ΠΛΗ111. Ανοιξη Μάθηµα 10 ο. Γράφοι. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΛΗ111. Ανοιξη 2005. Μάθηµα 10 ο. Γράφοι. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης"

Transcript

1 ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 10 ο Γράφοι Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

2 Γράφοι Ορισµός Αφηρηµένος τύπος δεδοµένων Υλοποίηση Αναζήτηση έντρο επικάλυψης Μεταβατική κλειστότητα Ανοιξη 2005 Στέργιος Β. Αναστασιάδης 2

3 Ορισµός Γράφος G=(V,E) V(G): πεπερασµένο µη κενό σύνολο κορυφών Ε(G): σύνολο ακµών (ζεύγη κορυφών) Μη κατευθυνόµενος γράφος (undirected) Οι κορυφές των ακµών δεν έχουν διάταξη Αν (v 1,v 2 ) ακµή, οι κορυφές v 1 και v 2 γειτονικές (adjacent) Κατευθυνόµενος γράφος (directed) Οι ακµές είναι κατευθυνόµενες, π.χ. στην ακµή <v 1, v 2 >v 1 : ουρά, v 2 : κεφαλή Αν <v 1,v 2 > ακµή, η v 1 γειτονική προς την v 2, και η v 2 γειτονική από την v Ανοιξη 2005 Στέργιος Β. Αναστασιάδης 3

4 Μονοπάτι Μονοπάτι από την κορυφή vp στην vq Ακολουθία κορυφών µε (v q, v 1 ), (v 1, v 2 ),, (v n, v q ) E(G) Μήκος µονοπατιού το πλήθος των ακµών του Απλό αν οι κορυφές του (εκτός πρώτης και τελευταίας) διαφορετικές Κύκλος απλό µονοπάτι στο οποίο η πρώτη και η τελευταία κορυφή ταυτίζονται Ανοιξη 2005 Στέργιος Β. Αναστασιάδης 4

5 Συνδετικότητα Μη κατευθυνόµενος γράφος Ακυκλικός αν δεν περιέχει κύκλους Συνδεδεµένος αν για κάθε ζεύγος κορυφών v i, v j υπάρχει µονοπάτι από τη v i στη v j Βαθµός κορυφής το πλήθος των ακµών που έχουν άκρο την κορυφή Κατευθυνόµενος γράφος Ισχυρά συνδεδεµένος αν για κάθε ζεύγος κορυφών v i, v j υπάρχει κατευθυνόµενο µονοπάτι από την v i στη v j και από τη v j στη v i Ασθενώς συνδεδεµένος αν ο αντίστοιχος µη κατευθυνόµενος γράφος είναι συνδεδεµένος Έσω-βαθµός κορυφής είναι το πλήθος των ακµών που έχουν την κορυφή κεφαλή Έξω-βαθµός κορυφής είναι το πλήθος των ακµών που έχουν την κορυφή ουρά Ανοιξη 2005 Στέργιος Β. Αναστασιάδης 5

6 Αφηρηµένος Τύπος εδοµένων Γράφος Create ηµιουργία γράφου Insert edge Εισαγωγή ακµής Delete edge ιαγραφή ακµής Insert vertex Εισαγωγή κορυφής Delete vertex ιαγραφή κορυφής Adjacent Υπαρξη ακµής µεταξύ κορυφών... Ανοιξη 2005 Στέργιος Β. Αναστασιάδης 6

7 Πίνακας Γειτνίασης Έστω γράφος G=(V,E) µε n 1 Ο πίνακας γειτνίασης είναι δισδιάστατος nxn πίνακας Α µε a ij = 1, αν (v i, v j ) E(G) και a ij = 0, αν (v i, v j ) E(G) A = A = Ανοιξη 2005 Στέργιος Β. Αναστασιάδης 7

8 Υλοποίηση µε Πίνακα #define N 10 int adj[n][n]; /* θεωρούµε κατευθυνόµενο γράφο µε N κορυφές */ void addedge(int a[], int v1, int v2) { if (v1 >= 0 && v1 < N && v2 >= 0 && v2 < N) a[v1][v2] = 1; } void deledge(int a[], int v1, int v2) { if (v1 >= 0 && v1 < N && v2 >= 0 && v2 < N) a[v1][v2] = 0; } intadjacent(inta[], intv1, intv2) { if (v1 >= 0 && v1 < N && v2 >= 0 && v2 < N) return (a[v1][v2]); else return -1; /* λάθος κορυφής */ } Ανοιξη 2005 Στέργιος Β. Αναστασιάδης 8

9 Λίστα Ακµών Σε κάθε κορυφή αντιστοιχεί ένας κόµβος Οι κόµβοι κορυφών σχηµατίζουν συνδεδεµένη λίστα Σε κάθε κορυφή αντιστοιχούν κάποιοι κόµβοι ακµών Οι κόµβοι ακµών κάθε κορυφής σχηµατίζουν ξεχωριστή λίστα λίστα κορυφών 4 λίστα ακµών Ανοιξη 2005 Στέργιος Β. Αναστασιάδης 9

10 Υλοποίηση µε Λίστα Ακµών typedef struct node *nodeptr_t; typedef struct node { int data; nodeptr_t vertex, edge; } node_t; /* κορυφήήακµή */ typedef nodeptr_t graph_t; graph_t g; /* γράφος */ int adjacent{ nodeptr_t p, nodeptr_q) { nodeptr_t c = p->edge; /* διατρέχουµε τηλίσταάκµών */ while (c) if (c->vertex == q) return 1; else c = c->edge; return 0; } Ανοιξη 2005 Στέργιος Β. Αναστασιάδης 10

11 Εισαγωγή Κορυφής και Ακµής void insertvertex(int data, graph_t *g) { nodeptr_t c = (nodeptr_t) malloc(sizeof(node_t)); c->data = data; void insertedge( nodeptr_t p, if (!adjacent(p, q)) { nodeptr_t q) { nodeptr_t c = (nodeptr_t) malloc(node_t); } /* λίστα κορυφών */ c->vertex = *g; /* λίστα ακµών */ c->edge = NULL; *g = c; } } /* λίστα ακµών */ c->vertex = q; /* λίστα κορυφών */ c->edge = p->edge; p->edge = c; Ανοιξη 2005 Στέργιος Β. Αναστασιάδης 11

12 Αναζήτηση πρώτα κατά βάθος Έστω ότι κατά τη διαδροµή επισκεπτόµαστε την κορυφή vµε γειτονικές w 1, w 2,, w n Στη συνέχεια επισκεπτόµαστε την κορυφή w 1 και τις γειτονικές της πριν προχωρήσουµε στιςw 2,,w n Α Β C D E DFS: ABEFHCDG F G /* DFS: depth first search */ for (i = 0; i < n; i++) visited[v i ] = 0 for (i = 0; i < n; i++) if (!visited[v i ]) dfstraverse(v i ) dfstraverse(v) visited[v] = 1, visit(v) γειτονική κορυφή w της v if (!visited[w]) /* ακµή (v,w) */ dfstraverse(w) H Ανοιξη 2005 Στέργιος Β. Αναστασιάδης 12

13 Αναζήτηση πρώτα κατά πλάτος Έστω ότι κατά τη διαδροµή επισκεπτόµαστε την κορυφή vµε γειτονικές w 1, w 2,, w n Στη συνέχεια επισκεπτόµαστε τις κορυφές w 1, w 2,,w n πριν επισκεπτούµε τις γειτονικές της w 1 κοκ. Α Β C D E BFS: ABCDEFGH F G /* BFS: breadth first search */ for (i = 0; i < n; i++) visited[v i ] = 0 for (i = 0; i < n; i++) if (!visited[v i ]) bfstraverse(v i ) bfstraverse(v) visited[v] = 1, enqueue(q, v) while (!empty(q)) u = dequeue(q), visit(u) γειτονική κορυφή w της u if (!visited[w]) /* ακµή (u,w)*/ visited[w] = 1 enqueue(q, w) H Ανοιξη 2005 Στέργιος Β. Αναστασιάδης 13

14 Πολυπλοκότητα DFS & BFS Με πίνακα γειτνίασης Ο( V ) για την επίσκεψη κάθε κόµβου Ο( V 2 ) για την επίσκεψη όλων των γειτονικών κάθε κόµβου Σύνολο: Ο( V + V 2 ) = O( V 2 ) Με λίστα ακµών Ο( V ) για την επίσκεψη κάθε κόµβου Ο( E ) για την επίσκεψη όλων των γειτονικών κάθε κόµβου Σύνολο: Ο( V + E ) Ανοιξη 2005 Στέργιος Β. Αναστασιάδης 14

15 έντρο Επικάλυψης (Spanning Tree) Από γράφο G παίρνουµε υπογράφοτµε ιδιότητες Συνδεδεµένος ακυκλικός γράφος (δέντρο) Περιέχει όλες τις κορυφές του G Περιέχει ελάχιστο πλήθος ακµών του G Γενικά για κάθε δέντρο ισχύει E = V - 1 Κάθε κόµβοςεκτόςτηςρίζαςέχειµοναδικό γονέα Κάθε ακµή συνδέει έναν κόµβο µε τον γονέα του Μπορούµε ναδηµιουργήσουµε δέντρο επικάλυψης Με αναζήτηση πρώτα κατά βάθος ή πλάτος (DFS ή BFS) Αρκεί να σηµειώνουµε κάθε ακµή πουχρησιµοποιούµε DFS Spanning Tree BFS Spanning Tree Ανοιξη 2005 Στέργιος Β. Αναστασιάδης 15

16 Μεταβατική Κλειστότητα Υπάρχει µονοπάτι από µία κορυφή σε άλλη κορυφή του γράφου; Αν υπάρχει µονοπάτι µήκους 1, τότε A[i][j] = 1 Αν υπάρχει µονοπάτι µήκους 2, τότε A[i][1] Λ A[1][j] V V A[i][n] Λ A[n][j] = 1, και γενικά αρκεί να υπολογίσουµε τηντιµή του πίνακα A ( 2 ) n = A[i][k] A[k][j] k =1 Για να εξετάσουµεανυπάρχει µονοπάτι µήκους m n, αρκεί να υπολογίσουµε τηντιµή του πίνακα A (m) = A A (m 1 ) µ ε Α ( 1 ) = Α, m = 2,...,n Ανοιξη 2005 Στέργιος Β. Αναστασιάδης 16

17 Μείωση Κόστους Υπολογισµού Εφόσον το κόστος πολλαπλασιασµού δύο πινάκων nxn είναι Ο(n 3 ) το συνολικό κόστος για τον υπολογισµό τουα (n) είναι Ο(n 4 ) Εναλλακτικά έστω P k πίνακας τέτοιος ώστε P k [i][j] = 1, αν και µόνο αν υπάρχει µονοπάτι από την v i στην v j που περνά µόνον από τις κορυφές v 1,,v k Αν P k [i][j] = 1, τότε υπάρχει µονοπάτι από τη v i στη v j που περνά µόνο από τις v 1,...,v k (άρα και τις v 1,,v k+1 ), οπότε P k+1 [i][j] = 1 Αν P k [i][j]=0 και P k+1 [i][j]=1, τότε P k [i][k+1] = 1 και P k [k+1][j] = 1 Ανοιξη 2005 Στέργιος Β. Αναστασιάδης 17

18 Αλγόριθµος Warshall (1962) Pnew = A for k: 0..n-1 Pold = Pnew for i: 0..n-1 if (Pold[i][k]) for j: 0..n-1 if (Pold[k][j]) Pnew[i][j] = 1 /* υπολογισµός Pk */ Συνολικό κόστος: O(n 3 ) Ανοιξη 2005 Στέργιος Β. Αναστασιάδης 18

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 7 ο έντρο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης έντρο Ορισµός Υλοποίηση µε Πίνακα Υλοποίηση µε είκτες υαδικό έντρο

Διαβάστε περισσότερα

ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου,

ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, Γράφοι Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Γράφοι - ορισµοί και υλοποίηση Τοπολογική Ταξινόµηση ιάσχιση Γράφων ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26 - Γράφοι Ηπιο

Διαβάστε περισσότερα

ΕΠΛ 231 Δοµές Δεδοµένων και Αλγόριθµοι 11-1

ΕΠΛ 231 Δοµές Δεδοµένων και Αλγόριθµοι 11-1 Γράφοι Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Γράφοι - ορισµοί και υλοποίηση Διάσχιση Γράφων Τοπολογική Ταξινόµηση ΕΠΛ 23 Δοµές Δεδοµένων και Αλγόριθµοι - Γράφοι Η πιο γενική µορφή δοµής

Διαβάστε περισσότερα

Γράφοι. Ορολογία. Ορισµός: G = (V, E) όπου. Ορολογία (συνέχεια) γράφος ή γράφηµα (graph) V:ένα σύνολο E:µια διµελής σχέση στο V

Γράφοι. Ορολογία. Ορισµός: G = (V, E) όπου. Ορολογία (συνέχεια) γράφος ή γράφηµα (graph) V:ένα σύνολο E:µια διµελής σχέση στο V Γράφοι Ορολογία γράφος ή γράφηµα (graph) Ορισµός: G = (V, E) όπου V:ένα σύνολο E:µια διµελής σχέση στο V Ορολογία (συνέχεια) κάθε v V ονοµάζεται κορυφή (vertex) ή κόµβος (node) κάθε (v 1, v 2 ) Ε ονοµάζεται

Διαβάστε περισσότερα

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 3 ο. Συνδεδεµένες Λίστες. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη 2005. Μάθηµα 3 ο. Συνδεδεµένες Λίστες. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 3 ο Συνδεδεµένες Λίστες Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Ανασκόπηση ΟΑΤ λίστα Ακολουθιακή λίστα Συνδεδεµένη λίστα

Διαβάστε περισσότερα

Ενότητα 10 Γράφοι (ή Γραφήµατα)

Ενότητα 10 Γράφοι (ή Γραφήµατα) Ενότητα 10 Γράφοι (ή γραφήµατα) ΗΥ240 - Παναγιώτα Φατούρου 1 Γράφοι (ή Γραφήµατα) Ένας γράφος αποτελείται από ένα σύνολο από σηµεία (που λέγονται κόµβοι) και ένα σύνολο από γραµµές (που λέγονται ακµές)

Διαβάστε περισσότερα

6η Διάλεξη Διάσχιση Γράφων και Δέντρων

6η Διάλεξη Διάσχιση Γράφων και Δέντρων ΘΕΩΡΙΑ ΓΡΑΦΩΝ 6 η Διάλεξη Διάσχιση Γράφων και Δέντρων Αλγόριθμος αναζήτησης σε Βαθος Αλγόριθμος αναζήτησης κατά Πλάτος Αλγόριθμοι για Δένδρα Εύρεση ελαχίστων Γεννητορικών (Επικαλύπτοντα) Δένδρων Διάσχιση

Διαβάστε περισσότερα

Αναζήτηση Κατά Πλάτος

Αναζήτηση Κατά Πλάτος Αναζήτηση Κατά Πλάτος ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα συνεκτικότητα,

Διαβάστε περισσότερα

Διάλεξη 21η: Απλά Συνδεδεμένες Λίστες

Διάλεξη 21η: Απλά Συνδεδεμένες Λίστες Διάλεξη 21η: Απλά Συνδεδεμένες Λίστες Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Πρατικάκης (CSD) Απλές Λίστες CS100, 2015-2016 1 / 10 Δομές δεδομένων Ορισμός:

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΑΣΚΗΣΗ 4 Σωροί, Γράφοι

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΑΣΚΗΣΗ 4 Σωροί, Γράφοι ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2013 ΑΣΚΗΣΗ 4 Σωροί, Γράφοι Διδάσκων Καθηγητής: Παναγιώτης Ανδρέου Ημερομηνία Υποβολής: 05/04/2013 Ημερομηνία

Διαβάστε περισσότερα

Διάλεξη 18: Γράφοι I Εισαγωγή

Διάλεξη 18: Γράφοι I Εισαγωγή Διάλεξη 18: Γράφοι I Εισαγωγή Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Γράφοι ορισμοί και υλοποίηση Διάσχιση Γράφων ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Εισαγωγή στους Γράφους Η πιο

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 4 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 5 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007 Πρόβλημα 1 Το πρώτο πρόβλημα λύνεται με τη μέθοδο του Δυναμικού Προγραμματισμού. Για να το λύσουμε με Δυναμικό Προγραμματισμό

Διαβάστε περισσότερα

Αλγόριθμοι Γραφημάτων

Αλγόριθμοι Γραφημάτων Αλγόριθμοι Γραφημάτων. Γραφήματα. Αναπαράσταση Γραφημάτων 3. Διερεύνηση σε Πρώτα σε Πλάτος (BFS) Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Γράφημα Ορισμός: Ένα γράφημα G είναι το διατεταγμένο ζεύγος

Διαβάστε περισσότερα

ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1

ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1 ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1 Θέματα μελέτης Πρόβλημα αναζήτησης σε γραφήματα Αναζήτηση κατά βάθος (Depth-first search DFS) Αναζήτηση κατά πλάτος (Breadth-first search BFS) 2 Γράφημα (graph) Αναπαράσταση συνόλου

Διαβάστε περισσότερα

Σχεδίαση Αλγορίθμων - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1

Σχεδίαση Αλγορίθμων - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Σχεδίαση Αλγορίθμων Μείωσε και Βασίλευε http://delab.csd.auth.gr/~gounaris/courses/ad auth gounaris/courses/ad Σχεδίαση Αλγορίθμων - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Μείωσε και Βασίλευε 1. Μειώνουμε

Διαβάστε περισσότερα

Αλγόριθµοι Γραφηµάτων

Αλγόριθµοι Γραφηµάτων Αλγόριθµοι Γραφηµάτων Παύλος Σπυράκης Πανεπιστήµιο Πατρών Τοµέας Θεµελιώσεων και Εφαρµογών της Επιστήµης των Υπολογιστών Ερευνητικό Ακαδηµαϊκό Ινστιτούτο Τεχνολογίας Υπολογιστών Γραφήµατα Μοντελοποίηση

Διαβάστε περισσότερα

Στοιχεία Θεωρίας Γράφων (Graph Theory)

Στοιχεία Θεωρίας Γράφων (Graph Theory) Στοιχεία Θεωρίας Γράφων (Graph Theory) Ε Εξάμηνο, Τμήμα Πληροφορικής & Τεχνολογίας Υπολογιστών ΤΕΙ Λαμίας plam@inf.teilam.gr, Οι διαφάνειες βασίζονται στα βιβλία:. Αλγόριθμοι, Σχεδιασμός & Ανάλυση, η έκδοση,

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 ( και ) Ε. Μαρκάκης Επίκουρος Καθηγητής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 ( και ) Ε. Μαρκάκης Επίκουρος Καθηγητής ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 (5.1-5.2 και 5.4-5.6) Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Δέντρα Βασικοί ορισµοί Μαθηµατικές ιδιότητες Διάσχιση δέντρων Preorder, postorder,

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 10β: Αλγόριθμοι Γραφημάτων-Γραφήματα- Αναπαράσταση Γραφημάτων- Διερεύνηση Πρώτα σε Πλάτος (BFS) Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 26 Ιουνίου 201 1 / Απληστοι (Greedy) Αλγόριθµοι

Διαβάστε περισσότερα

Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας

Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής ισαγωγή στην πιστήμη των Υπολογιστών 2015-16 λγόριθμοι και ομές εδομένων (IΙ) (γράφοι και δένδρα) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης φηρημένες

Διαβάστε περισσότερα

Βασικές Έννοιες Δοµών Δεδοµένων

Βασικές Έννοιες Δοµών Δεδοµένων Δοµές Δεδοµένων Δοµές Δεδοµένων Στην ενότητα αυτή θα γνωρίσουµε ορισµένες Δοµές Δεδοµένων και θα τις χρησιµοποιήσουµε για την αποδοτική επίλυση του προβλήµατος του ευσταθούς ταιριάσµατος Βασικές Έννοιες

Διαβάστε περισσότερα

Γράφηµα (Graph) Εργαστήριο 10. Εισαγωγή

Γράφηµα (Graph) Εργαστήριο 10. Εισαγωγή Εργαστήριο 10 Γράφηµα (Graph) Εισαγωγή Στην πληροφορική γράφηµα ονοµάζεται µια δοµή δεδοµένων, που αποτελείται από ένα σύνολο κορυφών ( vertices) (ή κόµβων ( nodes» και ένα σύνολο ακµών ( edges). Ενας

Διαβάστε περισσότερα

ΠΛΗ111. Ανοιξη Μάθηµα 9 ο. Ταξινόµηση. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη Μάθηµα 9 ο. Ταξινόµηση. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 9 ο Ταξινόµηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Ταξινόµηση Εισαγωγή Selection sort Insertion sort Bubble sort

Διαβάστε περισσότερα

Αλγόριθµοι Τύπου Μείωσης Προβλήµατος

Αλγόριθµοι Τύπου Μείωσης Προβλήµατος Αλγόριθµοι Τύπου Μείωσης Προβλήµατος Περίληψη Αλγόριθµοι Τύπου Μείωσης Προβλήµατος ( Decrease and Conquer ) Μείωση κατά µια σταθερά (decrease by a constant) Μείωση κατά ένα ποσοστό (decrease by a constant

Διαβάστε περισσότερα

ΠΛΗ111. Ανοιξη Μάθηµα 2 ο. Αλγόριθµοι και Αφηρηµένοι Τύποι εδοµένων. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη Μάθηµα 2 ο. Αλγόριθµοι και Αφηρηµένοι Τύποι εδοµένων. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 2 ο Αλγόριθµοι και Αφηρηµένοι Τύποι εδοµένων Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Αλγόριθµοι Ορισµός Παράδειγµα Ασυµπτωτική

Διαβάστε περισσότερα

Γέφυρες σε Δίκτυα. Μας δίνεται ένα δίκτυο (κατευθυνόμενο γράφημα) αφετηριακός κόμβος. Γέφυρα του (με αφετηρία τον ) :

Γέφυρες σε Δίκτυα. Μας δίνεται ένα δίκτυο (κατευθυνόμενο γράφημα) αφετηριακός κόμβος. Γέφυρα του (με αφετηρία τον ) : Μας δίνεται ένα δίκτυο (κατευθυνόμενο γράφημα) αφετηριακός κόμβος και Γέφυρα του (με αφετηρία τον ) : Ακμή που περιέχεται σε κάθε μονοπάτι από το στο s a b c d e f g h i j k l Μας δίνεται ένα δίκτυο (κατευθυνόμενο

Διαβάστε περισσότερα

Στοίβες με Δυναμική Δέσμευση Μνήμης

Στοίβες με Δυναμική Δέσμευση Μνήμης ΕΠΛ 231 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ 10/02/10 Παύλος Αντωνίου Στοίβες με Δυναμική Δέσμευση Μνήμης Στοίβα: Στοίβα είναι μια λίστα που έχει ένα επιπλέον περιορισμό. Ο περιορισμός είναι ότι οι εισαγωγές

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 19: ΓράφοιII -ΤοπολογικήΤαξινόμηση Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Τοπολογική Ταξινόμηση - Εφαρμογές, Παραδείγματα, Αλγόριθμοι Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ231 Δομές

Διαβάστε περισσότερα

Δομές Δεδομένων Ενότητα 6

Δομές Δεδομένων Ενότητα 6 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Γράφοι Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων

Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο

Διαβάστε περισσότερα

Βασικές Δοµές Δεδοµένων. Σύντοµη επανάληψη (ΕΠΛ 035).

Βασικές Δοµές Δεδοµένων. Σύντοµη επανάληψη (ΕΠΛ 035). Βασικές Δοµές Δεδοµένων Σύντοµη επανάληψη (ΕΠΛ 035). Περίληψη Γραµµικές Δοµές Δεδοµένων Πίνακες Λίστες Στοίβες Ουρές Γράφοι Δέντρα Γραµµικές Δοµές Πίνακας (array) A[0] A[1] A[2] A[ ] A[n-1] Προκαθορισµένη

Διαβάστε περισσότερα

Αναζήτηση στους γράφους. - Αναζήτηση η κατά βάθος Συνεκτικές Συνιστώσες - Αλγόριθμος εύρεσης συνεκτικών συνιστωσών

Αναζήτηση στους γράφους. - Αναζήτηση η κατά βάθος Συνεκτικές Συνιστώσες - Αλγόριθμος εύρεσης συνεκτικών συνιστωσών Αναζήτηση στους γράφους Βασικός αλγόριθμος λό - Αναζήτηση κατά πλάτος - Αναζήτηση η κατά βάθος Συνεκτικές Συνιστώσες - Αλγόριθμος εύρεσης συνεκτικών συνιστωσών Διάσχιση (αναζήτηση ) στους γράφους Φεύγοντας

Διαβάστε περισσότερα

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Αναζήτηση Κατά Βάθος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση

Διαβάστε περισσότερα

Ενότητα 5: Αλγόριθμοι γράφων και δικτύων

Ενότητα 5: Αλγόριθμοι γράφων και δικτύων Εισαγωγή στην Επιστήμη των Υπολογιστών ο εξάμηνο ΣΗΜΜΥ Ενότητα : Αλγόριθμοι γράφων και δικτύων Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ενότητα 3 Αλγόριθµοι Γραφηµάτων Prim-Kruskal Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 3 Prim-Kruskal

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων

Διαβάστε περισσότερα

Γράφημα. Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 4 5 πλήθος κορυφών πλήθος ακμών

Γράφημα. Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 4 5 πλήθος κορυφών πλήθος ακμών Γράφημα Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 1 2 3 4 5 πλήθος κορυφών πλήθος ακμών Γράφημα Συνδυαστικό αντικείμενο που αποτελείται από

Διαβάστε περισσότερα

(elementary graph algorithms)

(elementary graph algorithms) (elementary graph algorithms) Παύλος Εφραιμίδης 1 περιεχόμενα γραφήματα αναπαραστάσεις οριζόντια διερεύνηση καθοδική διερεύνηση 2 ΓΡΑΦΉΜΑΤΑ 3 αναπαράσταση δύο καθιερωμένοι τρόποι: πίνακας γειτνίασης συλλογή

Διαβάστε περισσότερα

Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25)

Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25) Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 5) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Βραχύτερα Μονοπάτια για όλα τα Ζεύγη Λύση υναµικού Προγραµµατισµού Ο αλγόριθµος των Floyd-Warshal ΕΠΛ 3

Διαβάστε περισσότερα

Αλγόριθμοι Γραφημάτων

Αλγόριθμοι Γραφημάτων Αλγόριθμοι Γραφημάτων 1. Διερεύνηση Πρώτα σε Βάθος (DFS) 2. Τοπολογική Ταξινόμηση Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Depth-First Search Πρώτα σε Βάθος διερεύνηση (Depth-First Search) είναι

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Γραφήματα Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Γραφήματα Κατευθυνόμενο Γράφημα Ένα κατευθυνόμενο γράφημα G είναι ένα ζευγάρι (V, E) όπου V είναι ένα

Διαβάστε περισσότερα

Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά.

Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά. Γράφοι Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο πλευρές (ακµές) και κορυφές (κόµβους). Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά. Graph Drawing 4 πιθανές αναπαραστάσεις

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 3: Δένδρα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 3: Δένδρα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 3: Δένδρα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π. Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων CO.RE.LAB. ΣΗΜΜΥ - Ε.Μ.Π. Άσκηση 1 η : Παιχνίδι επιλογής ακμών Έχουμε ένα ακυκλικό κατευθυνόμενο γράφο, μια αρχική κορυφή και δυο παίκτες. Οι παίκτες διαδοχικά

Διαβάστε περισσότερα

Κεφάλαιο 3. Γραφήματα. v1.3 ( ) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Κεφάλαιο 3. Γραφήματα. v1.3 ( ) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Κεφάλαιο 3 Γραφήματα v1.3 (2014-01-30) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισμοί και Εφαρμογές γραφήματα γράφημα G: ένας τρόπος κωδικοποίησης των σχέσεων

Διαβάστε περισσότερα

Ενότητα 7 Ουρές Προτεραιότητας

Ενότητα 7 Ουρές Προτεραιότητας Ενότητα Ουρές Προτεραιότητας ΗΥ4 - Παναγιώτα Φατούρου Ουρές Προτεραιότητας Θεωρούµε ένα χώρο κλειδιών U και έστω ότι µε κάθε κλειδί Κ (τύπου Key) έχει συσχετισθεί κάποια πληροφορία Ι (τύπου Type). Έστω

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 18 Dijkstra s Shortest Path Algorithm 1 / 12 Ο αλγόριθμος εύρεσης της συντομότερης διαδρομής του Dijkstra

Διαβάστε περισσότερα

υναµικές οµές εδοµένων (συν.) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα:

υναµικές οµές εδοµένων (συν.) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: υναµικές οµές εδοµένων (συν.) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ταξινοµηµένες Λίστες µε δυναµική δέσµευση µνήµης Αναδροµκές συναρτήσεις ΕΠΛ 12 Αρχές Προγραµµατισµού ΙΙ 1 Λίστες

Διαβάστε περισσότερα

Ελάχιστα Γεννητορικά ένδρα

Ελάχιστα Γεννητορικά ένδρα λάχιστα Γεννητορικά ένδρα Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος του Prim και ο αλγόριθµος του Kruskal για εύρεση λάχιστων Γεννητορικών ένδρων ΠΛ 23 οµές εδοµένων και Αλγόριθµοι

Διαβάστε περισσότερα

ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ÌïëëÜ Ì. Á μýô Á.Ì. : 5 moll@moll.r ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΜΑΘΗΜΑ : ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΙΑΔΙΚΤΥΟ (ΕΡΓΑΣΤΗΡΙΟ) Ε ΕΞΑΜΗΝΟ ΕΙΣΗΓΗΤΕΣ: Χαϊδόγιαννος Χαράλαμπος ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ

Διαβάστε περισσότερα

Ενότητα 2 Στοίβες Ουρές - Λίστες

Ενότητα 2 Στοίβες Ουρές - Λίστες Ενότητα 2 Στοίβες Ουρές - Λίστες ΗΥ240 - Παναγιώτα Φατούρου 1 Λίστες Γραµµική λίστα (linear list) είναι ένα σύνολο από n 0 στοιχεία ή κόµβους e 1,..., e n, τα οποία είναι διατεταγµένα µε γραµµική σειρά.

Διαβάστε περισσότερα

Ουρά Προτεραιότητας: Heap

Ουρά Προτεραιότητας: Heap Ουρά Προτεραιότητας: Heap ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ομές εδομένων (Αναπαράσταση,) οργάνωση και διαχείριση συνόλων αντικειμένων για

Διαβάστε περισσότερα

ιαφάνειες παρουσίασης #11

ιαφάνειες παρουσίασης #11 ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ http://www.corelab.ece.ntua.gr/courses/programming/ ιδάσκοντες: Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr) ιαφάνειες παρουσίασης

Διαβάστε περισσότερα

Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής ΑΤΕΙ ΘΕΣΣΑΛΟΝΙΚΗΣ ΔΕΝΤΡΑ (TREES) B C D E F G H I J K L M

Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής ΑΤΕΙ ΘΕΣΣΑΛΟΝΙΚΗΣ ΔΕΝΤΡΑ (TREES) B C D E F G H I J K L M Δοµές Δεδοµένων & Ανάλυση Αλγορίθµων 3ο Εξάµηνο Δέντρα Δυαδικά Δέντρα Δυαδικά Δέντρα Αναζήτησης (inary Search Trees) http://aetos.it.teithe.gr/~demos/teaching_r.html Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων)

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

(elementary graph algorithms)

(elementary graph algorithms) (elementary graph algorithms) Παύλος Εφραιμίδης περιεχόμενα αναπαραστάσεις οριζόντια διερεύνηση καθοδική διερεύνηση αναπαράσταση δύο καθιερωμένοι τρόποι: πίνακας γειτνίασης συλλογή από καταλόγους γειτνίασης

Διαβάστε περισσότερα

Αλγόριθμοι Γραφημάτων

Αλγόριθμοι Γραφημάτων Αλγόριθμοι Γραφημάτων 1. Συντομότατα μονοπάτια 2. Αλγόριθμος Bellman-Ford 3. Αλγόριθμος Dijkstra 4. Floyd-Warshall Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Single-Source Shortest Path Πρόβλημα:

Διαβάστε περισσότερα

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών έντρα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής.

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 10γ: Αλγόριθμοι Γραφημάτων- Διερεύνηση Πρώτα σε Βάθος (DFS)- Τοπολογική Ταξινόμηση Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ασκηση 1 [ ] Παράδοση : Τετάρτη , 13:00

Ασκηση 1 [ ] Παράδοση : Τετάρτη , 13:00 Χρήστος. Ζαρολιάγκης Τεχνολογίες Υλοποίησης Αλγορίθµων : Άσκηση 1 1 Ασκηση 1 [16.03.2016] Παράδοση : Τετάρτη 13.04.2016, 13:00 Η παρούσα άσκηση αφορά στον έλεγχο διµερότητας ενός γραφήµατος. Σκοπός της

Διαβάστε περισσότερα

auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1

auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Σχεδίαση Αλγορίθμων Μείωσε και Βασίλευε http://delab.csd.auth.gr/courses/algorithms/ auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Μείωσε και Βασίλευε 1. Μειώνουμε το στιγμιότυπο του προβλήματος

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 16 Δένδρα (Trees) 1 / 42 Δένδρα (Trees) Ένα δένδρο είναι ένα συνδεδεμένο γράφημα χωρίς κύκλους Για κάθε

Διαβάστε περισσότερα

Δοµές Δεδοµένων & Ανάλυση Αλγορίθµων 3ο Εξάµηνο. Γραφήµατα. (Graphs)

Δοµές Δεδοµένων & Ανάλυση Αλγορίθµων 3ο Εξάµηνο. Γραφήµατα. (Graphs) Δοµές Δεδοµένων & Ανάλυση Αλγορίθµων 3ο Εξάµηνο Γραφήµατα (Grphs) http://tos.it.tith.gr/~mos/thing_gr.html Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής ATEI ΘΕΣΣΑΛΟΝΙΚΗΣ Γράφημα (Grph) Oρισμός 1: Έστω το µη

Διαβάστε περισσότερα

Δοµές Δεδοµένων. 9η Διάλεξη Ταξινόµηση - Στοιχειώδεις µέθοδοι. Ε. Μαρκάκης

Δοµές Δεδοµένων. 9η Διάλεξη Ταξινόµηση - Στοιχειώδεις µέθοδοι. Ε. Μαρκάκης Δοµές Δεδοµένων 9η Διάλεξη Ταξινόµηση - Στοιχειώδεις µέθοδοι Ε. Μαρκάκης Περίληψη Bubble Sort Selection Sort Insertion Sort Χαρακτηριστικά επιδόσεων Shellsort Ταξινόµηση συνδεδεµένων λιστών Δοµές Δεδοµένων

Διαβάστε περισσότερα

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ

PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ PROJECT ΣΤΟ ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟ ΟΥΣ ΜΕΡΟΣ ΠΡΩΤΟ Πολίτη Όλγα Α.Μ. 4528 Εξάµηνο 8ο Υπεύθυνος Καθηγητής Λυκοθανάσης

Διαβάστε περισσότερα

Διερεύνηση γραφήματος

Διερεύνηση γραφήματος Διερεύνηση γραφήματος Διερεύνηση γραφήματος Ένας αλγόριθμος διερεύνησης γραφήματος επισκέπτεται τους κόμβους του γραφήματος με μια καθορισμένη στρατηγική, π.χ. κατά εύρος ή κατά βάθος. Καθοδική διερεύνηση

Διαβάστε περισσότερα

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 3. Αλγόριθµοι Τυφλής Αναζήτησης. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 3 Αλγόριθµοι Τυφλής Αναζήτησης Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Αλγόριθµοι Τυφλής Αναζήτησης Οι αλγόριθµοι τυφλής αναζήτησης (blind

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 6η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Γραφήματα Βασικές Έννοιες και Εφαρμογές Βασικοί

Διαβάστε περισσότερα

Γραμμικές λίστες. Γκόγκος Χρήστος ΤΕΙ Ηπείρου

Γραμμικές λίστες. Γκόγκος Χρήστος ΤΕΙ Ηπείρου Γραμμικές λίστες Γκόγκος Χρήστος ΤΕΙ Ηπείρου Στατική αναπαράσταση γραμμικής λίστας const int MAX = 50000; struct static_list { T elements[max]; int size = 0; ; https://www.securecoding.cert.org/confluence/display/cplusplus/ctr00-cpp.+understand+when+to+prefer+vectors+over+arrays

Διαβάστε περισσότερα

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων. 22 - Γράφοι

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων. 22 - Γράφοι HY118- ιακριτά Μαθηµατικά Θεωρία γράφων / γραφήµατα Τρίτη, 19/05/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 5/21/2015 1 1 5/21/2015 2 2 Τι είναι οι γράφοι; Mία ειδική κλάση διακριτών δοµών (που

Διαβάστε περισσότερα

Σχεδιαση Αλγοριθμων -Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο

Σχεδιαση Αλγοριθμων -Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο Σχεδίαση Αλγορίθμων Άπληστοι Αλγόριθμοι http://delab.csd.auth.gr/~gounaris/courses/ad 1 Άπληστοι αλγόριθμοι Προβλήματα βελτιστοποίησης ηςλύνονται με μια σειρά επιλογών που είναι: εφικτές τοπικά βέλτιστες

Διαβάστε περισσότερα

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Περίληψη Επίλυση προβληµάτων χρησιµοποιώντας Greedy Αλγόριθµους Ελάχιστα Δέντρα Επικάλυψης Αλγόριθµος του Prim Αλγόριθµος του Kruskal Πρόβληµα Ελάχιστης Απόστασης

Διαβάστε περισσότερα

Α' ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 8 ΙΟΥΝΙΟΥ 2008 ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ

Α' ΤΕΛΙΚΗ ΕΞΕΤΑΣΗ 8 ΙΟΥΝΙΟΥ 2008 ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΕΛΛΗΝΙΚΟ ΝΟΙΚΤΟ ΠΝΕΠΙΣΤΗΜΙΟ ΠΡΟΡΜΜ ΣΠΟΥΩΝ: ΜΕΤΠΤΥΧΙΚΗ ΕΞΕΙΙΚΕΥΣΗ ΣΤ ΠΛΗΡΟΦΟΡΙΚ ΣΥΣΤΗΜΤ (ΠΛΣ) ΘΕΜΤΙΚΗ ΕΝΟΤΗΤ: ΣΙΚΕΣ ΕΞΕΙΙΚΕΥΣΕΙΣ ΣΕ ΘΕΩΡΙ ΚΙ ΛΟΙΣΜΙΚΟ (ΠΛΣ50) ' ΤΕΛΙΚΗ ΕΞΕΤΣΗ 8 ΙΟΥΝΙΟΥ 2008 ΠΝΤΗΣΕΙΣ ΣΤ ΘΕΜΤ

Διαβάστε περισσότερα

Φροντιστήριο 4 Σκελετοί Λύσεων

Φροντιστήριο 4 Σκελετοί Λύσεων Φροντιστήριο 4 Σκελετοί Λύσεων Άσκηση 1 Υποθέτουμε πως οι λίστες είναι υλοποιημένες χρησιμοποιώντας τις πιο κάτω δομές. typedef struct Node{ type data; struct node *next; node; node *top; list; Υλοποιούμε

Διαβάστε περισσότερα

f e Γράφημα (Graph) Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής ΑΤΕΙ ΘΕΣΣΑΛΟΝΙΚΗΣ

f e Γράφημα (Graph) Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής ΑΤΕΙ ΘΕΣΣΑΛΟΝΙΚΗΣ Δοµές Δεδοµένων & Ανάλυση Αλγορίθµων ο Εξάµηνο Γραφήµατα (Grps) ttp://tos.it.tit.r/~mos/tin_gr.tml Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής ATEI ΘΕΣΣΑΛΟΝΙΚΗΣ Γράφημα (Grp) Oρισμός : Έστω το µη κενό και πεπερασµένο

Διαβάστε περισσότερα

Αναδρομικοί Αλγόριθμοι

Αναδρομικοί Αλγόριθμοι Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 4: Ο ΑΤΔ Λίστα & Υλοποίηση Λίστας με σειριακή αποθήκευση- Ο ΑΤΔ Συνδεδεμένη Λίστα- Υλοποίηση ΑΤΔ Συνδεδεμένη Λίστα με πίνακα

Δομές Δεδομένων. Ενότητα 4: Ο ΑΤΔ Λίστα & Υλοποίηση Λίστας με σειριακή αποθήκευση- Ο ΑΤΔ Συνδεδεμένη Λίστα- Υλοποίηση ΑΤΔ Συνδεδεμένη Λίστα με πίνακα Ενότητα 4: Ο ΑΤΔ Λίστα & Υλοποίηση Λίστας με σειριακή αποθήκευση- Ο ΑΤΔ Συνδεδεμένη Λίστα- Υλοποίηση ΑΤΔ Συνδεδεμένη Λίστα με πίνακα Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 6 Μαΐου 2015 1 / 42 Εύρεση Ελάχιστου Μονοπατιού

Διαβάστε περισσότερα

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων Σκοπός της παρούσας εργασίας είναι η εξοικείωση µε τις σηµαντικότερες έννοιες και τους αλγορίθµους της Θεωρίας ένδρων.

Διαβάστε περισσότερα

Αναδροµή. Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής

Αναδροµή. Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής Αναδροµή Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής 1 Αναδροµή Βασική έννοια στα Μαθηµατικά και στην Πληροφορική.

Διαβάστε περισσότερα

Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές

Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές Διάλεξη 07: Λίστες Ι Υλοποίηση & Εφαρμογές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ευθύγραμμες Απλά Συνδεδεμένες Λίστες (εισαγωγή, εύρεση, διαγραφή) Ευθύγραμμες Διπλά Συνδεδεμένες Λίστες

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 11: Minimum Spanning Trees Αλγόριθμος Prim Αλγόριθμος Kruskal Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Διάλεξη 15: Δομές Δεδομένων IV (Διπλά Συνδεδεμένες Λίστες)

Διάλεξη 15: Δομές Δεδομένων IV (Διπλά Συνδεδεμένες Λίστες) Τμήμα Πληροφορικής Πανεπιστήμιο Κύπρου ΕΠΛ132 Αρχές Προγραμματισμού II Διάλεξη 15: Δομές Δεδομένων IV (Διπλά Συνδεδεμένες Λίστες) Δημήτρης Ζεϊναλιπούρ http://www.cs.ucy.ac.cy/courses/epl132 15-1 Περιεχόμενο

Διαβάστε περισσότερα

Εργαστήριο 5: Υλοποίηση Αφηρημένου Τύπου Δεδομένων: Διπλά Συνδεδεμένη Λίστα

Εργαστήριο 5: Υλοποίηση Αφηρημένου Τύπου Δεδομένων: Διπλά Συνδεδεμένη Λίστα Εργαστήριο 5: Υλοποίηση Αφηρημένου Τύπου Δεδομένων: Διπλά Συνδεδεμένη Λίστα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Διπλά Συνδεδεμένες Λίστες -Υλοποίηση Διπλά Συνδεδεμένης Λίστας με

Διαβάστε περισσότερα

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε μία αναδρομική συνάρτηση που θα παίρνει ως παράμετρο ένα δείκτη στη ρίζα ενός δυαδικού δένδρου και θα επιστρέφει το βαθμό του

Διαβάστε περισσότερα

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής Ενότητα 8: Γραμμική Αναζήτηση και Δυαδική Αναζήτηση-Εισαγωγή στα Δέντρα και Δυαδικά Δέντρα-Δυαδικά Δέντρα Αναζήτησης & Υλοποίηση ΔΔΑ με δείκτες Καθηγήτρια Μαρία Σατρατζέμη Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 2006 9-1

ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 2006 9-1 Σωροί Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ουρές Προτεραιότητας Σωροί υλοποίηση και πράξεις Ο αλγόριθµος ταξινόµησης HeapSort Παραλλαγές Σωρών ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι

Διαβάστε περισσότερα

Υλοποίηση Λιστών. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα:

Υλοποίηση Λιστών. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Υλοποίηση Λιστών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ευθύγραμμές Απλά και Διπλά Συνδεδεμένες Λίστες Κυκλικές Απλά και Διπλά Συνδεδεμένες Λίστες Τεχνικές Μείωσης Μνήμης ΕΠΛ 231 Δομές

Διαβάστε περισσότερα

Στοίβες - Ουρές. Στοίβα (stack) Γιάννης Θεοδωρίδης, Νίκος Πελέκης, Άγγελος Πικράκης Τµήµα Πληροφορικής

Στοίβες - Ουρές. Στοίβα (stack) Γιάννης Θεοδωρίδης, Νίκος Πελέκης, Άγγελος Πικράκης Τµήµα Πληροφορικής Στοίβες - Ουρές Γιάννης Θεοδωρίδης, Νίκος Πελέκης, Άγγελος Πικράκης Τµήµα Πληροφορικής οµές εδοµένων 1 Στοίβα (stack) οµή τύπουlifo: Last In - First Out (τελευταία εισαγωγή πρώτη εξαγωγή) Περιορισµένος

Διαβάστε περισσότερα

ΠΛΗ20 ΕΝΟΤΗΤΑ 5: ΘΕΩΡΙΑ ΓΡΑΦΗΜΑΤΩΝ/2. Μάθηµα 5.1: Παραστάσεις Γραφηµάτων. ηµήτρης Ψούνης

ΠΛΗ20 ΕΝΟΤΗΤΑ 5: ΘΕΩΡΙΑ ΓΡΑΦΗΜΑΤΩΝ/2. Μάθηµα 5.1: Παραστάσεις Γραφηµάτων. ηµήτρης Ψούνης ΠΛΗ20 ΕΝΟΤΗΤΑ 5: ΘΕΩΡΙΑ ΓΡΑΦΗΜΑΤΩΝ/2 Μάθηµα 5.1: Παραστάσεις Γραφηµάτων ηµήτρης Ψούνης 2 ΠΕΡΙΕΧΟΜΕΝΑ Α. Σκοπός του Μαθήµατος Β.Θεωρία 1. Πίνακας Γειτνίασης 1. Ορισµός για µη κατευθυνόµενα γραφήµατα 2.

Διαβάστε περισσότερα

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Διαβάστε περισσότερα

Αλγόριθμοι Γραφημάτων

Αλγόριθμοι Γραφημάτων Αλγόριθμοι Γραφημάτων 1. Minimum Spanning Trees 2. Αλγόριθμος Prim 3. Αλγόριθμος Kruskal Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Minimum Spanning Tree Πρόβλημα: Για δοσμένο συνεκτικό, μη προσανατολισμένο,

Διαβάστε περισσότερα

υναµική έσµευση Μνήµης (συν.) ΕΠΛ 132 Αρχές Προγραµµατισµού ΙΙ 2 Εφαρµογή

υναµική έσµευση Μνήµης (συν.) ΕΠΛ 132 Αρχές Προγραµµατισµού ΙΙ 2 Εφαρµογή υναµική έσµευση Μνήµης (συν.) Στην ενότητα αυτή θα µελετηθούν: Μια εφαρµογή συνδεδεµένων λιστών ιπλά συνδεδεµένες Λίστες ΕΠΛ 132 Αρχές Προγραµµατισµού ΙΙ 1 Εφαρµογή Ζητούµενο: Πρόγραµµα που παίρνει σαν

Διαβάστε περισσότερα

οµές εδοµένων 3 ο Εξάµηνο ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ

οµές εδοµένων 3 ο Εξάµηνο ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ 1 ένδρα εσωτερικός κόµβος u το δένδρο έχει ύψος 4 u έχει ύψος 3 w έχει βάθος 2 κόµβος ένδρο: γράφηµα χωρίς κύκλους o Ρίζα (root) o Κόµβος (node) o Ακµή (edge) o Γονέας (parent) Παιδί (child)

Διαβάστε περισσότερα

Alternative to Balanced Trees, Comms of the ACM, 33(6), June 1990,

Alternative to Balanced Trees, Comms of the ACM, 33(6), June 1990, ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Πληροφορικής & Τηλεπικοινωνιών Μια σημείωση από τον Α. Δελή για το άρθρο: W. Pugh, Skip Lists: A Probabilistic Alternative to Balanced Trees, Comms of the ACM, 33(), June 10,

Διαβάστε περισσότερα

Προγραμματισμός Ι. Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ακ. Έτος Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Προγραμματισμός Ι. Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ακ. Έτος Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Προγραμματισμός Ι Δομές Δεδομένων Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ακ. Έτος 2009-2010 Δομές Δεδομένων Μια δομή δεδομένων είναι μια συλλογή δεδομένων με κάποιες

Διαβάστε περισσότερα

IsEmptyList(L): επιστρέφει true αν L = < >, false

IsEmptyList(L): επιστρέφει true αν L = < >, false ΕΝΟΤΗΤΑ 3 ΓΡΑΜΜΙΚΕΣ ΛΙΣΤΕΣ Ορισµός Γραµµικές Λίστες Γραµµική λίστα (linear list) είναι ένα σύνολο από n 0 κόµβους L 0, L 1,..., L n-1, όπου το στοιχείο L 0 είναι το πρώτο στοιχείο (ή ο πρώτος κόµβος),

Διαβάστε περισσότερα