A Vocabulary-Free Infinity-Gram Model for Chord Progression Analysis

Σχετικά έγγραφα
The Algorithm to Extract Characteristic Chord Progression Extended the Sequential Pattern Mining

Bayesian Variable Order n-gram Language Model based on Hierarchical Pitman-Yor Processes

Buried Markov Model Pairwise

Query by Phrase (QBP) (Music Information Retrieval, MIR) QBH QBP / [1, 2] [3, 4] Query-by-Humming (QBH) QBP MIDI [5, 6] [8 10] [7]

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

1 n-gram n-gram n-gram [11], [15] n-best [16] n-gram. n-gram. 1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e)

Applying Markov Decision Processes to Role-playing Game

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Διπλωματική Εργασία. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

Bayesian modeling of inseparable space-time variation in disease risk

Elements of Information Theory

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

SocialDict. A reading support tool with prediction capability and its extension to readability measurement

{takasu, Conditional Random Field

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

( ) (Harmonic-Temporal Clustering; HTC) [1], [2] ( ) ( ) [4] HTC. (Non-negative Matrix Factorization; NMF) [3] [5], [6] [7], [8]

The Simply Typed Lambda Calculus

Automatic extraction of bibliography with machine learning

CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

Homomorphism in Intuitionistic Fuzzy Automata

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Statistical Inference I Locally most powerful tests

Ψηφιακή Επεξεργασία Φωνής

Vol.4-DCC-8 No.8 Vol.4-MUS-5 No.8 4// 3 3 Hanning (T ) 3 Hanning 3T (y(t)w(t)) dt =.5 T y (t)dt. () STRAIGHT F 3 TANDEM-STRAIGHT[] 3 F F 3 [] F []. :

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author.

2 Composition. Invertible Mappings

Second Order RLC Filters

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

Approximation of distance between locations on earth given by latitude and longitude

Finite Field Problems: Solutions

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

Section 8.3 Trigonometric Equations

Solution Series 9. i=1 x i and i=1 x i.

Second Order Partial Differential Equations

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

C.S. 430 Assignment 6, Sample Solutions

172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

ST5224: Advanced Statistical Theory II

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

Simplex Crossover for Real-coded Genetic Algolithms

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

CRASH COURSE IN PRECALCULUS

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Homework 3 Solutions

Η Διδακτική Ενότητα «Γνωρίζω τον Υπολογιστή», στα πλαίσια των Προγραμμάτων Σπουδών της Πληροφορικής: μια Μελέτη Περίπτωσης.

4.6 Autoregressive Moving Average Model ARMA(1,1)

ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

derivation of the Laplacian from rectangular to spherical coordinates

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)


GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

1530 ( ) 2014,54(12),, E (, 1, X ) [4],,, α, T α, β,, T β, c, P(T β 1 T α,α, β,c) 1 1,,X X F, X E F X E X F X F E X E 1 [1-2] , 2 : X X 1 X 2 ;

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Identifying Scenes with the Same Person in Video Content on the Basis of Scene Continuity and Face Similarity Measurement

Matrices and Determinants

Detection and Recognition of Traffic Signal Using Machine Learning

Αλγοριθµική και νοηµατική µάθηση της χηµείας: η περίπτωση των πανελλαδικών εξετάσεων γενικής παιδείας 1999

Congruence Classes of Invertible Matrices of Order 3 over F 2

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

[1] P Q. Fig. 3.1

Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS

Math 6 SL Probability Distributions Practice Test Mark Scheme

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Μέθοδοι γείωσης και αντικεραυνικής προστασίας σε πλοία ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ιωάννης Κ. Κριμιτζάς

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

EE512: Error Control Coding

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

ΔΘΝΙΚΗ ΥΟΛΗ ΓΗΜΟΙΑ ΓΙΟΙΚΗΗ ΙΗ ΔΚΠΑΙΓΔΤΣΙΚΗ ΔΙΡΑ

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

5. Choice under Uncertainty

ΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35

[15], [16], [17] [6] [2] [5] Jiang [6] 2.1 [6], [10] Score(x, y) y ( 1) ( 1 ) b e ( 1 ) b e. O(n 2 ) Jiang [6] (word lattice reranking)

Η ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΟΡΦΟΛΟΓΙΚΩΝ ΔΙΑΔΙΚΑΣΙΩΝ ΤΗΣ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΤΗΣ ΣΥΝΘΕΣΗΣ ΥΠΟ ΤΟ ΠΡΙΣΜΑ ΤΩΝ ΑΠΣ: ΜΙΑ ΚΡΙΤΙΚΗ ΘΕΩΡΗΣΗ

Παλεπηζηήκην Πεηξαηώο Τκήκα Πιεξνθνξηθήο Πξόγξακκα Μεηαπηπρηαθώλ Σπνπδώλ «Πξνεγκέλα Σπζηήκαηα Πιεξνθνξηθήο»

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

Abstract Storage Devices

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής

(1) A lecturer at the University College of Applied Sciences in Gaza. Gaza, Palestine, P.O. Box (1514).

Transcript:

1 1 n n n n n n A Vocabulary-Free Infinity-Gram Model for Chord Progression Analysis Kazuyoshi Yoshii 1 and Masataka Goto 1 This paper presents a novel nonparametric Bayesian n-gram model as a statistical language model for symbolic chord sequences. Standard n-gram models based on heuristic smoothing have three fundamental problems that they have no theoretical foundation, that the value of n is fixed uniquely, and that a vocabulary of chord types is defined in an arbitrary way. To solve these problems, we propose a vocabulary-free infinity-gram model. It accepts any combinations of notes as chord types and allows each chord appearing in a sequence to have an unbounded and variable-length context. Our experiments showed that the perplexity obtained by the proposed model is significantly lower than that obtained by the state-of-the-art models. 1 (AIST) 1. 1) 2) 3) 6) 5),6) 7) 9) n 1),2),4),6) 9) n n n n 1 n 1 n 1 n n n 0 n 10) n 1) n 2) n 3) ( major, minor, augmented, diminished, seventh, ninth,, ) 3) 1 c 2011 Information Processing Society of Japan

1 G:7 G:7 P() P( φ) P( G:7) P( G:7) n n n n n 11) 14) 1 n 1) 2) 3) 2 3 n 4 5 6 1 Major maj 100010010000 Minor min 100100010000 Diminished dim 100100100000 Augmented aug 100010001000 Major Seventh maj7 100010010001 Minor Seventh min7 100100010010 Seventh 7 100010010010 Dim. Seventh dim7 100100100100 Half Dim. Seventh hdim7 100100100010 Min. (Maj. Seventh) minmaj7 100100010001 Major Sixth maj6 100010010100 Minor Sixth min6 100100010100 Ninth 9 101010010010 Major Ninth maj9 101010010001 Minor Ninth min9 101100010010 Suspended Second sus2 101000010000 Suspended Fourth sus4 100001010000 2. 1 2 2.1 Harte 5) 17 12 1),4) C# Db 1 C major Gb diminished seventh F#:dim7 N 205 (17 12 + 1) 1 12 {C,C#,D,D#,E,F,F#,G,G#,A,A#,B} 2 c 2011 Information Processing Society of Japan

2 2.2 n 12 C major C,E,G C:100010010000 D major D:001000100100 D:100010010000 1 C major F C:100011010000 N 49153 2 12 12 + 1 4.1 3. n 2 n 3 n 3.1 W V 205 49153 w W n 1 u W n 1 X M x 1 x M x m W (1 m M) 1 n n x m n 1 P (x m x 1 x m 1 )=P (x m x m (n 1) x m 1 ) (1) X u w P u (w X) X u w c uw P u (w X) Pu ML (w X) = c uw (2) c u ( ) c u = w c uw n uw X c uw =0 0 3.2 Kneser-Ney n Kneser-Ney (KN) 15) n 10) c uw 1 d u P u (w X) d u u Interpolated KN (I-KN) w n n 1 P IKN u (w X) = max(c uw d u, 0) c u + d u t u c u P IKN π(u)(w X) (3) t u X u W π(u) u. P IKN π(u) (w) w n 1 (3) π(u) u n w 1/V d 0,,d n 1 15) 3.3 Pitman-Yor Teh 11) Pitman-Yor (Hierarchical Pitman-Yor Language Model: HPYLM) n 3 c 2011 Information Processing Society of Japan

I-KN HPYLM HPYLM I-KN 2 3.3.1 Pitman-Yor Pitman-Yor (PY) 16) PY (DP) DP W PY W n d θ G 0 PY G PY(d, θ, G 0 ) (4) d θ G 0 PY G θ G 0 G HPYLM PY W G φ φ 0 G φ (w) w 1 u G u G φ G φ G u G φ PY G u PY(d 1,θ 1,G φ ) d 1 θ 1 1 n 1 n G u G π(u) PY G u PY(d u,θ u,g π(u) ) (5) d u θ u u n 1 G π(u) n 1 G π(u) d π(u) θ π(u) n 2 G π(π(u)) PY G φ G φ PY(d 0,θ 0,G 0 ) (6) G 0, 3 φ D:min D:min G:7 Pitman-Yor CRF: G 0 (w) =1/V. G 0 n HPYLM n 1 3 n =3 3.3.2 HPYLM X X x m (Chinese Restaurant Franchise: CRF) 11) CRF X M W V 4 c 2011 Information Processing Society of Japan

x 1 x M m 1 x 1 x m 1 m x m x m n 1 u = x m (n 1) x m 1 3 u w t uw t u w k (1 k t u ) c uwk k w c uwk =0 u x m (i) c uwk d u k (1 k t u ) (ii) d u t u + θ u k = t u +1(i) x m k w x m m w c uwk (ii) k w π(u) π(u) x m w u k w x m w x m m w t uw c uw k π(u) π(π(u)) φ φ G 0 S u w Pu HPY (w S) = c uw d u t uw c u + θ u + d u t u + θ u P c u + θ π(u)(w S) HPY (7) u (7) P HPY π(u) (w S) (7) u π(u) c uwk =0 t uw =0 M X (7) (3) θ u =0 t uw =1 HPYLM I-KN m =1: M xm n 1 4 i = 1: m =1: M xm xm n 1 Pitman-Yor 3.3.3 u w P u (w X) X S (7) P (S X) Pu HPY (w S) Pu HPY (w X) = Pu HPY (w S)P (S X) (8) S (MCMC) Pu HPY (w X) 1 L Pu HPY (w S l ) (9) L i=l L p(s X) l 4 CRF (Exchangeability) S p(s X) CRF x m = w x m w w (7) 5 c 2011 Information Processing Society of Japan

(MCMC) L d 0,,d n 1 θ 0,,θ n 1 0 <d u < 1 0 <θ u 11) 3.4 Pitman-Yor HPYLM n 1 n 1 12) Pitman-Yor (Variable-order Pitman-Yor Language Model: VPYLM) VPYLM x m n z m z m z m n n 2 3.4.1 VPYLM x m n z m n (Stick-Breaking Process: SBP) 17) z m SBP x m φ x m 1 x m 2 i 1(1 i ) u i 1 η ui 1 1 η ui 1 n 1 z m = n n 1 P u (n η) =η un 1 (1 η ui 1 ) (10) i=1 n u η u 0 <η u < 1 α β p(η) = Beta(η u α, β) (11) u tree 3.4.2 VPYLM HPYLM X m x m z m (10) z m x m x m 3.3.2 CRF HPYLM n 1 VPYLM c uwk S η u n 1 w Pu VPY (w, n S, η) =Pu VPY (w n, S)P u (n η) (12) Pu VPY (w n, S) HPYLM (7) P u (n η) (10) (12) n η Pu VPY (w S) = Pu VPY (w n, S)P u (n S) (13) n n P u (n S)= Pu (n η)p(η S)dη (10) (11) n 1 a un 1 + α b ui 1 + β P u (n S) = (14) a un 1 + b un 1 + α + β a i=1 ui 1 + b ui 1 + α + β a ui 1 b ui 1 S u i 1 6 c 2011 Information Processing Society of Japan

3.4.3 u w 4 HPYLM 3.3.3 4 x m z m x m x m = w z m = n P u (n S,w) P u (w, n S) =P VPY u (w n, S)P u (n S) (15) 3.5 Pitman-Yor n 13),14) G 0 Pitman-Yor (Nested Pitman-Yor Language Model: NPYLM) G 0 (w) =1/V V G 0 (w) 0 VPYLM VPYLM CRF w G 0 (w) 2 4. NPYLM 14) 4.1 n NPYLM NPYLM G 0 VPYLM G 0 2.2 12 V = 49153 n G 0 2.2 w w 0 :w 1 w 12 w 0 w =N w 0 =N w 0 13 G 0 (w) =p(w π, τ )=π w0 12 i=1 τ w i i (1 τ i ) 1 w i (16) π = {π C,π C#,,π B,π N } 13 12 N τ = {τ 1,,τ 12 } w =N G 0 (w)=π N π τ p(π, τ )=Dir(π a 0 ) 12 i=1 Beta(τ i b 0,c 0 ) (17) 13 a 0, b 0 c 0. 4.2 VPYLM u w 3.4.3 G 0 (w) (16) π τ S π τ (16) (17) 7 c 2011 Information Processing Society of Japan

p(π, τ S) =Dir(π a 0 + n) 12 i=1 Beta(τ i b 0 + n i,c 0 + n i ) (18) 13 n n v (v {C, C#,, B, N}) n v φ v w (w 0 = v) n i i w (w i =1) n i i w (w i =0) VPYLM φ n v n i n i n v n i n i π τ (18) 5. n 2 5.1 Harte 5) 180 137 10,761 VPYLM 2.1 9 n Good-Turing (GT) Witten-Bell (WB) I-WB KN I-KN Modified KN (MKN) I-MKN HPYLM VPYLM GT WB 10) MKN KN (3) d u c uw 10) I- n 7 The SRI Language Modeling Toolkit (SRILM) 18) 2 205 n GT WB I-WB KN I-KN MKN I-MKN HPYLM VPYLM 1 16.8 15.6 15.7 15.8 16.0 15.6 15.7 15.8 (±0.03) 2 20.3 14.2 15.5 14.5 15.2 14.5 15.8 14.5 (±0.10) n: 3 23.5 15.4 18.5 16.1 16.0 16.1 16.3 16.0 (±0.18) 13.4 (±0.33) 4 25.5 16.8 22.5 16.8 17.7 16.5 15.5 13.9 (±0.25) 5 26.3 17.5 25.4 15.5 16.2 16.0 14.1 13.7 (±0.23) n: MAP 6 27.0 17.8 27.2 14.6 15.1 16.2 13.5 13.6 (±0.23) 12.9 (±0.35) 7 27.3 18.0 28.3 14.3 14.5 16.4 13.3 13.6 (±0.23) 8 27.3 18.0 28.8 14.1 14.2 16.6 13.2 13.6 (±0.22) n: ( ) 9 27.3 18.0 29.0 14.0 14.1 16.8 13.1 13.5 (±0.23) 11.9 (±0.22) 10 27.3 18.0 29.2 14.0 14.0 16.7 13.1 13.5 (±0.23) 2.2 9 HPYLM VPYLM 4 VF- VF-VPYLM VF-HPYLM n 10 5.2 2 VPYLM n n n HPYLM VPYLM VPYLM HPYLM 2 5 1 VPYLM I-KN HPYLM HPYLM I-KN I-MKN HPYLM HPYLM 11) 8 c 2011 Information Processing Society of Japan

Intro Verse A 5 n = 1 2 3 4 5 6 7 8 9 10 n = 1 2 3 4 5 6 7 8 9 10 7 6 Verse B 7 6 7 6 Chorus E:min LetItBe n Let It Be VPYLM n 5 VF-VPYLM n n 1 u w P u (w, n X)= P S u(w, n S)P (S X) 3 137 C:7 F:7 C:7 seventh 4 VF-VPYLM HPYLM VPYLM 4 3 (n 3 ) 0.701 C:7 F:7 C:7 0.682 B:maj 0.656 C:7 0.647 F:min 0.645 0.632 E:min C:7 0.623 7 D:min7 E:min7 0.627 B:maj 0.622 D:min7 G:sus4 0.620 D:min 49153 n GT WB I-WB KN I-KN MKN I-MKN 10 38.3 24.4 39.1 18.4 18.5 21.7 17.5 n HPYLM VF-HPYLM 10 18.0 (±0.29) 16.5 (±0.60) 6. n VPYLM VF-VPYLM 15.8 (±0.29) 14.6 (±0.55) n n n major minor (1967 ) 1989 9 c 2011 Information Processing Society of Japan

NPYLM (B) 23700184 1) Ogihara,M. and Li,T.: N-gram Chord Profiles For Composer Style Representation, in 9th International Conference of Music Information Retrieval (ISMIR), pp. 671 676 (2008). 2) Pérez-Sancho, C., Rizo, D. and nesta, J. M. I.: Genre Classification Using Chords and Stochastic Language Models, Connection Science, Vol.21, No. 2-3, pp. 145 159 (2009). 3) Paiement,J.-F., Eck,D. and Bengio,S.: A Probabilistic Model for Chord Progressions, in 6th International Conference of Music Information Retrieval (ISMIR), pp. 312 319 (2005). 4) Scholz, R., Vincent, E. and Bimbot, F.: Robust Modeling of Musical Chord Sequences Using Probabilistic N-grams, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 53 56 (2009). 5) Harte, C., Sandler, M., Abdallah, S. and Gómez,E.: Symbolic Representation of Musical Chords: A Proposed Syntax for Text Annotations, in 6th International Conference of Music Information Retrieval (ISMIR), pp. 66 71 (2005). 6),,,, No. 2010-MUS-85, pp. 1 8, (2010). 7) Cheng,H.-T., Yang,Y.-H., Lin,Y.-C., Liao,I.-B. and Chen,H.H.: Automatic Chord Recognition for Music Classification and Retrieval, in IEEE International Conference on Multimedia & Expo (ICME), pp. 1505 1508 (2008). 8),,,,,,, Vol.52, No.4, pp. 1803 1812 (2011). 9) Khadkevich, M. and Omologo, M.: Use of Hidden Markov Models and Factored Language Models for Automatic Chord Recognition, in 10th International Conference of Music Information Retrieval (ISMIR), pp. 561 566 (2009). 10) Chen,S. and Goodman,J.: An Empirical Study of Smoothing Techniques for Language Modeling, Technical Report TR-10-98, Computer Science Group, Harvard University (1998). 11) Teh,Y.W.: A Bayesian Interpretation of Interpolated Kneser-Ney, Technical Report TRA2/06, NUS School of Computing (2006). 12), Pitman-Yor n-gram,, Vol.48, No.12, pp. 4023 4032 (2007). 13),,,, No. 2009-NL-190, p. 49, (2009), http://chasen.org/daiti-m/paper/nl190segment.pdf. 14) Mochihashi,D., Yamada,T. and Ueda,N.: Bayesian Unsupervised Word Segmentation with Nested Pitman-Yor Language Modeling, in ACL-IJCNLP, pp. 1000 1008 (2009). 15) Kneser, R. and Ney, H.: Improved Backing-Off for M-gram Language Modeling, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vol.1, pp. 181 184 (1995). 16) Pitman, J. and Yor, M.: The Two-Parameter Poisson-Dirichlet Distribution Derived from a Stable Subordinator, Annals of Probability, Vol.25, No.2, pp. 855 900 (1997). 17) Sethuraman, J.: A Constructive Definition of Dirichlet Priors, Statistica Sinica, Vol.4, pp. 639 650 (1994). 18) Stolcke,A.: SRILM An Extensible Language Modeling Toolkit, in International Conference on Spoken Language Processing (ICSLP), pp. 901 904 (2002). 10 c 2011 Information Processing Society of Japan