(String-to-Tree ) KJ [11] best 1-best 2. SMT 2. [9] Brockett [2] Mizumoto [10] Brockett [2] [10] [15] ê = argmax e P(e f ) = argmax e M m=1 λ

Σχετικά έγγραφα
An Analysis of Problems in Grammatical Error Correction of ESL Writings Using a Large Learner Corpus of English

1 n-gram n-gram n-gram [11], [15] n-best [16] n-gram. n-gram. 1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e)

[15], [16], [17] [6] [2] [5] Jiang [6] 2.1 [6], [10] Score(x, y) y ( 1) ( 1 ) b e ( 1 ) b e. O(n 2 ) Jiang [6] (word lattice reranking)

(Statistical Machine Translation: SMT[1]) [2]

1530 ( ) 2014,54(12),, E (, 1, X ) [4],,, α, T α, β,, T β, c, P(T β 1 T α,α, β,c) 1 1,,X X F, X E F X E X F X F E X E 1 [1-2] , 2 : X X 1 X 2 ;

STARTING STEPS IN GRAMMAR, FINAL TEST C TERM 2012 UNITS 1-18

EXTRA LEARNING COMPONENT. for Junior B pupils

Stabilization of stock price prediction by cross entropy optimization

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Chapter 29. Adjectival Participle

Homework 3 Solutions

Αντώνης Βεντούρης. Επίκουρος Καθηγητής Διδακτικής των Γλωσσών Τμήμα Ιταλικής Γλώσσας και Φιλολογίας Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

John Mavrikakis ENGLISH MULTIBOOK

(Statistical Machine Translation: SMT [1])

7 Present PERFECT Simple. 8 Present PERFECT Continuous. 9 Past PERFECT Simple. 10 Past PERFECT Continuous. 11 Future PERFECT Simple

Παλεπηζηήκην Πεηξαηώο Τκήκα Πιεξνθνξηθήο Πξόγξακκα Μεηαπηπρηαθώλ Σπνπδώλ «Πξνεγκέλα Σπζηήκαηα Πιεξνθνξηθήο»

Other Test Constructions: Likelihood Ratio & Bayes Tests

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

ΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35

Ηλεκτρονικά σώματα κειμένων και γλωσσική διδασκαλία: Διεθνείς αναζητήσεις και διαφαινόμενες προοπτικές για την ελληνική γλώσσα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Αναερόβια Φυσική Κατάσταση

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

FINAL TEST B TERM-JUNIOR B STARTING STEPS IN GRAMMAR UNITS 8-17

The challenges of non-stable predicates

Applying Conditional Random Fields to Japanese Morphologiaical Analysis

Statistical Inference I Locally most powerful tests

Chapter 6 BLM Answers

Συντακτικές λειτουργίες

Advanced Subsidiary Unit 1: Understanding and Written Response

Μηχανική Μάθηση Hypothesis Testing

Final Test Grammar. Term C'

Living and Nonliving Created by: Maria Okraska

14 Lesson 2: The Omega Verb - Present Tense

Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author.

Congruence Classes of Invertible Matrices of Order 3 over F 2

ΑΓΓΛΙΚΑ IV. Ενότητα 6: Analysis of Greece: Your Strategic Partner in Southeast Europe. Ιφιγένεια Μαχίλη Τμήμα Οικονομικών Επιστημών

Faruqui [7] WordNet [15] FrameNet [2] PPDB [8]

Elements of Information Theory

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

Κατανεμημένα Συστήματα. Javascript LCR example

Finite Field Problems: Solutions

@ BY AVENUES PRIVATE INSTITUTE JUNE 2014

6.003: Signals and Systems. Modulation

LESSON 12 (ΜΑΘΗΜΑ ΔΩΔΕΚΑ) REF : 202/055/32-ADV. 4 February 2014

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

AME SAMPLE REPORT James R. Cole, Ph.D. Neuropsychology

Εκδηλώσεις Συλλόγων. La page du francais. Τα γλωσσοψυχο -παιδαγωγικά. Εξετάσεις PTE Δεκεμβρίου 2013

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Πώς μπορεί κανείς να έχει έναν διερμηνέα κατά την επίσκεψή του στον Οικογενειακό του Γιατρό στο Ίσλινγκτον Getting an interpreter when you visit your

{takasu, Conditional Random Field

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

ΥΠΕΡΕΙΑ ΤΟΜΟΣ ΕΚΤΟΣ. ΠΡΑΚΤΙΚΑ ΣΤ ΙΕΘΝΟΥΣ ΣΥΝΕ ΡΙΟΥ «ΦΕΡΑΙ-ΒΕΛΕΣΤΙΝΟ-ΡΗΓΑΣ» Βελεστίνο, 4-7 Οκτωβρίου 2012 MEΡΟΣ B ΡΗΓΑΣ

Verklarte Nacht, Op.4 (Εξαϋλωμένη Νύχτα, Έργο 4) Arnold Schoenberg ( )

MathCity.org Merging man and maths

The Simply Typed Lambda Calculus

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

Research on Economics and Management

Applying Markov Decision Processes to Role-playing Game

Molecular evolutionary dynamics of respiratory syncytial virus group A in

Every set of first-order formulas is equivalent to an independent set

ΠΡΟΣΤΑΣΙΑ ΑΤΜΟΣΦΑΙΡΙΚΗΣ ΔΙΑΒΡΩΣΗΣ ΑΛΟΥΜΙΝΙΟΥ/ΑΝΟΔΙΩΣΗ Al

SOAP API. Table of Contents

Information and Communication Technologies in Education

2.21 here εδώ 2.22 talk μιλάω 2.23 town πόλη 2.24 have fun διασκεδάζω 2.25 dinosaur δεινόσαυρος 2.26 be quiet κάνω ησυχία

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Numerical Analysis FMN011

ΑΛΕΞΑΝΔΡΟΣ ΠΑΛΛΗΣ SCHOOLTIME E-BOOKS

Quick algorithm f or computing core attribute

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ

υγεία των νοσηλευτών που συστηματικά εμπλέκονται στην παρασκευή και χορήγηση τους.

Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική»

Objectives-Στόχοι: -Helping your Child become a fantastic language learner «Βοηθώντας το παιδί σας να γίνει εξαιρετικό στην εκμάθηση γλωσσών» 6/2/2014

FSM Toolkit Exercises Part II

Writing for A class. Describe yourself Topic 1: Write your name, your nationality, your hobby, your pet. Write where you live.

Section 8.3 Trigonometric Equations

Lecture 2. Soundness and completeness of propositional logic

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Modern Greek Extension

ΟΙ ΑΞΙΕΣ ΤΗΣ ΖΩΗΣ THE VALUES OF LIFE Η ΥΠΕΥΘΥΝΟΤΗΤΑ..THE RESPONSIBILITY ΔΗΜΗΤΡΑ ΚΩΝΣΤΑΝΤΙΝΟΥ

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

1999 MODERN GREEK 2 UNIT Z

Τεχνολογία Ψυχαγωγικού Λογισμικού και Εικονικοί Κόσμοι Ενότητα 8η - Εικονικοί Κόσμοι και Πολιτιστικό Περιεχόμενο

0543 GREEK 0543/02 Paper 2 (Reading and Directed Writing), maximum raw mark 65

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Simplex Crossover for Real-coded Genetic Algolithms


Αζεκίλα Α. Μπνπράγηεξ (Α.Μ. 261)

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ΠΕΡΙΕΧΟΜΕΝΑ. Μάρκετινγκ Αθλητικών Τουριστικών Προορισμών 1

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Οι αδελφοί Montgolfier: Ψηφιακή αφήγηση The Montgolfier Βrothers Digital Story (προτείνεται να διδαχθεί στο Unit 4, Lesson 3, Αγγλικά Στ Δημοτικού)

ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ ΚΑΙ ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ. Τεχνικές NLP Σχεδιαστικά Θέματα

Transcript:

1,a) 1,b) 2 2 Shared Task 4 n-best 1-best 1. Web SNS Lang-8 *1 GIN- GER *2 2 HOO 2011 2012 [7], [8] CoNLL Shared Task 2013 [14] 2014 CoNLL Shared Task 1 Rozovskaya and Roth [16] Tajiri [19] Rozovskaya and Roth [17] 2 1 Konan-JIEM [12] *3 KJ 1 Nara Institute of Science and Technology a) tomoya-m@is.naist.jp b) matsu@is.naist.jp *1 http://lang-8.com *2 http://www.getginger.jp *3 http://www.gsk.or.jp/catalog/gsk2012-a/ 1 Konan-JIEM (%) (%) 19.23 4.09 13.88 3.59 13.56 2.04 8.77 1.34 7.04 1.30 6.90 0.88 6.62 0.74 5.25 0.42 4.30 0.04 NUS Corpus of Learner English [6] CoNLL Shared Task [6] NUCLE wrong collocation/idiom/preposition 7,312 local redundancies 6,390 article or determiner 6,004 noun number 3,995. 2 2 [1], [2], [3], [10], [20] Brockett [2] Mizumoto [10] Behera and Bhattacharyya [1] Buys and Merwe [3] [11] 1

(String-to-Tree ) KJ [11] 2 1. 10-best 1-best 2. SMT 2. [9] Brockett [2] Mizumoto [10] Brockett [2] [10] [15] ê = argmax e P(e f ) = argmax e M m=1 λ m h m (e, f ) (1) e f h m (e, f ) M λ m f e P( f e) P(e) n-gram 1 1 3. [11] 3.1 F true positive, false positive, false negative true positive false positive false negative *4 1 1 to to = 1/2 = 1/2 = 1/3 = 1/2 3.2 cicada 0.30 *5 expgram 0.20 *6 5-gram ZMERT *7 F 2 True negative rate (TNR) T NR = true negative (true negative + f alse positive) Lang-8 Learner Corpora v2.0 *8 SNS Lang-8 Lang-8 2 SNS Lang-8 Lang-8 *4 *5 http://www2.nict.go.jp/univ-com/multi trans/ cicada/ *6 http://www2.nict.go.jp/univ-com/multi trans/ expgram/ *7 http://cs.jhu.edu/ ozaidan/zmert/ *8 http://cl.naist.jp/nldata/lang-8/ (2) 2

He talked to me his life of Kyoto, and he took me Kyoto university. He talked to me about his life in Kyoto and he took me to Kyoto university. He talked me his life on Kyoto, and he took me to Kyoto university. 1 Learner Corpora 5 630,117 Konan-JIEM EDCW2012 *9 170 2,411 EDCW2012 63 300 3.3 2 10-best F 10-best 1-best 3 10-best 1 1,320 4. 3 [5] [4] [18] Maximum-Entropy Perceptron *9 https://sites.google.com/site/edcw2012/ 2 KJ 10-best F.452.705.551 (.798) (.925) (.857).370.854.516 (.717) (.950) (.817).358.627.456 (.556) (.811) (.660).182.352.240 (.530) (.739) (.618).175.500.260 (.261) (.677) (.377).224.423.293 (.308) (.608) (.409).163.387.230 (.436) (.783) (.560).378.561.451 (.730) (.875) (.796).453.750.565 (.550) (.822) (.659).456.620..525 (.692) (.844) (.761).254.450.324 (.462) (.720) (.563).255.875.394 (.352) (.864) (.500).133.069.091 (.250) (.160) (.195).407.550.468 (.536) (.652) (.588).000.000.000 (.368) (.636) (.467).000.000.000 (.000) (.000) (.000).111.250.154 (.182) (.667) (.286).000.000.000 (.000) (.000) (.000).309.327.318 (.680) (.582) (.627) 3

4 Moreover, music is necessary for me. 1 Moreover, the music is necessary for me. 2 ( ) Moreover, music is necessary for me. 5 I wondered they make me study reading and whiting then. I wondered they made me study reading and whiting then. 1 I wondered if they make me study reading and whiting then. 6 ( ) I wondered if they made me study reading and whiting then. I don t read a book for a long time. I haven t read a book for a long time. 1 I don t read a book for a long time. 2 ( ) I haven t read a book for a long time. 3 1 1,320 2 381 3 227 4 120 5 100 6 80 7 57 8 52 9 46 10 28 4.1 4 music the 1 a the 3 10-best 1 5 1 1-best made make wondered then 2 for a long time 6 are a funny book be 4.2 4.1 7 play watch eat to play watch watching eat eating 3 3 5. n-best 1-best 4

6 If there are a funny book, I may read one. If there are funny books, I may read one. 1 If there are a funny book, I may read one. 9 ( ) If there are funny books, I may read one. 7 For example, that is to play sports, watch TV and eat dinner with my friends, and so on. For example, they are to play sports, watch TV and eat dinner with my friends, and so on. For example, that is to play sports, watching TV, eating dinner with my friends, and so on. 1 [13] Lang-8 [1] Behera, B. and Bhattacharyya, P.: Automated Grammar Correction Using Hierarchical Phrase-Based Statistical Machine Translation, Proceedings of IJCNLP, pp. 937 941 (2013). [2] Brockett, C., Dolan, W. B. and Gamon, M.: Correcting ESL Errors Using Phrasal SMT Techniques, Proceedings of COLING-ACL, pp. 249 256 (2006). [3] Buys, J. and van der Merwe, B.: A Tree Transducer Model for Grammatical Error Correction, Proceedings of CoNLL Shared Task, pp. 43 51 (2013). [4] Charniak, E. and Johnson, M.: Coarse-to-fine N-best Parsing and MaxEnt Discriminative Reranking, Proceedings of ACL, pp. 173 180 (2005). [5] Collins, M.: Discriminative Reranking for Natural Language Parsing, Proceedings of ICML, pp. 175 182 (2000). [6] Dahlmeier, D., Ng, H. T. and Wu, S. M.: Building a Large Annotated Corpus of Learner English: The NUS Corpus of Learner English, Proceedings of the Eighth Workshop on Innovative Use of NLP for Building Educational Applications, pp. 22 31 (2013). [7] Dale, R., Anisimoff, I. and Narroway, G.: HOO 2012: A Report on the Preposition and Determiner Error Correction Shared Task, Proceedings of BEA, pp. 54 62 (2012). [8] Dale, R. and Kilgarriff, A.: Helping Our Own: The HOO 2011 Pilot Shared Task, Proceedings of ENLG, pp. 242 249 (2011). [9] Koehn, P., Och, F. J. and Marcu, D.: Statistical Phrase-Based Translation, Proceedings of HLT-NAACL, pp. 48 54 (2003). [10] Mizumoto, T., Hayashibe, Y., Komachi, M., Nagata, M. and Matsumoto, Y.: The Effect of Learner Corpus Size in Grammatical Error Correction of ESL Writings, Proceedings of COLING, pp. 863 872 (2012). [11] 20 pp. 258 261 (2014). [12] Nagata, R., Whittaker, E. and Sheinman, V.: Creating a manually error-tagged and shallow-parsed learner corpus, Proceedings of ACL-HLT, pp. 1210 1219 (2011). [13]. D, Vol. 96, No. 5, pp. 1346 1355. [14] Ng, H. T., Wu, S. M., Wu, Y., Hadiwinoto, C. and Tetreault, J.: The CoNLL-2013 Shared Task on Grammatical Error Correction, Proceedings of CoNLL Shared Task, pp. 1 12 (2013). [15] Och, F. J. and Ney, H.: Discriminative Training and Maximum Entropy Models for Statistical Machine Translation, Proceedings of ACL, pp. 295 302 (2002). [16] Rozovskaya, A. and Roth, D.: Algorithm Selection and Model Adaptation for ESL Correction Tasks, Proceedings of ACL, pp. 924 933 (2011). [17] Rozovskaya, A. and Roth, D.: Joint Learning and Inference for Grammatical Error Correction, Proceedings of EMNLP, pp. 791 802 (2013). [18] Shen, L., Sarkar, A. and Och, F. J.: Discriminative Reranking for Machine Translation, Proceedings of HLT-NAACL, pp. 177 184 (2004). [19] Tajiri, T., Komachi, M. and Matsumoto, Y.: Tense and Aspect Error Correction for ESL Learners Using Global Context, Proceedings of ACL, pp. 198 202 (2012). [20] Yuan, Z. and Felice, M.: Constrained Grammatical Error Correction using Statistical Machine Translation, Proceedings of CoNLL Shared Task, pp. 52 61 (2013). 5