!"#$%#&'()$*+$&#'',#-*./&*.&$0-1./& 1'2+#"&3,"4$&(*/(,-&0(#.&56 78 &9:+% 7

Σχετικά έγγραφα
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry

P = E /c. p γ = E /c. (p) 2 = (p γ ) 2 + (p ) 2-2 p γ p cosθ E γ. (pc) (E γ ) (E ) 2E γ E cosθ E m c Eγ

1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

Questions on Particle Physics

Ó³ Ÿ , º 4Ä5(174Ä175).. 629Ä634 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ,.. μ, Š.. ±μ. Î ± É ÉÊÉ ³..., Œμ ±

Wolfgang Sandner Director General and CEO ELI Delivery Consortium International Association (AISBL)

Σύντομο Βιογραφικό Σημείωμα

April MD simulation of interaction between radiation damages and microstructure: voids, helium bubbles and grain boundaries

Derivation of Optical-Bloch Equations

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

Ó³ Ÿ , º 6(190) Ä1142. DESY, ƒ ³ Ê, ƒ ³ Ö European XFEL, GmbH, ƒ ³ Ê, ƒ ³ Ö ±Êʳ-,

CERN-ACC-SLIDES

Hours Monday Tuesday Wednesday Thursday Friday. Physics of Diagnostic Radiology. Physics of Diagnostic Radiology. Physics of Diagnostic Radiology

Research on mode-locked optical fiber laser

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

LIGHT UNFLAVORED MESONS (S = C = B = 0)

1 Decay Scheme. 2 Nuclear Data. 2.1 β Transitions

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

Three coupled amplitudes for the πη, K K and πη channels without data

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Lecture 21: Scattering and FGR

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Œ ƒ Š ƒ. .. μéò² ÍÒ 1,2,,.Œ.Šμ²ÓÎÊ ± 3. ƒ Š Œ Š ƒ Ÿ ˆŸ Œ -Š 1813 œ Œ ˆ ˆŸ 1814 ˆ Š ˆ ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä6.

Œ ˆ ˆŸ ˆ Š ˆ ƒ Š Œ Š Š

Ó³ Ÿ , º 7(205) Ä1268 ˆ ˆŠ ˆ ˆŠ Š ˆ. ƒ ˆˆ μì Ê ³... Ê ±μ, Œμ ± Í μ ²Ó Ò ² μ É ²Ó ± Ö Ò Ê É É Œˆ ˆ, Œμ ± É ƒ ³³ - μ ª Œμ ±, Œμ ±

Ιατρική Φυσική. Π. Παπαγιάννης Επίκ. Καθηγητής, Εργαστήριο Ιατρικής Φυσικής, Ιατρική Σχολή Αθηνών Γραφείο

Advanced operation schemes: two-color, split & delay

P = E /c. p γ = E /c. (p) 2 = (p γ ) 2 + (p ) 2-2 p γ p cosθ E γ. (pc) (E γ ) (E ) 2E γ E cosθ E m c Eγ

PHASE TRANSITIONS IN QED THROUGH THE SCHWINGER DYSON FORMALISM

Ó³ Ÿ , º 7(205) Ä1486 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ³ μ 1, ƒ. μ μë,. μ,. ŠÊ² ±μ,. Œ ² μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Lukasz STAWARZ. on Behalf of the Fermi LAT Collaboration.

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±

Ó³ Ÿ , º 7(205) Ä1403 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ É ÉÊÉ ±² μ Ë ±, μ μ μ, μ Ö ² ±É μé Ì Î ± É ÉÊÉ, É ²

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.

ΗΛΕΚΤΡΟ-ΟΠΤΙΚΗ & ΕΦΑΡΜΟΓΕΣ

ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

P ˆ.. ƒê ²μ 1,.. Œ ² ±μ 1,..Šμ Í,.. ʳ,.. μ μ 2. ˆ ˆŸ Š Š ˆ ƒ ˆŒ œ ƒ Œ ƒ ƒ Š-Š ˆ 10- Œ ˆ. ( ), Œμ ± Œμ ± 1 μ Ò É Ì μ²μ ±μ³ μ ÉÒ ±Êʳ ÒÌ μ μ

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

EPS-HEP 2015 DOUBLE-SCATTERING MECHANISM. Antoni Szczurek 1,2 Mariola Kłusek-Gawenda 1

Non-Gaussianity from Lifshitz Scalar

[1] P Q. Fig. 3.1

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

2.1

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου, Κ. Κορδάς. Μάθημα 2β: Πειράματα-Ανιχνευτές

2. Laser Specifications 2 1 Specifications IK4301R D IK4401R D IK4601R E IK4101R F. Linear Linear Linear Linear

γ c = rl = lt R ~ e (g l)t/t R Intensität 0 e γ c t Zeit, ns

100102; 2. Fe Cu Hg. Rapid multi-elemental analysis on four precious Tibetan medicines based on LIBS technique

Aτοµική Δοµή LASER. Τροχιές ηλεκτρονίων Ατοµικά Φάσµατα Άτοµο Bohr

Fused Bis-Benzothiadiazoles as Electron Acceptors

Quantum shot noise: From Schottky to Bell

CONSULTING Engineering Calculation Sheet

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

1 Decay Scheme. 2 Nuclear Data. 2.1 Electron Capture Transitions. 2.2 β Transitions

Answers to practice exercises

Tunable Diode Lasers. Turning Laser Diodes into Diode Lasers. Mode selection. Laser diodes

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Fundamental Physical Constants Complete Listing Relative std. Quantity Symbol Value Unit uncert. u r

1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

Supporting Information

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

MATSEC Intermediate Past Papers Index L. Bonello, A. Vella

Δ. Σαμψωνίδης & Κ.Κορδάς. Ανιχνευτές : Μάθημα 1β Αλληλεπίδραση ακτινοβολίας με την ύλη.

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

Αναζητώντας παράξενα σωµατίδια στο ALICE

Επιταχυντές Χαμηλών Ενεργειών

Constitutive Relations in Chiral Media

1 Decay Scheme. 2 Nuclear Data. 2.1 Electron Capture Transitions

Τοίχοι Ωπλισμένης Γής: υναμική Ανάλυση Πειράματος Φυγοκεντριστή. Reinforced Soil Retaining Walls: Numerical Analysis of a Centrifuge Test

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

Properties of a Some (Ag-Cu-Sn) Alloys for Shielding Against Gamma Rays

Th, Ra, Rn, Po, Pb, Bi, & Tl K x-rays. Rn Kα1. Rn Kα2. 93( 227 Th)/Rn Kβ3. Ra Kα2. Po Kα2 /Bi K α1 79( 227 Th)/Po Kα1. Ra Kα1 /Bi K β1.


Contents X-ray Fluorescence (XRF) and Particle-Induced X-ray Emission (PIXE)

difluoroboranyls derived from amides carrying donor group Supporting Information

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Dirac Trace Techniques

Metal Oxide Varistors (MOV) Data Sheet

1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

What happens when two or more waves overlap in a certain region of space at the same time?

Ó³ Ÿ , º 3(201).. 461Ä ƒ. ÒÏ ±,.. μ 1. ˆ É ÉÊÉ Ö ÒÌ μ ² ³ ²μ Ê ±μ μ μ Ê É μ μ Ê É É, Œ ±

Š ƒ ˆŠ œ ˆ ˆ ˆ Œ ƒ ˆ Š ˆˆ Š

ΑΡΧΕΣ ΤΗΛΕΠΙΣΚΟΠΗΣΗΣ (Y2204) Βασιλάκης Εµµανουήλ Λέκτορας Τηλεανίχνευσης

First Sensor Quad APD Data Sheet Part Description QA TO Order #

Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides

Φυσική Στοιχειωδών Σωµατιδίων ΙΙ. Μάθηµα 1ο 15/2/2011

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

Transcript:

!"#$%#&'()$*+$&#'',#-*./&*.&$0-1./& 1'2+#"&3,"4$&(*/(,-&0(#.&56 78 &9:+% 7 ;#%,$&<1/#& =#$,-&>++,",-#01-&?-1@'A&B@#.0@%&C,#%&D+*,.+,&E*-,+01-#0,A&;>F>A&<*G@/#H#A& <)101&I5JK675LA&;#'#.&!"##$%"&$'"&(M&DN&ON&C@"#.1PA&QN&R(N&F$*-S,'1PA&&>N&DN&!*-1G(S1PA&TN&<#.41A& & UN&UN&V1$#.1PA&QN&U#S#%@-#A&DN&DN&C@"#.1PA&<N&<1.41& March 1, 2013, Institute for Laser Engineering, Osaka University

=#$,-&W--#4*#.+,& )*$&+,-'-&*++.+/0 12 +3456 1+ 7&$6$85+9:5&*$(*+ +(9:5*+/;<=+ X,#- G.A.Mourou, et. al, arxiv:1108.2116v1 [physics.optics] (2011) 2

!(,.1%,.#&Y1-&W&Z&56 78 &9:+% 7 5N! V#4*#21.&V,#+21.&! [*/(&!1H,-&?#%%#K\#$(& 7N! B@#.0@%&,",+0-14).#%*+$& ]BFE^&!!(101.K'(101.&$+#_,-*./&! `-,#21.&1Y&! "! #!&!"#$%#

Radiation Reaction Damping force Electron Radiation Electron Trajectory without radiation reaction Electromagnetic force Trajectory with radiation reaction Under Most Conditions very small correction W.&a"0-#K(*/(&*.0,.$*0)&"#$,-K'"#$%#&*.0,-#+21.&+#.&b,&>*&?+#$&@*+ >N&R(*4S1PA&,0N&#"N&&!V=&<<&]7667^&5cL667& DN&ON&C@"#.1PA&,0&#"NA&!"#$%#&!()$N&V,'N&20&]766d^&5JI&& ;N&<N&<1/#A&,0&#"NA&!1!&/1&]766L^&6J856I& 4

!#-#%,0,-$&Y1-&4#%'*./& a 0 > # rad -1/3 a 0 =e[(a µ ) 2 ] 1/2 /m e c%& =ee/m e c%! # rad =4$r e /3" 0 S. V. Bulanov, et. al. Plasma Phys. Rep. 30, 196 (2004)! e "1 recoil from photon emission! e =[(F µ' u µ ) 2 ] 1/2 /E s # 2! E 0 /E s =2! a 0 /a S E s =m e2 c 3 /e$ a S =" 0 /" C Example: " 0 =1 µm spot~2 µm 10-PW laser a 0 = 300 1. electron ~300 kev a 0 ~ # rad -1/3 2. electron ~300 MeV! e ~1 S. V. Bulanov et al., NIMA 660 (2011) 31

2 D Par2cle- in- cell simula2on with radia2on reac2on Landau- Lifshitz equa2on for radia2on reac2on du µ mc 2 ds = e c F µν u ν + 2e3 3mc 3 λ F µν u ν u λ e F µλ F mc 2 νλ (F νλ u λ )(F λκ u κ )u µ [ ] Laser : 10 PW, 30fs Target : Fully ionized carbon (ρ=2g/cc) Electron energy spectra 60 y [µm] with RR w/o RR x [µm] Ne 0 60 Electrons exceeding E>100 MeV decelerated via radia2on reac2on

#K-#)&\#$(&/,.,-#21.&b)&*.0,.$,&"#$,-$&P*#&-#4*#21.&-,#+21.&,i,+0$& =#$,-&M&56&!9A&86Y$& Q#-/,0&M&f@"")&*1.*G,4&+#-b1.&]"g7/:++^ Q,%'1-#"&(*$01-)&1Y&-#4*#21.&'1H,- >./@"#-&4*$0-*b@21.&1Y&-#4*#21.& 30fs '1"#-*G#21. "#$,-&#e*$ V#4*#21.&#$&$(1-0&#$&"#$,-&'@"$,& V#4*#21.&+1""*%#0,4&01H#-4$&"#$,-&#e*$N!1$0K'-1+,$$*./&/#%%#&\#$(&$',+0-@%&',#S&j&2+A*B+ 56&!9A&86Y$&"#$,-&'@"$,& *--#4*#2./&#&$1"*4.,H&h@#.0@%&b,#%&$1@-+, W.0,.$,&+1""*%#0,4&#K-#)&\#$(&8&!9A&86Y$ QNU#S#%@-#A&,0&#"NA&!()$N&V,PN&=,_N&56cA&5JL665&]7657^&

`1.P,-$*1.&,k+*,.+)&01&-#4*#21.&P$N&"#$,-&'1H,-& /C! B*&?+*D59*:'+Y1-&E./0+E3+ 1C! /+E3+l&F+G&Y1-&1'2%@%&+1.4*21.$ Photo-nuclear reactions, Electron-positron pair creation, Gamma laser pumping, Medicine, Radiation safety

!(101.K!(101.&$+#_,-*./&F&j&F BFE! B@#.0@%&,",+0-14).#%*+$M&'(101.$&$+#_,-&! D,,&BFE&b)&C,-,$0,0$S**A&=*Y$(*0GA&!*0#,P$S**&! <#-'"@$&#.4&U,@%#.A&!()$&V,P&c8&]5JL5^&mmI&! O*-0@#"&,",+0-1.K'1$*0-1.&'#*-$&]%,4*@%^& '#*-$&]%,4*@%^ e + e -

!(101.K!(101.&D+#_,-*./&`-1$$K$,+21., n, K &'#*-&'-14@+21.& +-1$$&$,+21. U10&+1%'@0,4&-,"*#b")&Y-1%& h@#-s&b1e,$&6nlkc&?,o& C,-.#-4A&U@+"N&!()$N&C&]!-1+N&D@''"N^&<1&]7666^&d8J&!O=>D&+1""#b1-#21.A&!VE&H<&]766c^&68766I& Fe',-*%,.0#"&b1@.4&j&7&o&56 m&& (*/(,-&0(#.&0(,1-) pb= 10-36 cm 2

D+#_,-*./&`-1$$&$,+21.! =1H&'(101.&,.,-/)&]$! %%&! ' (^&! D+#",$&#$&&I 0( &'1H,-&1Y&'(101.&,.,-/)&! >4P#.0#/,1@$&01&@$,&(*/(,-&'(101.&,.,-/*,$&! [1H&01&/,0&0(,-,p Ref: B. Tollis, Il Nuovo Cimento (1955-1965) 35, 1182 (1965)

V,\,+21.&b)&-,"#2P*$2+&%*--1-& A. Einstein, Ann. Phys. (Leipzig) 17, 891 (1905).

D1%,&Q)',$&1Y&V,"#2P*$2+&T*--1-$ (1) RFM!"#$%# (3) DSRM Breaking plasma wake wave (2) SFM Spherically breaking plasma wake wave!"#$%# Driver laser Spherically focusing Driver laser Thin foil (4) DSSM Spherically Shaped Thin foil /C!I*#$8>9(85+J#?9:@+69&&"&+KIJAL+MNO*&96*:'$##?+P*6":('&$'*P+!DN&ON&C@"#.1PA&,0&#"NA&!()$N&V,PN&=,_N&J5A&6cL665]7668^&!TN&<#.41A&,0&#"NA&!()$N&V,PN&=,_N&JJA&58L665&]766m^&!>N&DN&!*-1G(S1PA&,0&#"NA&!()$N&!"#$%#$A&5dA&57856I]766m^&!TN&<#.41A&,0&#"NA&!()$N&V,PN&=,_NA&568A&78L668]766J^&& 1C!QOR*&95$#+J#?9:@+69&&"&+KQJAL+!DN&DN&C@"#.1PA&,0N&#"A&!()$N&!"#$%#$&5JA&676m67&]7657^& 2C!7"-%#*S(9P*P+I*#$8>9(85+69&&"&+K7QIAL+!QNR(N&F$*-S,'1PA&,0N&#"A&&!()$N&V,PN&=,_N&568A&67L667&]766J^& TC!7"-%#*S(9P*P+QOR*&95$#+69&&"&+K7QQAL+!D@//,$0,4&b)&?N&T1@-1@&#.4&QN&Q#q*%#A&D+*,.+,&885A&d5]7655^r&;N&<N&<1/#A&!()$N&V,PN&>A&cIA&6L8c78&]7657^&

Stimulated Emission Configuration Spherical Flying Mirror 2x10 18 cm -3 3 lasers 1 mj 800 nm 20 fs 2x10 18 cm -3 Spherical Flying Mirror )*++,+- +./*01-2345- µ&?#$&;,0 Driver laser 0.7 PW 800 nm Driver laser 0.7 PW 800 nm?#$&;,0 )*++,+- +./*01-2345- µ& E!=19 kev $~3x10-40 cm 2 Focused Spot size 6 1 j% $ /4# 2 =74389 Source laser intensity on mirror 6.6x10 16 W/cm 2 (a s =0.175) spot size on mirror ~6.9 µm s UN&UN&V1$#.1PA&D1PN&!()$N&;FQ!&mIA&JJ5&]5JJ8^

D+#_,-,4&'(101.&.@%b,- Events: N~2.96 Ref: Koga et al., PRA 86, 053823 (2012) With Astra Gemini laser P 1 =P 2 =0.1PW P 3 =0.5 PW at 800 nm: Event rate=0.07 Lundin et al., PRA 74, 043821 (2006) Lundström et al., PRL 96, 083602 (2006)

!! A. R. Bell and J. G. Kirk, Possibility of Prolific Pair Production with High-Power Lasers Phys. Rev. Lett. 101, 200403 (2008)!! A. M. Fedotov, N. B. Narozhny, G. Mourou, G. Korn, Limitations on the Attainable Intensity of High Power Lasers Phys. Rev. Lett. 105, 080402 (2010)!! S.S.Bulanov, T. Zh.Esirkepov, A.Thomas, J.Koga, S.V.Bulanov, On the Schwinger limit attainability with extreme power lasers Phys. Rev. Lett. 105, 220407 (2010)!! E. N. Nerush, I. Yu. Kostyukov, A. M. Fedotov, N. B. Narozhny, N. V. Elkina, H. Ruhl, Laser Field Absorption in Self-Generated Electron-Positron Pair Plasma Phys. Rev. Lett. 106, 035001 (2011)!! N. V. Elkina, A. M. Fedotov, I. Yu. Kostyukov, M. V. Legkov, N. B. Narozhny, E. N. Nerush, H. Ruhl QED cascades induced by circularly polarized laser fields Phys. Rev. ST Accel. Beams 14, 054401 (2011)

Key Parameters (dimensionless Lorentz invariants) Laser dimensionless amplitude. characterizes the probability of photon emission by the electron; in the electron rest frame of reference: ( e ~ E/E S E S =1.3&10 16 V/cm characterizes the probability of the e!e+ pair creation due to a collision between the high energy photon and EM field. see S. V. Bulanov et al., NIMA 660 (2011) 31 and references cited therein

The number of absorbed laser photons: Photon mean-free-path before the pair creation: Favorable parameters for pair creation:! e "1 and!! "1. Size of the EM wave focus region should be! 220% 0 /a.!! H. Reiss, J. Math. Phys. 3, 59 (1962)!! A. I. Nikishov, and V. I. Ritus, Interaction of Electrons and Photons with a Very Strong Electromagnetic Field, Sov. Phys. Usp. 13, 303 (1970)!! V. I. Ritus, Quantum Effects of the Interaction of Elementary Particles with an Intense Electromagnetic Field, Tr. Fiz. Inst. Akad. Nauk SSSR 111, 5 (1979)!! K. T. McDonald, Fundamental Physics During Violent Acceleration, AIP Conf. Proceed. 130, 23 (1985)

Stanford Linear Accelerator Creation of e - e +! Plasma in Ultrarelativistic Electron Collision with EM Wave Conventional Accelerator + Laser electron beam 50 GeV a 0 = 0.3 Laser pulse 1.6ps D. L. Burke, et al., Phys. Rev. Lett. 79, 1627 (1997) Breit-Wheeler process G. Breit, J. A. Wheeler, Phys. Rev. 46, 1087 (1934) Multiphoton inverse Compton scattering Multiphoton Breit-Wheeler process E S =1.3&10 16 V/cm Key Parameters:

Creation of e - e +! Plasma in Ultrarelativistic Electron Collision with EM Wave Laser Wake Field Accelerator + Relativistic Flying Mirror Driver #1 Driver #2 Reflected pulse Wake wave Laser wavelength: 1µm LWFA driver: 1 PW electron energy = 1.25 GeV Key Parameters: Source pulse Reflected focus: Relativistic Flying Mirror (n e ' 4.5&10 19 cm 3 ) and, in multi-photon inverse Compton scattering regime, Electrons not expelled from focus by Ponderomotive force:

Conclusion Development of Super-intense Lasers"!Novel phenomena in fundamental physics!intense collimated #-ray flash!photon-photon scattering detection!properties of e - e +! Plasma!These are only a few examples!