase c245(3)coa[c] + o2[c] + nadph[c] + h[c] -> c246(3)coa[c] + nadp[c] + 2 R29.2..38 N-Acetyl-gamma-glutamyl-phosphate 2 h[m] + nadph[m] + naglup[m] <=> nadp[m] + naglus[m].552 + pi[m] R3.2.. aspartate-semialdehyde dehydrogenase 2 h[c] + nadph[c] + basp[c] <=> nadp[c] + pi[c] + aspsa[c] R3...3 homoserine dehydrogenase h[m] + nadph[m] + aspsa[m] <=> nadp[m] + hser[m] R32...3 homoserine dehydrogenase h[c] + nadph[c] + aspsa[c] <=> nadp[c] + hser[c] R33.2..8 malonate-semialdehyde dehydrogenase oppa[m] + nadp[m] + coa[m] <=> h[m] + nadph[m] + malcoa[m] R35.5..2 methylenetetrahydrofolate h[c] + nadph[c] + metthf[c] <=> nadp[c] + mthf[c] [NAD(P)H] R36...34 hydroxymethylglutaryl-coa (NADPH) 2 h[c] + 2 nadph[c] + hmgcoa[c] <=> 2 nadp[c] + coa[c] + mvl[c].62