Solve the difference equation

Σχετικά έγγραφα

α β

1. For each of the following power series, find the interval of convergence and the radius of convergence:

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

On Generating Relations of Some Triple. Hypergeometric Functions

EN40: Dynamics and Vibrations

The Heisenberg Uncertainty Principle

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

Presentation of complex number in Cartesian and polar coordinate system

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

DERIVATION OF MILES EQUATION Revision D

Differentiation exercise show differential equation

B.A. (PROGRAMME) 1 YEAR

IIT JEE (2013) (Trigonomtery 1) Solutions

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Homework for 1/27 Due 2/5

B.A. (PROGRAMME) 1 YEAR

Bessel function for complex variable

Differential equations

(6,5 μονάδες) Θέμα 1 ο. Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΟΝΟΜΑΤΕΠΩΝΥΜΟ

Ψηφιακή Επεξεργασία Εικόνας

ΚΑΤΑΝΟΜΕΣ Ι ΙΑΣΤΑΤΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ (Συνέχεια)

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Inertial Navigation Mechanization and Error Equations

Quadratic Expressions

Solutions: Homework 3

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

1. Matrix Algebra and Linear Economic Models

Matrices and Determinants

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Degenerate Perturbation Theory

LAD Estimation for Time Series Models With Finite and Infinite Variance

Digital Signal Processing: A Computer-Based Approach

(6,5 μονάδες) Θέμα 1 ο. Τμήμα Πολιτικών Μηχανικών Σχολή Τεχνολογικών Εφαρμογών Διεθνές Πανεπιστήμιο Ελλάδος ΟΝΟΜΑΤΕΠΩΝΥΜΟ

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Solutions to Exercise Sheet 5

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Homework 8 Model Solution Section

Areas and Lengths in Polar Coordinates

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Areas and Lengths in Polar Coordinates

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Section 8.3 Trigonometric Equations

Inverse trigonometric functions & General Solution of Trigonometric Equations

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case

Διαφορικές εξισώσεις 302.

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

JEE-2015 : Advanced Paper 2 Answers and Explanations

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Example Sheet 3 Solutions

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Math221: HW# 1 solutions

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. Απειροστικός Λογισµός Ι. ιδάσκων : Α. Μουχτάρης. Απειροστικός Λογισµός Ι - 3η Σειρά Ασκήσεων

Commutative Monoids in Intuitionistic Fuzzy Sets

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

Statistical Inference I Locally most powerful tests

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Second Order Partial Differential Equations

Congruence Classes of Invertible Matrices of Order 3 over F 2

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Fourier Series. Fourier Series

Διαφορικές Εξισώσεις.

Section 9.2 Polar Equations and Graphs

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Solution to Review Problems for Midterm III

Solution Series 9. i=1 x i and i=1 x i.

Trigonometry 1.TRIGONOMETRIC RATIOS

The Neutrix Product of the Distributions r. x λ

Answer sheet: Third Midterm for Math 2339

Lifting Entry (continued)

ECE Notes 21 Bessel Function Examples. Fall 2017 David R. Jackson. Notes are from D. R. Wilton, Dept. of ECE

F19MC2 Solutions 9 Complex Analysis

Second Order RLC Filters

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Tired Waiting in Queues? Then get in line now to learn more about Queuing!

HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Reminders: linear functions

Chapter 2 Discrete-Time Signals and Systems

Section 7.6 Double and Half Angle Formulas

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Multi-dimensional Central Limit Theorem

derivation of the Laplacian from rectangular to spherical coordinates

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Divergence for log concave functions

Transcript:

Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y 0 () By liear property Substitutig (3) ad (4) i (), we get To fid poles: The poles are, Z y + 3 3 F 3 y 0 y y (3) Z y + F y 0 (4) 3 F 3 y 0 y y 3 F y 0 + F 0 3 F 4 3 (0) 8 3 F 4 + F 0 3 3 + F 4 3 8 + 0 3 3 + F 4 3 4 F Z{y()} 43 4 3 3 + y() Z 43 4 3 3 + Let F() F 43 4 3 3 + 4 3 4 3 3 + 4 3 3 + 3 3 + 0,, F 4 ( + ) 4 + ( + )

F 4 + ( + ) Residue at the pole of order oe R ( ) F ( ) 4 + ( + ) 4 + ( + ) 4() + ( + ) 8 3 Residue at the pole of order oe R + F + 4 + + 4 + 4( ) + 4( ) 3 Solve the differece equatio Solutio: y Z 43 4 3 3 + y 8 3 + 4( ) 3 Sum of all residues y + + 6y + + 9y give tat y 0 y 0 Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + + 6y + + 9y () Z y + + 6y + + 9y Z Z y + + 6Z y + + 9Z y () By liear property

Substitutig (3) ad (4) i (), we get Z y + F y 0 y (3) Z y + F y 0 (4) F y 0 y + 6 F y 0 + 9F() F + 6 F + 9F() + 6 + 9 F F Z{y()} y() Z Let F() + 6 + 9 + 3 + 3 F + 3 + 3 To fid poles: + 3 0 3, 3, The poles are 3, Residue at the pole 3 of order two R d 3 d + 3 F d 3 d + 3 d 3 d + 3 3 3 3 3 3

Residue at the pole of order oe R 5 3 3 5 3 + 3 5 5 F + 3 Fid Z Solutio: + )( + + 3 y Z 43 4 3 3 + + 3 5 y 5 3 + 3 5 Sum of all residues + 5 Let F() + )( + F + )( + + )( + To fid poles: + )( + 0, The poles are, Residue at the pole of order oe R + F + + )( + ( + ) + Residue at the pole of order oe R

+ F + + )( + ( + ) + Z + )( + Sum of all residues Z + )( + Fid Z 0 3 + Solutio: F Let F() 0 3 + 0 3 + 0 )( To fid poles: )( 0, The poles are, Residue at the pole of order oe R F 0 0 )( 0 0 Residue at the pole of order oe R F 0 )(

0 0 0 Z 0 3 + Z 0 + 0 0 3 + Sum of all residues Fid Z a)( b Solutio: Let F() a)( b F a)( b + a)( b To fid poles: a)( b 0 a, b The poles are a, b Residue at the pole a of order oe R a a F a a + a)( b + a b a+ a b Residue at the pole of order oe R b a F b b + a)( b b + a b+ b a

Z a)( b Sum of all residues Z a)( b a+ a b + b+ b a Fid Z 8 )(4 + usig covolutio teorem. Solutio: Z 8 )(4 + Z 8 4 + 4 Z + 4 Let F ad G + 4 f Z F Z g Z G Z 4 + 4 Z 8 )(4 + Z F G f g f g( ) 0 0 4 0 4 4 4 0 4 4 0 4 4 0 Z 8 )(4 + 4 + + + 3 + + + 4

+ 4 3 3 4 3 4 3 4 + 3 Fid Z 6 )(3 + usig covolutio teorem. Solutio: Z 6 )(3 + Z 6 3 + 3 Z + 3 Let F ad G + 3 f Z F Z g Z G Z 3 + 3 Z 6 )(3 + Z F G f g f g( ) 0 0 3 0 3 3 3 0 3 3 0 3 4 0 3 Z 6 )(3 + 3 + 3 + 3 + 3 3 + + 3 3 + 3 3

3 + 3 5 3 5 3 3 3 5 5 3 + 3 5 State ad prove secod shiftig theorem i Z-trasform: Statemet: Let F Z f() the Z f( + ) F f 0 f f f Proof: Z f( + ) 0 f( + )...() Multiplyig ad dividig by i R.H.S of (), we get f( + ) 0 ( +) f + f + + + f + + + f() f 0 f f f 0 Sice 0 f() f 0 + f + f + f + Z f( + ) F f 0 f f f Solve x ( y ) p + y ( x )q (x y ). Solutio: x ( y ) p + y (x )q (y x ). The equatio is of the form Pp + Qq R Here P x ( y ), Q y (x ), R (y x )

Itegratig o both sides, we get dx x ( y ) dy y (x ) d (y x ) x dx + y dy y + x d (y x ) x dx + y dy (y x ) d (y x ) x dx + d dy y log x + log y log + log c Itegratig o both sides, we get x + y + c c 3 x +y + The geeral solutio is log x + log y + log log c log xy log c c xy xdx + ydy x x y + x y y d (y x ) xdx + ydy x y d (y x ) xdx + ydy (y x ) d (y x ) xdx + ydy d Φ c, c 3 0 Φ xy, x +y + 0 Solve m y p + (x l)q (ly mx). Solutio:

The equatio is of the form Pp + Qq R Here P m y, Q x l, R ly mx dx m y dy x l d ly mx ldx + mdy + d lm ly + mx lm + ly mx ldx + mdy + d 0 ldx + mdy + d 0 Itegratig o both sides, we get lx + my + c xdx + ydy + d mx xy + yx ly + ly mx xdx + ydy + d 0 xdx + ydy + d 0 Itegratig o both sides, we get x + y + c c 3 x +y + The geeral solutio is Φ c, c 3 0 Φ lx + my +, x +y + 0 Solve D 3 7DD 6D 3 si x + y Solutio: To fid complemetary fuctio: Put D m ad D, m 3 7m 6 0 m 3 m 6m 6 0 m m 6 m + 0 m m + m 6 m + 0 m + m m 6 0

m,,3 f y x + f y x + f 3 y + 3x To fid Particular Itegral: P. I si x + y D 3 7DD 6D 3 si x + y 4D 7D( ) 6 D si x + y 4D + 7D + 6D si x + y 3D + 6D 3D 6D si x + y (3D + 6D ) 3D 6D 3D si x + y 6D si x + y 9 36D 6 cos x + y 6 si x + y 9( 4) 36( ) 6 cos x + y 6 si x + y x 8D x 8 (6 cos x + y 6 si x + y )dx 6x 8 si x + y + cos x + y P. I x 6 si x + y + cos x + y The geeral solutio is f y x + f y x + f 3 y + 3x + x 6 si x + y + cos x + y Solve D 3 D e x + 3x y Solutio: To fid complemetary fuctio: Put D m ad D, m 3 m 0 m m 0 m 0,0, f y + xf y + f 3 y + x

To fid Particular Itegral: The geeral solutio is P. I e x e x D 3 D 3 () (0) ex 3 ex 8 P. I Solve D 3 7DD 6D 3 x y + e x+y Solutio: To fid complemetary fuctio: Put D m ad D, To fid Particular Itegral: P. I 3x y D 3 D 3x y D 3 D D 3 D x D y 3 + D D x y 6 D 3 D 3 3x y + D 3 3 D 3 x y + 6 D 4 x yx5 0 + x6 60 D x f y + xf y + f 3 y + x + ex 8 + yx5 0 + x6 60 m 3 7m 6 0 m 3 m 6m 6 0 m m 6 m + 0 m m + m 6 m + 0 x y D 3 7DD 6D 3 m + m m 6 0 m,,3 f y x + f y x + f 3 y + 3x x y D 3 7D 6D 3 D 3 x y D 3 7D + 6D 3 D 3 7D + 6D 3 D 3 x y D 3 + 7D + 6D 3 D 3 x y D 3 D 3 x y x5 y 60

e x+y P. I D 3 7DD 6D 3 e x+y 3 7 6 3 ex+y 8 4 6 ex+y The geeral solutio is f y x + f y x + f 3 y + 3x + x5 y 60 ex+y Solve 6DD + 5D xy + e x si y Solutio: The auxiliary equatio is m 6m + 5 0 m,5 The complemetary fuctio CF is φ y + x + φ y + 5x To fid particular itegral: xy P. I 6DD + 5D xy 6 D D + 5 D xy 6 D D 5 D 6 D D 5 D xy + 6 D D 5 D xy x + x + x + xy + 6 D D xy 5 D xy

xy + 6 x D xy + 6 D 3 x P. I x3 y 6 + 6x4 4 x3 y 6 + x4 4 D xm m! xm + m +! P. I e x si y 6DD + 5D e y e y ex 6DD + 5D e x+y 6DD + 5D e x y 6DD + 5D e x+y 6 () + 5() e x y 6 ( ) + 5 xe x+y D 6D ex y if deomiator becomes ero te muliply umerator by x ad differetiatig deomiator partially wit respect to D P. I The geeral solutio is Two mars: xe x+y () 6() ex y xex +y 8 ex y CF + P. I + P. I f y + x + f y + 5x + x3 y 6 + x4 4 xex+y 8 Defie uit impulse step fuctio ad its Z trasform. Defie covolutio of two sequeces. ex y If F 5 3 fid f 0 ad lim t f(t) Form a differece equatio by elimiatig the arbitrary costats A from y A 3

Defie uit step fuctio ad its Z trasform. State Fial value theorem for Z trasforms. If F 4 3 4 fid f 0. Fid P.I of + 4DD e x. Solve 4DD 4D 0. Solve D 3 + D 4DD 4D 3 0