Supporting Information
|
|
- Μαργαρίτες Σερπετζόγλου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Supporting Information rganocatalytic Enantioselective Formal [4+2] Cycloaddition of Enones with Cyclic N-Sulfonylies and Methylene Chromene for Chiral Spirocyclic Compounds Jie Fei, Qingqing Qian, Xiaohua Sun, Xiaodong Gu, Chuncheng Zou, and Jinxing Ye *, Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, 13 Meilong Road, Shanghai 2237, China. A: General Information and Starting Materials... S2 B: Experimental Details... S3 C: Characterization of Products... S5 D: NMR Spectra and HPLC chromatograms of Products... S19 E: Crystallographic Information for Product 3p... S87 F: Crystallographic Information for Product 8d... S1 S1
2 A: General Information and Starting Materials General Information. Proton nuclear magnetic resonance ( 1 H NMR) spectra and carbon nuclear magnetic resonance ( 13 C NMR) spectra were recorded on a Bruker AV-4 spectrometer (4 MHz and 1 MHz). Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CDCl 3 : δ 7.26) Chemical shifts for carbon are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent (CDCl 3 : δ 77.16). Data are represented as follows: chemical shift, integration, multiplicity (br = broad, s = singlet, d = doublet, dd = double doublet, t = triplet, q = quartet, m = multiplet), coupling constants in Hertz (Hz). High resolution mass spectrometry (EI) was carried out using a Waters Micromass GCT spectrometer. ptical rotations were measured on an Autopol III automatic polarimeter (Rudolph Research analytical). Enantiomeric excess was detered by chiral HPLC using Agilent 12 Series, Chiralpak IA (.46cm x 25 cm), IC (.46cm x 25 cm), Chiralpak AY (.46cm x 25 cm) and Chiralpak AY (.46cm x 25 cm). Starting Materials. All solvents and inorganic reagents were from commercial sources and used without purification unless otherwise noted. N-Sulfonylies was synthesized following the literature procedure [1]. Substrate enones were synthesized following the literature procedure [2]. 7-hydroxy-2,4-dimethylbenzo[h]chromen-1-ium perchlorate was synthesized following the literature procedure [3]. References [1] a) Q.-R. Zhang, J.-R. Huang, W. Zhang and L. Dong, rg. Lett. 214, 16, ; b) Wang, Y. Q.; Yu, C. B.; Wang, D. W.; Wang, X. B.; Zhou, Y.-G. rg. Lett. 28, 1, [2] a) K. Zumbansen, A. Döhring, B. List, Adv. Synth. Catal. 21, 352, ; b) J. E. Wilson, G. C. Fu, Angew. Chem. Int. Ed. 26, 45, [3] V. V. Mezheritskii, R. V. Tyurin, L. G. Minyaeva, A. N. Antonov, A. P. Zadorozhnaya, Russ. J. rg. Chem. 26, 42, S2
3 B: Experimental Details a) General procedure for formal [4+2] cycloaddition reaction Catalyst (.1 mmol,.5 equiv.) and benzoic acid (.1 mmol,.5equiv.) were added to a solution of 2 (.4 mmol, 2. equiv) in EtAc (.4 ml), 1 (.2 mmol, 1. equiv) was added then. The mixture was stirred at room temperature for indicated time and then the solvent was removed under vacuum. The residue was purified by silica gel chromatography to afford the desired product. The enantiomeric ratio was detered by HPLC analysis on chiral column. b). solvent screening using an ae 4c a. entry solvent conv (%) b ee (%) c 1 DCM TCM MeCN THF full 96 5 Dioxane EtAc full 97 a reactions were performed with 1a (.1 mmol), 2a (.2 mmol), and cat. (.2 mmol) in solvent (.2 ml). b Detered by GC analysis. c Detered by HPLC analysis on a chiral stationary phase. c). additive screening using an ae 4c in EtAc a S3
4 entry additive conv (%) b ee (%) c 1 (o-f)c 6 H 4 C 2 H full 96 2 (o-me)c 6 H 4 C 2 H TsH. H AcH N-Boc-D-Phg full 97 6 N-Boc-L-Phg full 95 7 Et 3 N trace n.d. a reactions were performed with 1a (.1 mmol), 2a (.2 mmol), and cat. (.2 mmol) in EtAc (.2 ml). b Detered by GC analysis. c Detered by HPLC analysis on a chiral stationary phase. d). catalyst loading screening using an ae 4c/benzoic acid combination in EtAc a entry a x conv (%) b ee (%) c 1 1 full d a reactions were performed with 1a (.1 mmol), 2a (.2 mmol), and cat. in EtAc (.2 ml). b Detered by GC analysis. c Detered by HPLC analysis on a chiral stationary phase. d reaction were performed with 1a (.1 mmol), 2a (.15 mmol). S4
5 C: Characterization of Products S 2 3a, the product was obtained in 9% yield,.62 g, colorless oil. [α] 25 D = 5.5 (c = 1. in CH 2 Cl 2 ); 1 H-NMR (4 MHz, CDCl 3 ): δ (ppm) (m, 4H), (m, 4H), 6.96 (d, J = 8.4 Hz, 1H), 6. (s, 1H), (m, 1H), 3.5 (d, J = 14.4 Hz, 1H), (m, 2H), 2.7 (d, J = 8.8 Hz, 2H), (m, 1H). 13 C-NMR (1 MHz, CDCl 3 ): δ (ppm) 38.22, 43.93, 47.41, 52.29, 65.12, , 125.6, , 126.1, , , 128.9, 13.19, , , HRMS(EI) calcd for C 18 H 17 N 4 S [M] , found: ; HPLC (DAICEL Chiralpak AY, hexane/ EtH = 7/3, flow.7 ml/, detection at 21nm) retention time = 9. (major) and 11.8 (or). 3b, the product was obtained in 9% yield,.68 g, white solid. Mp C; [α] 25 D = -3.3 (c = 1. in CH 2 Cl 2 ); 1 H-NMR (4 MHz, CDCl 3 ): δ (ppm) (m, 6H), 7.2 (d, J = 8.4 Hz, 1H), 7.3 (d, J = 8.4 Hz, 1H), 5.7 (s, 1H), (m, 1H), 3.7 (d, J = 14.8 Hz, 1H), (m, 2H), (m, 2H), 2.19 (dd, J = 14.4, 12.8 Hz, 1H). 13 C-NMR (1 MHz, CDCl 3 ): δ (ppm) 37.58, 43.69, 47.24, 52.11, 64.97, , , 126.1, 126.6, , 129., 13.27, 132.9, 14.69, , HRMS(EI) calcd for C 18 H 16 ClN 4 S [M] , found: ; HPLC (DAICEL Chiralpak AY, hexane/ EtH = 7/3, flow.7 ml/, detection at 21nm) retention time = 9.6 (major) and 14.2 (or). S 2 Br 3c, the product was obtained in 85% yield,.71 g, white solid. Mp S5
6 C; [α] 25 D = -1.6 (c =.5 in CH 2 Cl 2 ); 1 H-NMR (4 MHz, CDCl 3 ): δ (ppm) 7.42 (s, 1H), (m, 3H), (m, 1H), (m, 1H),7.7 (dd, J = 8., 1.2 Hz, 1H), 5.12 (s, 1H), (m, 1H), 3.1 (d, J = 14.8 Hz, 1H), (m, 1H), (m, 2H), (m, 1H), (m, 1H). 13 C-NMR (1 MHz, CDCl 3 ): δ (ppm) 37.94, 43.48, 47.21, 52.52, 65.1, , , , , 126.2, 126.6, , 13.38, 13.4, 13.51, , , HRMS(EI) calcd for C 18 H 16 BrN 5 S [M] , found: ; HPLC (DAICEL Chiralpak AY, hexane/ EtH = 7/3, flow.7 ml/, detection at 21nm) retention time = 7.9 (major) and 21.1 (or). S 2 Br 3d, the product was obtained in 86% yield,.72 g, white solid. Mp C; [α] 25 D = -2.8 (c = 1. in CH 2 Cl 2 ); 1 H-NMR (4 MHz, CDCl 3 ): δ (ppm) 7.45 (d, J = 8.4 Hz, 2H), (m, 3H), 7.15 (d, J = 8.4 Hz, 2H), 7.6 (d, J = 8.4 Hz, 2H), 5.35 (s, 1H), (m, 1H), 3.9 (d, J = 14.4 Hz, 1H), 2.92 (dd, J = 14., 1.6 Hz, 1H), (m, 1H), (m, 1H), (m, 1H), 2.19 (dd, J = 13.6, 12.8 Hz, 1H). 13 C-NMR (1 MHz, CDCl 3 ): δ (ppm) 37.7, 43.61, 47.2, 52.35, 64.98, , 12.99, , , 126.2, 128.5, 13.32, , , , HRMS(EI) calcd for C 18 H 16 BrN 4 S [M] , found: ; HPLC (DAICEL Chiralpak AY, hexane/ EtH = 7/3, flow.7 ml/, detection at 21nm) retention time = 11. (major) and 15.8 (or). S 2 F 3e, the product was obtained in 85% yield,.61 g, white solid. Mp C; [α] 25 D = 1.4 (c = 1. in CH 2 Cl 2 ); 1 H-NMR (4 MHz, CDCl 3 ): δ (ppm) (m, 2H), (m, 3H), (m, 1H), (m, 2H), 5.67 (s, 1H), (m, 1H), 3.7 (d, J = 14.8 Hz, 1H), (m, 1H), (m, 2H), (m, 1H), (m, 1H). 13 C-NMR (1 MHz, CDCl 3 ): δ (ppm) 33.74, 41.38, 45.98, 52.25, 65.2, , , , 124.6, , 125.1, , , , , , , , , 13.17, , , 162.3, HRMS(EI) calcd for C 18 H 16 FN 4 S [M] , found: ; HPLC (DAICEL Chiralpak AY, hexane/ EtH = 7/3, flow S6
7 .7 ml/, detection at 21nm) retention time = 9.4 (major) and 18.8 (or). 3f, the product was obtained in 92% yield,.69 g, white solid. Mp C; [α] 25 D = 2.4 (c =.5 in CH 2 Cl 2 ); 1 H-NMR (4 MHz, CDCl 3 ): δ (ppm) (m, 2H), (m, 1H), (m, 2H), 7.14 (d, J = 8.4 Hz, 1H), 7.2 (dd, J = 8.4,.8 Hz, 1H), 6.85 (d, J = 8.8 Hz, 2H), 5.61 (s, 1H), 3.77 (s, 3H), (m, 1H), 3.4 (d, J = 14.4 Hz, 1H), 2.88 (dd, J = 14.4, 2. Hz, 3H), (m, 2H), 2.21 (dd, J = 14.4, 12.8 Hz, 1H). 13 C-NMR (1 MHz, CDCl 3 ): δ (ppm) 37.48, 44.18, 47.73, 52.25, 55.34, 65.8, , , , , 126.1, , 13.16, , , , HRMS(EI) calcd for C 19 H 19 N 5 S [M] , found: ; HPLC (DAICEL Chiralpak AS, hexane/ EtH = 7/3, flow.7 ml/, detection at 21nm) retention time = 19. (or) and 31. (major). S 2 3g, the product was obtained in 89% yield,.66 g, white solid. Mp C; [α] 25 D = 29.4 (c = 1. in CH 2 Cl 2 ); 1 H-NMR (4 MHz, CDCl 3 ): δ (ppm) (m, 2H), (m, 3H), (m, 1H), (m, 1H), 6.88 (d, J = 8. Hz, 1H), 5.18 (s, 1H), (m, 1H), 3.84 (s, 3H), (m, 2H), (m, 3H), (m, 1H). 13 C-NMR (1 MHz, CDCl 3 ): δ (ppm) 32.86, 41.96, 45.82, 52.29, 55.34, 65.25, 11.81, , 12.74, , , , , 128.2, , 13.7, , 157.3, HRMS(EI) calcd for C 19 H 19 N 5 S [M] , found: ; HPLC (DAICEL Chiralpak AY, hexane/ EtH = 7/3, flow.7 ml/, detection at 21nm) retention time = 9.8 (major) and 13.9 (or). S7
8 3h, the product was obtained in 94% yield,.67 g, white solid. Mp C; [α] 25 D = 1.5 (c = 1. in CH 2 Cl 2 ); 1 H-NMR (4 MHz, CDCl 3 ): δ (ppm) (m, 2H), (m, 1H), (m, 4H), 7.3 (dd, J = 8.4,.8 Hz, 1H), 5.56 (s, 1H), (m, 1H), 3.5 (d, J = 14. Hz, 1H), 2.88 (d, J = 14. Hz, 2H), (m, 2H), 2.31 (s, 3H), (m, 1H). 13 C-NMR (1 MHz, CDCl 3 ): δ (ppm) 21.1, 37.83, 44.2, 47.58, 52.24, 65.13, , , , , , , 13.14, , , , HRMS(EI) calcd for C 19 H 19 N 4 S [M] , found: ; HPLC (DAICEL Chiralpak AY, hexane/ EtH = 7/3, flow.7 ml/, detection at 21nm) retention time = 1.4 (major) and 2.9 (or). S 2 NC 3i, the product was obtained in 84% yield,.62 g, white solid. Mp C; [α] 25 D = -8.4 (c = 1. in CH 2 Cl 2 ); 1 H-NMR (4 MHz, CDCl 3 ): δ (ppm) 7.6 (d, J = 8.4 Hz, 2H), 7.4 (d, J = 8.4 Hz, 2H), (m, 2H), (m, 1H), (m, 1H), 5.92 (s, 1H), (m, 1H), 3.12 (d, J = 14.8 Hz, 1H), 2.93 (d, J = 14. Hz, 2H), (m, 2H), (m, 1H). 13 C-NMR (1 MHz, CDCl 3 ): δ (ppm) 38.15, 43.22, 46.57, 51.92, 64.87, 11.98, , , , 126.9, , 129.9, 13.39, , , , HRMS(EI) calcd for C 19 H 16 N 2 4 S [M] , found: ; HPLC (DAICEL Chiralpak AS, hexane/ EtH = 4/1, flow.7 ml/, detection at 21nm) retention time = 3.8 (major) and 34.7 (or). 3j, the product was obtained in 95% yield,.74 g, yellow solid. Mp C; [α] 25 D = -5.1 (c = 1. in CH 2 Cl 2 ); 1 H-NMR (4 MHz, CDCl 3 ): δ (ppm) (m, 2H), (m, 1H), (m, 1H), (m, 1H), 6.75 (d, J = 8. Hz, 2H), 6.71 (dd, J = 8., 1.6 Hz, 1H), 5.92 (s, 2H), 5.42 (s, 1H), S8
9 (m, 1H), 3.5 (d, J = 14.8 Hz, 1H), (m, 2H), (m, 1H), (m, 1H), 2.19 (dd, J = 14.4, 12.8 Hz, 1H). 13 C-NMR (1 MHz, CDCl 3 ): δ (ppm) 37.95, 44.7, 47.34, 52.9, 64.96, 11.8, 17.18, 18.48, , , 125.1, , 126.8, 13.14, , , , , HRMS(EI) calcd for C 19 H 17 N 6 S [M] , found: ; HPLC (DAICEL Chiralpak AS, hexane/ EtH = 7/3, flow.7 ml/, detection at 21nm) retention time = 23.9 (or) and 34.7 (major). 3k, the product was obtained in 7% yield,.52 g, yellow oil. [α] 25 D = -7.3 (c =.7 in CH 2 Cl 2 ); 1 H-NMR (4 MHz, CDCl 3 ): δ (ppm) (m, 8H), 7.5 (d, J = 8. Hz, 1H), 6.47 (d, J = 15.6 Hz, 1H), 6.14 (dd, J = 16., 6.8 Hz, 1H), 5.48 (s, 1H), (m, 1H), 2.98 (d, J = 14.4 Hz, 1H), 2.84 (d, J = 14.4 Hz, 2H), 2.7 (dd, J = 14.4, 2. Hz, 1H), (m, 1H), (m, 1H). 13 C-NMR (1 MHz, CDCl 3 ): δ (ppm) 36.6, 42.21, 46.47, 52.45, 65.2, , , , , 126.2, , , , , 13.19, 13.3, 13.8, , , HRMS(EI) calcd for C 2 H 19 N 4 S [M] , found: ; HPLC (DAICEL Chiralpak AY, hexane/ EtH = 7/3, flow.7 ml/, detection at 21nm) retention time = 11.3 (major). S 2 3l, the product was obtained in 74% yield,.42 g, white solid. Mp C; [α] 25 D = 18.7 (c = 1. in CH 2 Cl 2 ); 1 H-NMR (4 MHz, CDCl 3 ): δ (ppm) (m, 1H), (m, 2H), 7.3 (d, J = 8. Hz, 1H), 5.38 (s, 1H), (m, 2H), 2.66 (d, J = 14. Hz, 1H), (m, 1H), (m, 1H), (m, 1H), 1.83 (dd, J = 14., 12. Hz, 1H), 1.11 (d, J = 6.4 Hz, 3H). 13 C-NMR (1 MHz, CDCl 3 ): δ (ppm) 21.6, 28.3, 44.44, 48.89, 52.7, 65.28, , , , , 13.1, , HRMS(EI) calcd for C 13 H 15 N 4 S [M] , found: ; HPLC (DAICEL Chiralpak AY, hexane/ EtH = 7/3, flow.7 ml/, detection at 21nm) retention time = 11.8 (major) and 18.4 (or). S9
10 S 2 3m, the product was obtained in 64% yield,.36 g, pale yellow oil. [α] 25 D = (c = 1. in CH 2 Cl 2 ); 1 H-NMR (4 MHz, CDCl 3 ): δ (ppm) 7.82(dd, J = 8., 1.2 Hz, 1H), (m, 1H), (m, 1H), 7.32 (dd, J = 8.4, 1.2 Hz, 1H), 3.2 (d, J = 6.8 Hz, 2H), (m, 1H), 2.63 (dd, J = 18., 7.2 Hz, 1H), (m, 2H), (m, 1H), 1.96 (dd, J = 18., 11.2 Hz, 1H). 13 C-NMR (1 MHz, CDCl 3 ): δ (ppm) 29.31, 33.55, 38.2, 4.94, 44.6, 116.3, , 126.1, , , , , ; HRMS(EI) calcd for C 13 H 13 N 4 S [M] , found: ; HPLC (DAICEL Chiralpak AY, hexane/ EtH = 7/3, flow.7 ml/, detection at 21nm) retention time = 26.3 (mnior) and 29. (major). 3n, the product was obtained in 97% yield,.57 g, colorless solid. Mp C; [α] 25 D = (c = 1. in CH 2 Cl 2 ); 1 H-NMR (4 MHz, CDCl 3 ): δ (ppm) 7.79 (dd, J = 8., 1.6 Hz, 1H), (m, 1H), (m, 1H), 7.32 (dd, J = 8.4,.8 Hz, 1H), (m, 2H), (m, 2H), (m, 1H), (m, 2H), (m, 2H), (m, 1H). 13 C-NMR (1 MHz, CDCl 3 ): δ (ppm) 24.67, 3.87, 36.12, 41.11, 41.84, 47.44, 116.4, , 126.9, 128.4, , , , HRMS(EI) calcd for C 14 H 15 N 4 S [M] , found: ; HPLC (DAICEL Chiralpak AY, hexane/ EtH = 7/3, flow.7 ml/, detection at 21nm) retention time = 28.4 (or) and 33.1 (major). 3o, the product was obtained in 7% yield,.43 g, colorless oil. [α] 25 D = -3.3 (c = 1. in CH 2 Cl 2 ); 1 H-NMR (4 MHz, CDCl 3 ): δ (ppm) 7.81 (dd, J = 8., 1.6 Hz, 1H), (m, 1H), (m, 1H), 7.31 (dd, J = 8.,.8 Hz, 1H), 3.5 (dd, J = 16., 5.6 Hz, 1H), 2.96 (dd, J = 16.4, 7.2 Hz, 1H), (m, 1H), (m, 4H), (m, 3H). 13 C-NMR (1 MHz, CDCl 3 ): δ (ppm) 24.25, 27.97, 32.99, 36.15, 42.8, 43.82, 49.33, , , 126.1, , , , , HRMS(EI) calcd for C 15 H 17 N 4 S [M] , found: S1
11 37.877; HPLC (DAICEL Chiralpak AY, hexane/ EtH = 7/3, flow.7 ml/, detection at 21nm) retention time = 26.1 (or) and 36. (major). S 2 S 3p, the product was obtained in 75% yield,.52 g, white solid. Mp C; [α] 25 D = 6.2 (c = 1. in CH 2 Cl 2 ); 1 H-NMR (4 MHz, CDCl 3 ): δ (ppm) (m, 1H), (m, 2H), (m, 1H), (m, 3H), 5.33 (s, 1H), (m, 1H), (m, 2H), (m, 2H), (m, 1H), 2.2 (dd, J = 14.4, 12.4 Hz, 1H). 13 C-NMR (1 MHz, CDCl 3 ): δ (ppm) 33.8, 43.39, 47.35, 52.34, 64.9, , , , 126.1, , 126.4, 13.21, , , HRMS(EI) calcd for C 16 H 15 N 4 S 2 [M] , found: ; HPLC (DAICEL Chiralpak AS, hexane/ EtH = 7/3, flow.7 ml/, detection at 21nm) retention time = 39.7 (major). S 2 3q, the product was obtained in 75% yield,.5 g, orange oil. [α] 25 D = 4.5 (c = 1. in CH 2 Cl 2 ); 1 H-NMR (4 MHz, CDCl 3 ): δ (ppm) (m, 4H), 7.6 (d, J = 8.4 Hz, 1H), (m, 1H), 6.9 (d, J = 3.2 Hz, 1H), 5.45 (s, 1H), (m, 1H), (m, 2H), (m, 2H), (m, 1H), (m, 1H). 13 C-NMR (1 MHz, CDCl 3 ): δ (ppm) 32.25, 4.79, 45.14, 52.37, 64.7, 14.99, 11.23, , , , 126.2, 13.22, , , , HRMS(EI) calcd for C 16 H 15 N 5 S [M] , found: ; HPLC (DAICEL Chiralpak AS, hexane/ EtH = 7/3, flow.7 ml/, detection at 21nm) retention time = 22.9 (or) and 28.1 (major). 3r, the product was obtained in 93% yield,.73 g, white solid. Mp C; [α] 25 D = -2.4 (c = 1. in CH 2 Cl 2 ); 1 H-NMR (4 MHz, CDCl 3 ): δ (ppm) (m, 3H), 7.67 (s, 1H), (m, 2H), 7.39 (dd, J = 8.4, 1.6 Hz, 1H), (m, 2H), (m, 2H), 7.3 (dd, J = 8., 1.2 Hz, 1H), 5.66 (s, S11
12 1H), (m, 1H), 3.9 (d, J = 14.4 Hz, 1H), 3. (d, J = 14.4 Hz, 1H), 2.91 (d, J = 14.4 Hz, 1H), (m, 2H), 2.32 (dd, J = 14., 12.4 Hz, 1H). 13 C-NMR (1 MHz, CDCl 3 ): δ (ppm) 38.28, 43.78, 47.38, 52.3, 55.15, , , 125.7, , , , , , , , , 13.21, , , , , HRMS(EI) calcd for C 22 H 19 N 4 S [M] , found: ; HPLC (DAICEL Chiralpak AY, hexane/ EtH = 7/3, flow.7 ml/, detection at 21nm) retention time = 1.7 (major) and 21. (or). F S 2 3s, the product was obtained in 83% yield,.6 g, white solid. Mp C; [α] 25 D = 7.7 (c = 1. in CH 2 Cl 2 ); 1 H-NMR (4 MHz, CDCl 3 ): δ (ppm) (m, 2H), (m, 3H), (m, 3H), (m, 1H), 3. (d, J = 14.4 Hz, 1H), 2.91 (d, J = 14.4 Hz, 2H), (m, 2H), (m, 1H). 13 C-NMR (1 MHz, CDCl 3 ): δ (ppm) 38.17, 43.7, 47.35, 51.93, 64.99, , 113.6, , , , , , , , , 127.3, , , , , 16.81, HRMS(EI) calcd for C 18 H 16 FN 4 S [M] , found: ; HPLC (DAICEL Chiralpak AY, hexane/ EtH = 7/3, flow.7 ml/, detection at 21nm) retention time = 7.2 (major) and 23.9 (or). Br S 2 3t, the product was obtained in 87% yield,.73 g, white solid. Mp C; [α] 25 D = 53.3 (c =.4 in CH 2 Cl 2 ); 1 H-NMR (4 MHz, d 6 -DMS): δ (ppm) 8.86 (s, 1H), 8.1 (d, J = 2. Hz, 1H), 7.58 (dd, J = 8.8, 6.4 Hz, 1H), 7.42 (d, J = 7.2 Hz, 2H), 7.35 (t, J = 7.6 Hz, 2H), 7.24 (t, J = 7.2 Hz, 1H), 7.12 (d, J = 8.8 Hz, 1H), (m, 1H), 3.24 (d, J = 14. Hz, 1H), 2.99 (d, J = 14. Hz, 1H), (m, 1H), 2.74 (t, J = 13.2 Hz, 1H) (m, 1H), 2.37 (d, J = 13.6 Hz, 1H). 13 C-NMR (1 MHz, CDCl 3 ): δ (ppm) 38.21, 43.79, 47.37, 52.15, 64.94, 118.6, , , , , , , , , , HRMS(EI) calcd for C 18 H 16 BrN 4 S [M] , found: ; HPLC (DAICEL Chiralpak AY, hexane/ EtH = 4/1, flow.7 ml/, detection at 21nm) retention time = 8.4 (major) and 1.6 (or). S12
13 S 2 3u, the product was obtained in 81% yield,.6 g, white solid. Mp 1-11 C; [α] 25 D = 1.4 (c = 1. in CH 2 Cl 2 ); 1 H-NMR (4 MHz, CDCl 3 ): δ (ppm) (m, 2H), (m, 4H), 6.79 (dd, J = 8.8, 6. Hz, 1H), 6.52 (d, J = 2.4 Hz, 1H), 5.59 (s, 1H), 3.78 (s, 3H), (m, 1H), 3.1 (d, J = 14.4 Hz, 1H), 2.86 (d, J = 13.6 Hz, 2H), (m, 2H), (m, 1H). 13 C-NMR (1 MHz, CDCl 3 ): δ (ppm) 38.13, 44.9, 47.39, 52.44, 55.72, 64.83, 13.99, , , , , , , , 15.48, 16.52, HRMS(EI) calcd for C 19 H 19 N 5 S [M] , found: ; HPLC (DAICEL Chiralpak AY hexane/ EtH = 7/3, flow.7 ml/, detection at 21nm) retention time = 12.3 (major) and 23.3 (or). S 2 3v, the product was obtained in 8% yield,.57 g, white solid. Mp C; [α] 25 D = 24.3 (c = 1. in CH 2 Cl 2 ); 1 H-NMR (4 MHz, CDCl 3 ): δ (ppm) (m, 2H), (m, 3H), (m, 2H), 6.93 (d, J = 8.4 Hz, 1H), 5.22 (s, 1H), (m, 1H), 3.7 (d, J = 14.4 Hz, 1H), (m, 1H), (m, 1H), (m, 1H), 2.36 (s, 3H), 2.24 (dd, J = 14., 12.4 Hz, 1H). 13 C-NMR (1 MHz, CDCl 3 ): δ (ppm) 2.96, 38.22, 43.87, 47.41, 52.44, 65.11, , , 126.3, , , , 13.79, , 142.2, , HRMS(EI) calcd for C 19 H 19 N 4 S [M] , found: ; HPLC (DAICEL Chiralpak AS, hexane/ EtH = 7/3, flow.7 ml/, detection at 21nm) retention time = 13.3 (or) and 18.6 (major). Cl S 2 3w, the product was obtained in 87% yield,.66 g, white solid. Mp C; [α] 25 D = 33.1 (c = 1. in CH 2 Cl 2 ); 1 H-NMR (4 MHz, CDCl 3 ): δ (ppm) (m, 7H), 6.99 (d, J = 8.4 Hz, 1H), 5.78 (s, 1H), (m, 1H), 3.2 (d, J = 14. Hz, 1H), 2.91 (d, J = 14. Hz, 2H), (m, 2H), (m, S13
14 1H). 13 C-NMR (1 MHz, CDCl 3 ): δ (ppm) 38.16, 43.74, 47.35, 51.96, 64.98, 121.1, , , , , , 13.26, , , , HRMS(EI) calcd for C 18 H 16 ClN 4 S [M] , found: ; HPLC (DAICEL Chiralpak AY, hexane/ EtH = 7/3, flow.7 ml/, detection at 21nm) retention time = 7.1 (major) and 1.7 (or). 3x, the product was obtained in 9% yield,.62 g, yellow solid. Mp C; [α] 25 D = -1.2 (c = 1. in CH 2 Cl 2 ); 1 H-NMR (4 MHz, CDCl 3 ): δ (ppm) (m, 2H), 7.97 (d, J = 8. Hz, 1H), (m, 1H), (m, 1H), 7.37(d, J = 9.2 Hz, 1H), (m, 2H), (m, 1H), 2.47 (d, J = 14. Hz, 1H), 2.36 (d, J = 14.4 Hz, 1H ), (m, 1H), (m, 1H), (m, 2H), (m, 1H). 13 C-NMR (1 MHz, CDCl 3 ): δ (ppm) 24.54, 3.64, 36.96, 41.5, 46.65, 47.26, 114.9, , , , 129., , 13.7, , , , , HRMS(EI) calcd for C 18 H 17 N 4 S [M] , found: ; HPLC (DAICEL Chiralpak AY, hexane/ EtH = 7/3, flow.7 ml/, detection at 21nm) retention time = 3.3 (or) and 56.8 (major). 3y, the product was obtained in 8% yield,.58 g, white solid. Mp C; [α] 25 D = 3.3 (c = 1. in CH 2 Cl 2 ); 1 H-NMR (4 MHz, CDCl 3 ): δ (ppm) (m, 6H), (m, 1H), 6.78 (dd, J = 8.4, 2.4 Hz, 1H), 5.66, (s, 1H), (m, 1H), 3.3 (d, J = 14.4 Hz, 1H), (m, 2H), (m, 2H), (m, 1H). 13 C-NMR (1 MHz, CDCl 3 ): δ (ppm) 38.14, 44.6, 47.35, 52.36, 64.88, 17.13, 17.38, , 113.5, 121.7, 121.1, , , , , , 142., 15.41, 15.53, , , HRMS(EI) calcd for C 18 H 16 FN 4 S [M] , found: ; HPLC (DAICEL Chiralpak IA, hexane/ dichloromethane = 7/3, flow 1. ml/, detection at 24nm) retention time = 12. (or) and 14.3 (major). S14
15 2 S 5a, the product was obtained in 83% yield,.54 g, white solid. Mp C; [α] 25 D = 1.6 (c = 1. in CH 2 Cl 2 ); 1 H-NMR (4 MHz, d 6 -DMS): δ (ppm) 8.29 (s, 1H), 7.89 (d, J = 8. Hz, 1H), 7.83 (d, J = 7.6 Hz, 1H), (m, 1H), 7.61 (t, J = 7.6 Hz, 1H), 7.4 (d, J = 7.6 Hz, 2H), 7.35 (t, J = 7.6 Hz, 2H), 7.23 (t, J = 7.2 Hz, 2H), (m, 1H), 3.2 (d, J = 14.4 Hz, 1H), 2.9 (t, J = 13.6 Hz, 1H), 2.81 (t, J = 13.2 Hz, 1H), (m, 2H). 13 C-NMR (1 MHz, CDCl 3 ): δ (ppm) 4.34, 44.39, 47.71, 51.29, 65.65, , , , , , , , , , , HRMS(EI) calcd for C 18 H 17 N 3 S [M] , found: ; HPLC (DAICEL Chiralpak AS, hexane/ EtH = 7/3, flow.7 ml/, detection at 21nm) retention time = 17.7 (or) and 3.1 (major). 5b, the product was obtained in 74% yield,.39 g, white solid. Mp C; [α] 25 D = 11.5 (c = 1. in CH 2 Cl 2 ); 1 H-NMR (4 MHz, CDCl 3 ): δ (ppm) 7.76 (d, J = 7.6 Hz, 1H), 7.68 (t, J = 7.2 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H), 7.46 (d, J = 8. Hz, 1H), 5.21 (s, 1H), 2.9 (d, J = 14.4 Hz, 1H), (m, 2H), (m, 1H), (m, 2H), (m, 1H), 1.12 (d, J = 6.4 Hz, 3H). 13 C-NMR (1 MHz, CDCl 3 ): δ (ppm) 21.8, 3.6, 44.98, 48.85, 51.23, 65.81, , , , 133.6, , , HRMS(EI) calcd for C 13 H 15 N 3 S [M] , found: ; HPLC (DAICEL Chiralpak AY, hexane/ EtH = 7/3, flow.7 ml/, detection at 21nm) retention time = 19.1 (major) and 34.2 (or). 5c, The product was obtained in 6% yield,.33 g, white solid. Mp C; [α] 25 D = -9.5 (c = 1. in CH 2 Cl 2 ); 1 H-NMR (4 MHz, CDCl 3 ): δ (ppm) (m, 1H), (m, 2H), (m, 1H), (m, 2H), S15
16 (m, 2H), (m, 1H), (m, 2H), (m, 2H), (m, 1H). 13 C-NMR (1 MHz, CDCl 3 ): δ (ppm) 24.66, 3.86, 35.79, 37.7, 41.15, 47.64, , , , 133.8, 134.2, 139.7, , HRMS(EI) calcd for C 14 H 15 N 3 S [M] , found: ; HPLC (DAICEL Chiralpak AY, hexane/ EtH = 7/3, flow.7 ml/, detection at 21nm) retention time = 49.9 (or) and 58.2 (major). 2 S F 5d, the product was obtained in 77% yield,.53 g, white solid. Mp C; [α] 25 D = -.5 (c = 1. in CH 2 Cl 2 ); 1 H-NMR (4 MHz, CDCl 3 ): δ (ppm) 7.76 (d, J = 7.6 Hz, 1H), (m, 1H), 7.54 (dd, J = 14., 7.6 Hz, 1H), (m, 1H), 7.5 (d, J = 7.6 Hz, 1H), 5.62 (s, 1H), (m, 1H), 3.8 (d, J = 14.8 Hz, 1H), (m, 3H), (m, 2H). 13 C-NMR (1 MHz, CDCl 3 ): δ (ppm) 39.87, 44.1, 47.41, 51.1, 65.5, , , 114.4, , , , 122.6, , 13.1, 13.4, 13.49, , 135.8, , , , , , HRMS(EI) calcd for C 18 H 16 FN 3 S [M] , found: ; HPLC (DAICEL Chiralpak AY, hexane/ EtH = 7/3, flow.7 ml/, detection at 21nm) retention time = 14.3 (major) and 23.6 (or). 5e, the product was obtained in 68% yield,.4 g, colorless oil. [α] 25 D = 18.6 (c =.8 in CH 2 Cl 2 ); 1 H-NMR (4 MHz, CDCl 3 ): δ (ppm) (m, 1H), (m, 2H), (m, 1H), (m, 2H), (m, 1H), (m, 4H), (m, 3H), (m, 2H). 13 C-NMR (1 MHz, CDCl 3 ): δ (ppm) 24.3, 28.3, 32.8, 36.23, 37.65, 43.85, 49.5, , , , , , , , HRMS(EI) calcd for C 15 H 17 N 3 S [M] , found: ; HPLC (DAICEL Chiralpak AY, hexane/ EtH = 7/3, flow.7 ml/, detection at 21nm) retention time = 45.8 (or) and 66.5 (major). S16
17 8a, the product was obtained in 52% yield,.19 g, colorless oil. [α] 25 D = (c = 1. in CH 2 Cl 2 ); 1 H-NMR (4 MHz, d 6 -DMS): δ (ppm) 1.17 (s, 1H), 7.84 (d, J = 9.2 Hz, 1H), 7.71 (d, J = 8.8 Hz, 1H), 7.53 (d, J = 8.4 Hz, 1H), (m, 2H), (m, 3H), (m, 1H), (m, 1H), 4.99 (s, 1H), (m, 1H), 3.3 (d, J = 13.2 Hz, 1H), 2.9 (t, J = 13.2 Hz, 1H), 2.6 (t, J = 13.2 Hz, 1H), (m, 1H), 2.29 (d, J = 12.8 Hz, 1H), 2.1 (s, 3H), 1.85 (d, J = 12.8 Hz, 1H). 13 C-NMR (1 MHz, d 6 -DMS): δ (ppm) 19.48, 38.13, 39.28, 47.67, 48.13, 55.39, 11.51, 19.27, , , 12.92, , , , , , , , , , , , , 153.5, HRMS(EI) calcd for C 25 H 22 3 [M] , found: ; HPLC (DAICEL Chiralpak AS, hexane/ EtH = 9/1, flow 1. ml/, detection at 254nm) retention time = 14.1 (or) and 17.2 (major). 8b, the product was obtained in 53% yield,.2 g, colorless oil. [α] 25 D = (c = 1. in CH 2 Cl 2 ); 1 H-NMR (4 MHz, d 6 -DMS): δ (ppm) 1.18 (s, 1H), 7.86 (d, J = 8.8 Hz, 1H), 7.71 (d, J = 9.2 Hz, 1H), 7.54 (d, J = 8.8 Hz, 1H), (m, 1H), (m, 3H), 6.99 (d, J = 6.8 Hz, 1H), 6.88 (d, J = 7.2 Hz, 1H), 4.99 (s, 1H), (m, 1H), 3.29 (d, J = 12.8 Hz, 1H), 2.89 (t, J = 13.2 Hz, 1H), 2.58 (t, J = 12.8 Hz, 1H), (m, 1H), 2.26(s, 3H), 2.1 (s, 3H), 1.84 (d, J = 12. Hz, 1H). 13 C-NMR (1 MHz, d 6 -DMS): δ (ppm) 19.48, 21.5, 38.11, 39.28, 47.81, 48.14, 55.36, 11.52, 19.26, , , 12.93, , , 124.5, , 127.1, 127.6, , , 138.1, , , , , HRMS(EI) calcd for C 26 H 24 3 [M] , found: ; HPLC (DAICEL Chiralpak IC, hexane/dcm = 1/1, flow 1. ml/, detection at 254nm) retention time = 25.1 (major) and 33.1 (or). S17
18 8c, the product was obtained in 6% yield,.25 g, colorless oil. [α] 25 D = (c = 1. in CH 2 Cl 2 ); 1 H-NMR (4 MHz, d 6 -DMS): δ (ppm) 1.2 (s, 1H), 7.89 (d, J = 8.8 Hz, 1H), (m, 4H), 7.74 (d, J = 9.2 Hz, 1H), 7.56 (d, J = 8.4 Hz, 2H), (m, 2H), (m, 1H), 6.9 (dd, J = 7.6, 6.8 Hz, 1H), 5.6 (s, 1H), (m, 1H), 3.34 (d, J = 12.8 Hz, 1H), 3.1 (t, J = 13.2 Hz, 1H), 2.7 (t, J = 13.2 Hz, 1H), (m, 1H), 2.34 (d, J = 13.2 Hz, 1H), 2.4(s, 3H), (m, 1H). 13 C-NMR (1 MHz, d 6 -DMS): δ (ppm) 19.51, 38.23, 39.3, 47.6, 48.1, 55.39, 11.57, 19.32, , , 12.96, , , 125.2, , , , , , , , , 132.4, , , , , , HRMS(EI) calcd for C 29 H 24 3 [M] , found: ; HPLC (DAICEL Chiralpak IA, hexane/ DCM = 1/1, flow 1. ml/, detection at 254nm) retention time = 29.1 (or) and 45.5 (major). 8d, the product was obtained in 46% yield,.17 g, white solid. Mp C; [α] 25 D = (c = 1. in CH 2 Cl 2 ); 1 H-NMR (4 MHz, d 6 -DMS): δ (ppm) 1.21 (s, 1H), 7.87 (d, J = 8.8 Hz, 1H), 7.69 (d, J = 8.8 Hz, 1H), 7.57 (d, J = 8.4 Hz, 1H), (m, 1H), (m, 2H), 7.18 (d, J = 5.2 Hz, 1H), 6.91 (d, J = 7.2 Hz, 1H), 4.97 (s, 1H), (m, 1H), 3.29 (d, J = 12.8 Hz, 1H), 2.84 (t, J = 13.2 Hz, 1H), (m, 2H), 2.31 (d, J = 12.8 Hz, 1H), 2.3(s, 3H), 2.1 (s, 3H), 2. (d, J = 4. Hz, 1H). 13 C-NMR (1 MHz, d 6 -DMS): δ (ppm) 19.51, 33.56, 39.8, 47.26, 47.89, 55.41, 11.48, 19.3, 112.2, , 12.44, 12.91, , , 125.1, 126.7, 127.2, , , , , , HRMS(EI) calcd for C 23 H 2 3 S [M] , found: ; HPLC (DAICEL Chiralpak IA, hexane/ DCM = 1/2, flow.8 ml/, detection at 254nm) retention time = 13.1 (or) and 24.5 (major). S18
19 D: NMR Spectra and HPLC chromatograms of Products S19
20 mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14927\FJ54RA-AY.D) mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\1417\FJ553D9.D) S2
21 S21
22 mau 12 VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14116\GTT178F.D) S Cl rac - 3b mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14116\FJ-565A.D) S22
23 S23
24 mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14119\FJ573RA59.D) S Br rac - 3c mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14119\FJ573A6.D) S Br 3c S24
25 S25
26 mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14116\FJ565RB.D) 8 S Br rac - 3d mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14116\FJ565B-2.D) S Br 3d S26
27 S27
28 mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14116\FJ565RC.D) S F rac - 3e mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14116\FJ565C.D) S F 3e S28
29 S29
30 mau 4 VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14118\FJ569RB-AS5.D) S rac - 3f mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14118\FJ569B-AS51.D) S f S3
31 S31
32 mau 8 VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14119\FJ573RC62.D) S Me rac - 3g mau 2 VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14119\FJ573C63.D) S Me 3g S32
33 S33
34 mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14118\FJ569RD46.D) 4 3 S rac - 3h mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14118\FJ569D47.D) S h S34
35 S35
36 mau 25 2 VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14124\FJ576RC-2112.D) S NC rac - 3i mau 4 VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14124\FJ576C113.D) S NC 3i S36
37 S37
38 mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14128\FJ573RB132.D) rac - 3j S mau 8 VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14119\FJ573B-AS65.D) S j S38
39 S39
40 mau 12 VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14124\FJ576RB-217.D) S rac - 3k mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14124\FJ576B18.D) S k S4
41 S41
42 mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\1413\59RA-AS.D) rac - 3l S mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\1413\59A-AS.D) S l S42
43 S43
44 mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14121\FJ574RB8.D) S 2 rac - 3m mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14121\FJ574B81.D) S 2 6 3m S44
45 S45
46 mau 4 VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14121\FJ574RA78.D) S 2 3 rac - 3n mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14121\FJ574A79.D) 3n S S46
47 S47
48 mau 12 VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14121\FJ574RC82.D) S rac - 3o mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14121\FJ574C83.D) S rac - 3o S48
49 S49
50 mau 4 VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14127\FJ581RA-AS.D) S S rac - 3p mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14127\FJ581A.D) S S 3p S5
51 S51
52 mau 8 VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14124\FJ576RA-AS19.D) S rac - 3q mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14124\FJ576A11.D) S q S52
53 S53
54 mau 12 VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14118\FJ569RC44.D) S rac -3r mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14118\FJ569C45.D) S r S54
55 S55
56 mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14124\FJ579RA114.D) F S rac - 3s mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14124\FJ579A115.D) F S s S56
57 S57
58 mau 7 6 VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14124\FJ579RB-2121.D) Br S rac - 3t mau 2 15 VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14124\FJ579B-2123.D) Br S t S58
59 S59
60 mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14124\FJ579RC117.D) Me S rac - 3u mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14124\FJ579C118.D) Me S u S6
61 S61
62 mau 4 VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14127\FJ581RB-AS.D) S rac - 3v mau 8 VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14127\FJ581B.D) S v S62
63 S63
64 mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14113\FJ596RB.D) Cl S rac - 3w mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14113\FJ596B.D) Cl S w S64
65 S65
66 mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14128\FJ583RC13.D) 12 1 S rac - 3x mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14128\FJ583C131.D) S 2 6 3x S66
67 S67
68 mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14114\FJ511RA17.D) F S rac - 3y mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14114\FJ511A.D) F S y S68
69 S69
70 mau 4 VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14116\FJ586RB199.D) 2 S 3 2 rac - 5a mau 4 3 VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\1413\586B-AS.D) 2 S a S7
71 S71
72 mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\1413\59RC.D) S rac -5b mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\1413\59C.D) 2 S 5b S72
73 S73
74 mau 25 VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14112\FJ595RA.D) 2 S rac - 5c mau VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14112\FJ595A.D) 2 S c S74
75 S75
76 mau 8 6 VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14112\FJ595RB.D) 2 S F rac - 5d mau 8 6 VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14112\FJ595B.D) 2 S F 5d S76
77 S77
78 mau 25 VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14115\FJ513RB191.D) 2 S 2 15 rac - 5e mau 7 6 VWD1 A, 波长 =21 nm (D:\CHEM32\1\DATA\FEIJIE\14115\FJ513B192.D) 2 S e S78
79 S79
80 mau 6 VWD1 A, 波长 =24 nm (D:\CHEM32\1\DATA\FEIJIE\15131\FJ5145R134.D) mau VWD1 A, 波长 =24 nm (D:\CHEM32\1\DATA\FEIJIE\15131\FJ5171B-4135.D) S8
81 S81
82 mau VWD1 A, 波长 =254 nm (D:\CHEM32\1\DATA\FEIJIE\15328\QQQ161B3.D) mau VWD1 A, 波长 =254 nm (D:\CHEM32\1\DATA\FEIJIE\15328\QQQ16B2.D) H 8b S82
83 S83
84 mau 12 VWD1 A, 波长 =254 nm (D:\CHEM32\1\DATA\FEIJIE\15328\QQQ161A8.D) mau VWD1 A, 波长 =254 nm (D:\CHEM32\1\DATA\FEIJIE\15328\QQQ16A7.D) H c S84
85 S85
86 mau 1 VWD1 A, 波长 =22 nm (D:\CHEM32\1\DATA\FEIJIE\1521\FJ5185RA-255.D) mau VWD1 A, 波长 =24 nm (D:\CHEM32\1\DATA\FEIJIE\1521\FJ5185A56.D) S86
87 E: Crystallographic Information for Product 3p S87
88 S88
89 S89
90 Table 1. Crystal data and structure refinement for 3p. Identification code cd Empirical formula C16H 15 N 4 S 2 Formula weight Temperature 293(2) K Wavelength.7173 Å Crystal system rthorhombic Space group P Unit cell dimensions a = (6) Å a= 9. b = (8) Å b= 9. c = (16) Å g = 9. Volume (2) Å3 Z 4 Density (calculated) Mg/m 3 Absorption coefficient.344 mm-1 F() 728 Crystal size.211 x.165 x.123 mm 3 Theta range for data collection to Index ranges -9<=h<=9, -12<=k<=12, -25<=l<=17 Reflections collected 9915 Independent reflections 3218 [R(int) =.27] Completeness to theta = % Absorption correction Semi-empirical from equivalents Max. and. transmission.7457 and.6449 Refinement method Full-matrix least-squares on F2 Data / restraints / parameters 3218 / / 212 Goodness-of-fit on F Final R indices [I>2sigma(I)] R1 =.49, wr2 =.1339 R indices (all data) R1 =.565, wr2 =.146 Absolute structure parameter.(4) Extinction coefficient n/a Largest diff. peak and hole.45 and e.å -3 S9
91 Table 2. Atomic coordinates ( x 14) and equivalent isotropic displacement parameters (Å 2 x 1 3 ) for 3p. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. x y z U(eq) S(1) 953(3) 794(2) 4612(1) 1(1) S(2) 721(1) 9217(1) 1472(1) 54(1) N(1) 5543(4) 9113(4) 215(2) 45(1) (1) 3527(4) 12143(3) 229(1) 56(1) (2) 6566(4) 1181(3) 19(2) 7(1) (3) 8646(4) 9224(4) 1779(2) 78(1) (4) 6944(4) 7841(3) 1119(1) 62(1) C(1) -68(6) 84(5) 412(2) 67(1) C(2) -59(6) 8573(5) 359(3) 74(1) C(3) 2436(7) 8439(6) 471(2) 76(2) C(4) 1728(5) 8794(4) 355(2) 51(1) C(5) 2729(5) 9318(4) 2932(2) 47(1) C(6) 1986(6) 1624(4) 2687(2) 55(1) C(7) 2878(5) 1173(4) 283(2) 46(1) C(8) 2941(5) 112(3) 1542(2) 47(1) C(9) 3757(4) 8814(4) 1784(2) 42(1) C(1) 2777(5) 8316(4) 2379(2) 45(1) C(11) 3784(5) 7789(4) 1244(2) 49(1) C(12) 5288(6) 7369(4) 953(2) 56(1) C(13) 5283(9) 639(5) 482(2) 76(2) C(14) 3753(11) 5859(5) 293(2) 93(2) C(15) 2249(9) 6275(5) 558(2) 84(2) C(16) 2244(7) 7245(4) 132(2) 66(1) S91
92 Table 3. Bond lengths [Å] and angles [ ] for 3p. S(1)-C(1) 1.63(5) S(1)-C(3) 1.693(5) S(2)-(3) 1.412(3) S(2)-(2) 1.417(3) S(2)-(4) 1.585(3) S(2)-N(1) 1.67(3) N(1)-C(9) 1.497(5) N(1)-H(1A).74(4) (1)-C(7) 1.21(5) (4)-C(12) 1.415(6) C(1)-C(2) 1.456(7) C(1)-H(1).93 C(2)-C(4) 1.46(6) C(2)-H(2).93 C(3)-C(4) 1.341(6) C(3)-H(3).93 C(4)-C(5) 1.512(5) C(5)-C(1) 1.535(5) C(5)-C(6) 1.54(6) C(5)-H(5).98 C(6)-C(7) 1.497(5) C(6)-H(6A).97 C(6)-H(6B).97 C(7)-C(8) 1.494(5) C(8)-C(9) 1.545(5) C(8)-H(8A).97 C(8)-H(8B).97 C(9)-C(11) 1.529(5) C(9)-C(1) 1.531(5) C(1)-H(1A).97 C(1)-H(1B).97 C(11)-C(12) 1.381(6) C(11)-C(16) 1.389(6) C(12)-C(13) 1.395(6) C(13)-C(14) 1.362(9) C(13)-H(13).93 S92
93 C(14)-C(15) 1.357(9) C(14)-H(14).93 C(15)-C(16) 1.394(7) C(15)-H(15).93 C(16)-H(16).93 C(1)-S(1)-C(3) 95.2(2) (3)-S(2)-(2) 121.4(2) (3)-S(2)-(4) 14.1(2) (2)-S(2)-(4) 17.42(18) (3)-S(2)-N(1) 18.99(19) (2)-S(2)-N(1) 19.74(19) (4)-S(2)-N(1) 13.54(18) C(9)-N(1)-S(2) 116.9(2) C(9)-N(1)-H(1A) 18(3) S(2)-N(1)-H(1A) 18(3) C(12)-(4)-S(2) 116.6(2) C(2)-C(1)-S(1) 18.3(3) C(2)-C(1)-H(1) S(1)-C(1)-H(1) C(4)-C(2)-C(1) 113.1(5) C(4)-C(2)-H(2) C(1)-C(2)-H(2) C(4)-C(3)-S(1) 112.5(4) C(4)-C(3)-H(3) S(1)-C(3)-H(3) C(3)-C(4)-C(2) 11.8(4) C(3)-C(4)-C(5) 124.5(4) C(2)-C(4)-C(5) 124.7(4) C(4)-C(5)-C(1) 11.9(3) C(4)-C(5)-C(6) 111.8(3) C(1)-C(5)-C(6) 11.1(3) C(4)-C(5)-H(5) 17.9 C(1)-C(5)-H(5) 17.9 C(6)-C(5)-H(5) 17.9 C(7)-C(6)-C(5) 111.5(3) C(7)-C(6)-H(6A) 19.3 C(5)-C(6)-H(6A) 19.3 S93
94 C(7)-C(6)-H(6B) 19.3 C(5)-C(6)-H(6B) 19.3 H(6A)-C(6)-H(6B) 18. (1)-C(7)-C(8) 121.3(3) (1)-C(7)-C(6) 123.1(3) C(8)-C(7)-C(6) 115.6(3) C(7)-C(8)-C(9) 19.8(3) C(7)-C(8)-H(8A) 19.7 C(9)-C(8)-H(8A) 19.7 C(7)-C(8)-H(8B) 19.7 C(9)-C(8)-H(8B) 19.7 H(8A)-C(8)-H(8B) 18.2 N(1)-C(9)-C(11) 111.(3) N(1)-C(9)-C(1) 15.9(3) C(11)-C(9)-C(1) 111.2(3) N(1)-C(9)-C(8) 18.(3) C(11)-C(9)-C(8) 11.8(3) C(1)-C(9)-C(8) 19.8(3) C(9)-C(1)-C(5) 112.7(3) C(9)-C(1)-H(1A) 19.1 C(5)-C(1)-H(1A) 19.1 C(9)-C(1)-H(1B) 19.1 C(5)-C(1)-H(1B) 19.1 H(1A)-C(1)-H(1B) 17.8 C(12)-C(11)-C(16) 117.8(4) C(12)-C(11)-C(9) 122.8(4) C(16)-C(11)-C(9) 119.5(4) C(11)-C(12)-C(13) 121.5(4) C(11)-C(12)-(4) 123.8(3) C(13)-C(12)-(4) 114.6(4) C(14)-C(13)-C(12) 119.2(5) C(14)-C(13)-H(13) 12.4 C(12)-C(13)-H(13) 12.4 C(15)-C(14)-C(13) 12.7(4) C(15)-C(14)-H(14) C(13)-C(14)-H(14) C(14)-C(15)-C(16) 12.5(5) C(14)-C(15)-H(15) S94
95 C(16)-C(15)-H(15) C(11)-C(16)-C(15) 12.3(5) C(11)-C(16)-H(16) C(15)-C(16)-H(16) Symmetry transformations used to generate equivalent atoms: S95
96 Table 4. Anisotropic displacement parameters (Å2x 13) for 3p. The anisotropic displacement factor exponent takes the form: -2p 2 [ h 2 a* 2 U h k a* b* U12 ] U 11 U 22 U 33 U 23 U 13 U 12 S(1) 126(1) 98(1) 75(1) 22(1) 15(1) -5(1) S(2) 44(1) 62(1) 58(1) 3(1) 9(1) -1(1) N(1) 37(2) 53(2) 46(2) 2(2) -2(1) 1(1) (1) 59(2) 46(1) 65(2) -2(1) -8(1) -6(1) (2) 71(2) 67(2) 73(2) 18(2) 24(2) 1(2) (3) 4(2) 11(3) 92(2) -1(2) 7(2) (2) (4) 62(2) 64(2) 61(2) -4(2) 11(2) 16(2) C(1) 52(2) 77(3) 7(3) -8(2) 21(2) -8(2) C(2) 58(3) 92(3) 71(3) 8(3) 11(3) -8(2) C(3) 67(3) 89(4) 72(3) 23(3) -7(2) -5(2) C(4) 52(2) 48(2) 52(2) -6(2) 2(2) -5(2) C(5) 4(2) 54(2) 47(2) -5(2) -2(2) -1(2) C(6) 58(2) 5(2) 58(2) -11(2) 4(2) -4(2) C(7) 38(2) 43(2) 57(2) -2(2) -7(2) -2(2) C(8) 44(2) 45(2) 53(2) 1(2) -7(2) -1(2) C(9) 38(2) 42(2) 46(2) (2) -4(2) -2(1) C(1) 41(2) 46(2) 48(2) -3(2) (2) -3(2) C(11) 64(2) 41(2) 42(2) (2) -8(2) -1(2) C(12) 79(3) 47(2) 43(2) 4(2) -4(2) 8(2) C(13) 117(5) 58(3) 52(2) -6(2) 3(3) 2(3) C(14) 17(6) 49(3) 59(3) -15(2) -36(4) 11(4) C(15) 119(5) 61(3) 71(3) -1(3) -35(3) -9(3) C(16) 84(3) 57(2) 56(2) -6(2) -23(2) -5(2) S96
97 Table 5. Hydrogen coordinates ( x 14) and isotropic displacement parameters (Å 2 x 1 3 ) for 3p. x y z U(eq) H(1) H(2) H(3) H(5) H(6A) H(6B) H(8A) H(8B) H(1A) H(1B) H(13) H(14) H(15) H(16) H(1A) 58(5) 86(4) 2248(17) 34(11) S97
Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2016 Enantioselective Organocatalytic Michael Addition of Isorhodanines to α,
IV. ANHANG 179. Anhang 178
Anhang 178 IV. ANHANG 179 1. Röntgenstrukturanalysen (Tabellen) 179 1.1. Diastereomer A (Diplomarbeit) 179 1.2. Diastereomer B (Diplomarbeit) 186 1.3. Aldoladdukt 5A 193 1.4. Aldoladdukt 13A 200 1.5. Aldoladdukt
Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid
Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid Taotao Ling, a Chinmay Chowdhury, a Bryan A. Kramer, a Binh G. Vong, a Michael A. Palladino b and Emmanuel A. Theodorakis a
Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory
Supporting Information Dysiherbols A C and Dysideanone E, Cytotoxic and NF-κB Inhibitory Tetracyclic Meroterpenes from a Dysidea sp. Marine Sponge Wei-Hua Jiao,, Guo-Hua Shi,, Ting-Ting Xu,, Guo-Dong Chen,
Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles
X-Ray crystallographic data tables for paper: Supplementary Material (ESI) for Organic & Biomolecular Chemistry Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically
Supporting Information
Supporting Information Vinylogous elimination/heck coupling/allylation domino reactions: access to 2- substituted 2,3-dihydrobenzofurans and indolines Jianguo Yang, *, Hanjie Mo, Xiuxiu Jin, Dongdong Cao,
Electronic Supplementary Information (ESI)
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) Cyclopentadienyl iron dicarbonyl (CpFe(CO) 2 ) derivatives
Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic
Supporting Information Asymmetric Binary-acid Catalysis with Chiral Phosphoric Acid and MgF 2 : Catalytic Enantioselective Friedel-Crafts Reactions of β,γ- Unsaturated-α-Ketoesters Jian Lv, Xin Li, Long
Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings
ickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings Braulio M. Puerta Lombardi, Rudy M. Braun, Chris Gendy, Chia Yun Chang,
Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction
Supporting Information ne-pot Approach to Chiral Chromenes via Enantioselective rganocatalytic Domino xa-michael-aldol Reaction Hao Li, Jian Wang, Timiyin E-Nunu, Liansuo Zu, Wei Jiang, Shaohua Wei, *
A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes
Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.
; doi:10.3390/molecules22020254 S1 of S23 Supplementary Materials: Reaction of 3-Amino-1,2,4-Triazole with Diethyl Phosphite and Triethyl Orthoformate: Acid-Base Properties and Antiosteoporotic Activities
chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX
σ-donor/acceptor confused ligands: The case of a chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX 77843-3255. *To whom correspondence
Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces
Highly enantioselective cascade synthesis of spiropyrazolones Alex Zea a, Andrea-Nekane R. Alba a, Andrea Mazzanti b, Albert Moyano a and Ramon Rios a,c * Supporting Information NMR spectra and HPLC traces
Practical Pd(II)-catalyzed C H Alkylation with Epoxides: One-step Syntheses of 3,4-Dihydroisocoumarins
Practical Pd(II)-catalyzed C H Alkylation with Epoxides: One-step Syntheses of 3,4-Dihydroisocoumarins Guolin Cheng, Tuan-Jie Li, and Jin-Quan Yu* Department of Chemistry, The Scripps Research Institute,
Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond
Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond Ken-ichi Yamashita, Kei-ichi Sato, Masaki Kawano and Makoto Fujita* Contents; Figure S1.
Supporting Information
Supporting Information for Lewis acid-catalyzed redox-neutral amination of 2-(3-pyrroline-1-yl)benzaldehydes via intramolecular [1,5]-hydride shift/isomerization reaction Chun-Huan Jiang, Xiantao Lei,
Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds
Supporting Information for Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds Zhongxue Fang, a Yongquan Ning, a Pengbing Mi, a Peiqiu Liao, a Xihe Bi* a,b a Department of Chemistry,
Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic
Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3
Supporting Information Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3 Shohei Shimokawa, Yuhsuke Kawagoe, Katsuhiko Moriyama, Hideo Togo* Graduate
Supporting information for
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting information for Palladium-Catalyzed Benzothieno[2,3-b]indole Formation via Dehydrative-Dehydrogenative
Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines
Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A new Entry to N-Carbamate Protected Arylamines Bing Zhou,* Juanjuan Du, Yaxi Yang,* Huijin Feng, Yuanchao Li Shanghai Institute of Materia Medica,
Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-
Supporting Information for A catalyst-free multicomponent domino sequence for the diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3- (arylamino)allyl]chromen-4-ones Pitchaimani Prasanna 1, Pethaiah
Supporting Information. for
Supporting Information for A general synthetic route to [Cu(X)(NHC)] (NHC = N- heterocyclic carbene, X =Cl, Br, I) complexes Orlando Santoro, Alba Collado, Alexandra M. Z. Slawin, Steven P. Nolan and Catherine
Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones
Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is the Partner Organisations 2016 Supporting information Copper-Catalyzed Oxidative Dehydrogenative - Bond Formation
Supporting Information. Experimental section
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Experimental section General. Proton nuclear magnetic resonance ( 1
Supporting Information
Supporting Information Lewis acid catalyzed ring-opening reactions of methylenecyclopropanes with diphenylphosphine oxide in the presence of sulfur or selenium Min Shi,* Min Jiang and Le-Ping Liu State
Supporting information
Electronic upplementary Material (EI) for New Journal of Chemistry. This journal is The Royal ociety of Chemistry and the Centre National de la Recherche cientifique 7 upporting information Lipase catalyzed,-addition
Supporting Information
Supporting Information for AgOTf-catalyzed one-pot reactions of 2-alkynylbenzaldoximes with α,β-unsaturated carbonyl compounds Qiuping Ding 1, Dan Wang 1, Puying Luo* 2, Meiling Liu 1, Shouzhi Pu* 3 and
Supporting Information
Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Supporting Information Abnormal N-Heterocyclic Carbene Based Nickel Complex for Catalytic
SUPPLEMENTARY MATERIAL. A Facile and Convenient Approach for the Synthesis of Novel Sesamol-Oxazine and Quinoline- Oxazine Hybrids
10.1071/CH17272_AC CSIRO 2017 Australian Journal of Chemistry 2017, 70(12), 1285-1290 SUPPLEMENTARY MATERIAL A Facile and Convenient Approach for the Synthesis of Novel Sesamol-Oxazine and Quinoline- Oxazine
Supporting Information
Supporting Information Montmorillonite KSF-Catalyzed One-pot, Three-component, Aza-Diels- Alder Reactions of Methylenecyclopropanes With Arylaldehydes and Aromatic Amines Li-Xiong Shao and Min Shi* General
Supporting Information. Experimental section
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Experimental section General. Anhydrous solvents were transferred by
SUPPORTING INFORMATION. Diastereoselective synthesis of nitroso acetals from (S,E)- -aminated
SUPPORTING INFORMATION for Diastereoselective synthesis of nitroso acetals from (S,E)- -aminated nitroalkenes via multicomponent [4 + 2]/[3 + 2] cycloadditions promoted by LiCl or LiClO 4 Leandro Lara
Supporting Information
Supporting Information Transition-metal-free Ring Expansion Reactions of Indene-1,3-dione: Synthesis of Functionalized Benzoannulated Seven-Membered Ring Compounds Qiyi Yao, Lingkai Kong, Mengdan Wang,
Supporting Information
Supporting Information Copper/Silver Cocatalyzed Oxidative Coupling of Vinylarenes with ICH 2 CF 3 or ICH 2 CHF 2 Leading to β-cf 3 /CHF 2 -Substituted Ketones Niannian Yi, Hao Zhang, Chonghui Xu, Wei
and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol
FeCl 3 6H 2 O-Catalyzed Disproportionation of Allylic Alcohols and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol Jialiang Wang, Wen Huang, Zhengxing Zhang, Xu
Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled
Supporting Information for: Room Temperature Highly Diastereoselective Zn-Mediated Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled Stereoselectivity Reversal
Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 205 Vilsmeier aack reagent-promoted formyloxylation of α-chloro-arylacetamides by formamide Jiann-Jyh
Electronic Supplementary Information (ESI)
Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry Electronic Supplementary Information (ESI) For Iron-Catalysed xidative Amidation of Alcohols with Amines Silvia Gaspa, a Andrea
Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3
Supplementary Information Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3 Lewis Pairs: Structures of Intermediates, Kinetics, and Mechanism Qianyi Wang, Wuchao Zhao,
Supporting Information for
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Supporting Information for Catalytic Asymmetric Chemoselective 1,3-Dipolar Cycloadditions of Azomethine
Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines
Direct Palladium-Catalyzed Arylations of Aryl Bromides with 2/9-Substituted Pyrimido[5,4-b]indolizines Min Jiang, Ting Li, Linghua Meng, Chunhao Yang,* Yuyuan Xie*, and Jian Ding State Key Laboratory of
Supporting Information
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Supporting Information 1. General experimental methods (S2). 2. Table 1: Initial studies (S2-S4).
Palladium-Catalyzed Direct ortho-sulfonylation of. Azobenzenes with Arylsulfonyl Chlorides via C H. Table of Contents
Electronic upplementary Material (EI) for RC Advances. This journal is The Royal ociety of Chemistry 205 upporting Information Palladium-Catalyzed Direct ortho-ulfonylation of Azobenzenes with Arylsulfonyl
multicomponent synthesis of 5-amino-4-
Supporting Informartion for Molecular iodine-catalyzed one-pot multicomponent synthesis of 5-amino-4- (arylselanyl)-1h-pyrazoles Camila S. Pires 1, Daniela H. de Oliveira 1, Maria R. B. Pontel 1, Jean
Four- and Five-membered Cobaltacycles by Regioselective Cyclometalation. of Benzylsulfide Derivatives via Co(V) intermediates
Electronic Supplementary Information for Dalton Transactions This journal is The Royal Society of Chemistry 2008 Supporting Information for: Four- and Five-membered Cobaltacycles by Regioselective Cyclometalation
Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Rhodium-Catalyzed Oxidative Decarbonylative Heck-type
Cobalt-Catalyzed Selective Synthesis of Isoquinolines Using Picolinamide as a Traceless Directing Group
Supporting Information Cobalt-Catalyzed Selective Synthesis of Isoquinolines Using Picolinamide as a Traceless Directing Group Changsheng Kuai, Lianhui Wang, Bobin Li, Zhenhui Yang, Xiuling Cui* Engineering
Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006
Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2006 1 A Facile Way to Synthesize 2H-Chromenes: Reconsideration of the Reaction Mechanism between Salicylic Aldehyde and
Supporting Information
Electronic Supplementary Material (ESI) for rganic Chemistry Frontiers. This journal is the Partner rganisations 2018 Palladium-catalyzed direct approach to α-cf 3 aryl ketones from arylboronic acids Bo
Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting information for Metal-free Oxidative Coupling of Amines with Sodium Sulfinates:
Supporting Information
Supporting Information Gold-catalyzed Cycloisomerization of 1,6-Diyne-4-en-3-ols to form Naphthyl Ketone Derivatives. Jian-Jou Lian and Rai-Shung Liu* Department of Chemistry, National Tsing-Hua University,
Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent
Supplementary information for the paper Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent Yang Xue, Ling-Po Li, Yan-Hong He * & Zhi Guan * School of Chemistry and Chemical Engineering,
Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.
Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%. S1 Supplementary Figure S2. Single X-ray structure 5a at probability ellipsoids of 20%. S2 H 15 Ph Ac Ac I AcH Ph Ac
Electronic Supplementary Information
Electronic Supplementary Information NbCl 3 -catalyzed [2+2+2] intermolecular cycloaddition of alkynes and alkenes to 1,3-cyclohexadiene derivatives Yasushi Obora,* Keisuke Takeshita and Yasutaka Ishii*
Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes
Supporting Information for Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes Changkun Li and Jianbo Wang* Beijing National Laboratory
Supporting Information
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Synthesis of 3-omosubstituted Pyrroles via Palladium- Catalyzed Intermolecular Oxidative Cyclization
Supporting Information
Supporting Information Wiley-VC 007 9 Weinheim, Germany ew ear Infrared Dyes and Fluorophores Based on Diketopyrrolopyrroles Dipl.-Chem. Georg M. Fischer, Dipl.-Chem. Andreas P. Ehlers, Prof. Dr. Andreas
Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization
Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2014 Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads
Supplementary Material
Supplementary Material Efficient, mild synthesis of - unsubstituted 1,2,3- triazoles from methanolysis of 1-sulfonyl-1,2,3-triazoles Janeth Rodríguez-Florencio, Diego Martínez-tero, Marco A. García-Eleno,
Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process
Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process Jincan Zhao 1, Hong Fang 1, Jianlin Han* 1,2 and Yi Pan* 1
The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.
Electronic upplementary Material (EI) for rganic & Biomolecular Chemistry. This journal is The Royal ociety of Chemistry 2018 The,-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H Carbonylation using
Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2
Free Radical Initiated Coupling Reaction of Alcohols and Alkynes: not C-O but C-C Bond Formation Zhongquan Liu,* Liang Sun, Jianguo Wang, Jie Han, Yankai Zhao, Bo Zhou Institute of Organic Chemistry, Gannan
SUPPORTING INFORMATION. Pyramidanes: The Covalent Form of the Ionic Compounds
SUPPORTING INFORMATION Pyramidanes: The Covalent Form of the Ionic Compounds Vladimir Ya. Lee, 1 * Olga A. Gapurenko, 2 Yuki Ito, 1 Takahiko Meguro, 1 Haruka Sugasawa, 1 Akira Sekiguchi, 1 *, Ruslan M.
Supporting Information for
Supporting Information for An atom-economic route to densely functionalized thiophenes via base-catalyzed rearrangement of 5-propargyl-2H-thiopyran-4(3H)-ones Chunlin Tang a, Jian Qin b, Xingqi Li *a a
Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information
Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans Liang Yun, Shi Tang, Xu-Dong Zhang, Li-Qiu Mao, Ye-Xiang Xie and Jin-Heng Li* Key Laboratory
Ag-Initiated gem-difluoromethylenation of the Nitrogen Center of. Arenediazonium Salts to gem-difluoromethylene Azo Compounds
Org. Lett. Supporting Information Ag-Initiated gem-difluoromethylenation of the Nitrogen Center of Arenediazonium Salts to gem-difluoromethylene Azo Compounds Haizhen Jiang,*,, Yunrong Chen, Bo Chen, Hui
9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer
Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran
1 Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran Munawar Hussain, a Rasheed Ahmad Khera, a Nguyen Thai Hung, a Peter Langer* a,b a Institut für Chemie, Universität Rostock,
Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols. Support Information
Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols Dr. Xiao un Tang and Prof. Qing un Chen* Key Laboratory of Organofluorine Chemistry,
Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]
Supporting Information Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ] Eun Young Lee, Seung Yeon Jang, and Myunghyun Paik Suh* School of Chemistry,
Electronic Supplementary Information
Electronic Supplementary Information Unprecedented Carbon-Carbon Bond Cleavage in Nucleophilic Aziridine Ring Opening Reaction, Efficient Ring Transformation of Aziridines to Imidazolidin-4-ones Jin-Yuan
Supporting Information
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2017 Modular Synthesis of Propargylamine Modified Cyclodextrins by a Gold(III)-catalyzed Three Component
The Free Internet Journal for Organic Chemistry
The Free Internet Journal for Organic Chemistry Paper Archive for Organic Chemistry Arkivoc 2018, part iii, S1-S6 Synthesis of dihydropyranones and dihydropyrano[2,3- d][1,3]dioxine-diones by cyclization
Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds
Electronic upplementary Material (EI) for rganic & Biomolecular Chemistry. This journal is The Royal ociety of Chemistry 2017 Laboratoire de Méthodologie et ynthèse de Produit aturels. Université du Québec
Supporting Information
Electronic upplementary Material (EI) for Green Chemistry. This journal is The Royal ociety of Chemistry 204 upporting Information ynthesis of sulfonamides via I 2 -mediated reaction of sodium sulfinates
Supporting Information File 2. Crystallographic data of syn-bis-quinoxaline, 16c CH 3 CO 2 C 2 H 5 ;
Supporting Information File 2 Crystallographic data of syn-bis-quinoxaline, 16c CH 3 CO 2 C 2 H 5 ; Preparation, structures and host guest chemistry of fluorinated syn-bisquinoxaline molecular tweezers
Supporting Information
One-Pot, Three-Component Assembly of Indoloquinolines: Total Synthesis of Isocryptolepine Alexander V. Aksenov,* Dmitrii A. Aksenov, Naila A. Orazova, Nicolai A. Aksenov, Georgii D. Griaznov, Annelise
Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du*
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic
Supporting Information
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2018 Supporting Information Silver or Cerium-Promoted Free Radical Cascade Difunctionalization
Ferric(III) Chloride Catalyzed Halogenation Reaction of Alcohols and Carboxylic Acids using - Dichlorodiphenylmethane
Supporting Information Ferric(III) Chloride Catalyzed Halogenation Reaction of Alcohols and Carboxylic Acids using - Dichlorodiphenylmethane Chang-Hee Lee,, Soo-Min Lee,, Byul-Hana Min, Dong-Su Kim, Chul-Ho
Supporting Information for: Intramolecular Hydrogen Bonding-Assisted Cyclocondensation of. 1,2,3-Triazole Synthesis
Supporting Information for: Intramolecular Hydrogen Bonding-Assisted Cyclocondensation of α-diazoketones with Various Amines: A Strategy for Catalytic Wolff 1,2,3-Triazole Synthesis Zikun Wang, a Xihe
Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.
Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone. Won-Suk Kim, Hyung-Jin Kim and Cheon-Gyu Cho Department of Chemistry, Hanyang University, Seoul 133-791, Korea Experimental Section
Supporting information
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting information Copper-catalysed intramolecular O-arylation: a simple
Supporting Information
Supporting Information Ceric Ammonium Nitrate (CAN) catalyzed efficient one-pot three component aza-diels-alder reactions for a facile synthesis of tetrahydropyranoquinoline derivatives Ravinder Goud Puligoundla
Chiral Phosphoric acid Catalyzed Enantioselective N- Alkylation of Indoles with in situ Generated Cyclic N-Acyl Ketimines
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Chiral osphoric acid Catalyzed Enantioselective - Alkylation of Indoles with in situ Generated
Supporting Information For: Rhodium-Catalyzed Hydrofunctionalization: Enantioselective Coupling of Indolines and 1,3-Dienes
Supporting Information For: Rhodium-Catalyzed Hydrofunctionalization: Enantioselective Coupling of Indolines and 1,3-Dienes Xiao-Hui Yang and Vy M. Dong* dongv@uci.edu Department of Chemistry, University
Supporting Information
Supporting Information Novel ne-pot Synthesis of Polysubstituted Isocoumarins from Arynes and Trifluoroacetylated β-diketones Kentaro kuma,* Koki Hirano, Yukiko Tanabe, Ryoichi Itoyama, Atsumi Miura, Noriyoshi
Synthesis, Characterization, and Computational Study of Three-Coordinate SNS-Copper(I) Complexes Based on Bis-Thione Precursors
For Synthesis, Characterization, and Computational Study of Three-Coordinate SNS-Copper(I) Complexes Based on Bis-Thione Precursors John R. Miecznikowski a *; Matthew A. Lynn b ; Jerry P. Jasinski c ;
Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction
Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2015 SUPPRTIG IFRMATI Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst-
Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate
upporting Information Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate Jing-Yu Wu, Zhi-Bin Luo, Li-Xin Dai and Xue-Long Hou* a tate Key Laboratory of Organometallic
Aminofluorination of Fluorinated Alkenes
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Synthesis of ɑ CF 3 and ɑ CF 2 H Amines via Aminofluorination of Fluorinated Alkenes Ling Yang,
Supplementary Material
Supplementary Material Synthesis of bis-oxathiaaza[3.3.3]propellanes via nucleophilic addition of (1,ω-alkanediyl)bis(N'-organylthioureas) on dicyanomethylene-1,3-indanedione Alaa A. Hassan, a * Kamal
Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes
1 Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes Gonzalo Blay, Isabel Fernández, Alícia Marco-Aleixandre, and José R. Pedro Departament de Química Orgànica, Facultat de Química,
Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination
Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2016 Supporting Information Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine
Stereochemistry and mechanistic insight in the [2 k +2 i +2 i ] annulations of ketenes and imines
Stereochemistry and mechanistic insight in the [2 k +2 i +2 i ] annulations of ketenes and imines Zhanhui Yang, Wei He, Baoxiang Cheng and Jiaxi Xu* State Key Laboratory of Chemical Resource Engineering,
Supporting Information for Substituent Effects on the Properties of Borafluorenes
Supporting Information for Substituent Effects on the Properties of Borafluorenes Mallory F. Smith, S. Joel Cassidy, Ian A. Adams, Monica Vasiliu, Deidra L. Gerlach, David Dixon*, Paul A. Rupar* Department
C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged
Supporting Information C H Activation of Cp* Ligand Coordinated to Ruthenium Center: Synthesis and Reactivity of a Thiolate-Bridged Diruthenium Complex Featuring Fulvene-like Cp* Ligand Xiaoxiao Ji, Dawei
Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative