Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
|
|
- ramaic Λαμπρόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Version 2 1
2 Άλλοι τύποι νευρωνικών δικτύων Αυτοοργανούμενοι χάρτες (Self-organizing maps - SOMs) Αναδρομικά νευρωνικά δίκτυα (Recurrent Neural Networks): γενικής δομής, δίκτυα Hopfield, δίκτυα Hamming) Long short-term memory (LSTM) networks Convolutional neural networks (CNNs)
3 Θεωρητικά αποτελέσματα - Έστω ένα ΝΔ δύο επιπέδων (ένα «κρυμμένο» επίπεδο νευρώνων και το επίπεδο εξόδου με ένα νευρώνα γραμμικής συνάρτησης εξόδου) K ˆ ( ) = T x θ K + 1, i f ( θi x) + θ K + 1,0 i= 1 g K νευρ. 1ου επιπέδου 1 γραμ. νευρ. εξόδου (K+1) Θεώρημα (Cybenko,1989): Παρόμοιο αποτέλεσμα Έστω ισχύει για τα δίκτυα RBF. (a) g(x) μια συνεχής συνάρτηση πάνω σε συμπαγές σύνολο S R l και (b) ε>0. Τότε υπάρχει Κ(ε) και δίκτυο δύο επιπέδων ώστε g( x ) gˆ( x) < ε, x S Δεν εμφανίζεται το l Παρατηρήσεις: Το σφάλμα προσέγγισης μειώνεται με ρυθμό O(1/K). Το θεώρημα δε λέει πόσο μεγάλο πρέπει να είναι το K. Μπορεί να απαιτείται πολύ μεγάλος αριθμός νευρώνων K (ρηχό (shallow) ή παχύ ( fat ) δίκτυο). Μία λύση: Η χρήση δικτύων περισσότερων επιπέδων με λιγότερους κόμβους
4 Η λογική πίσω από τη χρήση πολλαπλών επιπέδων νευρώνων: Τα διαδοχικά επίπεδα παράγουν όλο και πιο αφηρημένες αναπαραστάσεις του προτύπου εισόδου. 1 ο επ.: Υπερεπιπεδα 2 ο επ.: περιοχές 3 ο επ.: κλάσεις Γιατί η προσέγγιση αυτή είναι λογική? Διότι μιμείται τον τρόπο με τον οποίο είναι δομημένος ο εγκέφαλος των θηλαστικών. Έχει κάθε «βαθιά» αρχιτεκτονική μια ισοδύναμη «ρηχή» αρχιτεκτονική (με <3 επίπεδα)? Ναι, αλλά μια «ρηχή» αρχ. μπορεί να περιλαμβάνει υπερβολικά μεγαλύτερο αριθμό νευρώνων στα (συνολικά λιγότερα) επίπεδά του, σε σχέση με την αντίστοιχη «βαθιά» αρχιτεκτονική Ένα δίκτυο είναι συμπαγές αν περιλαμβάνει σχετικά λίγες παραμέτρους, προς εκπαίδευση. Οι «βαθιές» αρχ. περιλαμβάνουν σημαντικά λιγότερες παραμέτρους από τις ατίστοιχες «ρηχές» Αναμένεται οι «βαθιές» αρχ. να έχουν καλύτερη ικανότητα γενίκευσης. (δεδομένου ότι θα είναι αρκετά μεγάλες ώστε να δύνανται να λύσουν το πρόβλημα)
5 Σχόλια πάνω στην εκπαίδευση των νευρωνικών δικτύων Η εκπαίδευσή τους μπορεί να γίνει δύσκολη, ειδικά για 2 επίπεδα. Για αρκετό καιρό υπήρχε η πεποίθηση ότι η δυσκολία ήταν συνέπεια της σύγκλισης σε ένα «ρηχό» τοπικό ελάχιστο. Νέα αποτελέσματα δείχνουν ότι το πρόβλημα είναι τα saddle points. Σε χώρους υψηλής διάστασης ο αριθμός των saddle points πολ/ζεται. Αυτό μπορεί να επιβραδύνει δραματικά τη σύγκλιση. Υπό προϋποθέσεις, σε δίκτυα μεγάλου μεγέθους, τα περισσότερα τοπικά ελάχιστα δίνουν μικρές τιμές για τη συνάρτηση κόστους Σε δίκτυο με ένα κρυφό επίπεδο νευρώνων, με ReLU συν. εξόδου, το σφάλμα γενίκευσης φράσσεται από O(ε+1/ N) Περισσότερα σημεία οδηγούν σε αυξημένη ικανότητα γενίκευσης. ε: bound of the sq. norm of the gradient mat. Η επιτυχία των νευρ. δικτ. «βαθίας» αρχ. οφείλεται: (a) στη διαθεσιμότητα συν. δεδομένων μεγ. μεγέθους (b) στη διαθεσιμότητα αυξημένης υπολογιστικής ισχύος.
6 Πολύ αποδοτικές τεχνικές σε προβλήματα αναγνώρισης και ταξινόμησης εικόνας. Τα συστατικά μέρη τους είναι (a) Ο τελεστής συνέλιξης (convolution operation) (b) Μη γραμμικότητα (συνάρτηση ReLU) (c) Ο τελεστής «συγκέντρωσης» (pooling - downsampling) Περιγράφουμε πρώτα τα συστατικά και μετά τα συνδυάζουμε ώστε να πάρουμε ένα CNN. (*)Most of the material for CNNs is from the data science blog
7 (a) Ο τελεστής συνέλιξης Πρόκειται για ένα είδος φιλτραρίσματος, που αναδεικνύει τοπικές σχέσεις μεταξύ εικονοστοιχείων. Διαφορετικά φίλτρα αποκαλύπτουν διαφορετικά είδη πληροφορίων. Ένα φίλτρο ή πυρήνας (kernel) ή ανιχνευτής χαρακτ. (feature detector), είναι ένας μικρός πίνακας (συνήθως 3x3). Παράγει μια νέα εικόνα που ονομάζεται χάρτης χαρακτηριστικού (feature map) (convolved feature) Πώς δουλεύει: Ένα φίλτρο πίνακας «ολισθαίνει» πάνω στην υπό μελέτη εικόνα. Σε κάθε θέση, πραγματοποιείται ένας στοιχείο-προς-στοιχείο πολ/σμός ανάμεσα στο φίλτρο πίνακα και το τμήμα της εικόνας με το οποίο αυτό επικαλύπτεται. Τα αποτελέσματα του πολ/σμού αθροίζονται προκειμένου να υπολογιστεί η τιμή του εικονοστοιχείου στο χάρτη χαρακτηριστικού (convolved feature)
8 (a) Ο τελεστής συνέλιξης Παράδειγμα: Θεωρείστε την 5x5 πράσινη (δυαδική) εικόνα και το παρακάτω 3x3 φίλτρο. Πιο κάτω επιδεικνύεται γραφικά η διαδικασία συνέλιξης. Διαφορετικά φίλτρα, με την αντίστοιχη δράση τους εκτίθενται στα δεξιά.
9 (a) Ο τελεστής συνέλιξης Παράδειγμα: Διαφορετικά φίλτρα δίνουν διαφορετικούς χάρτες χαρακτηριστικών. Stride: Αριθμός εικονοστοιχείων που προσπέρνα ο πίνακας φίλτρου καθώς ολισθαίνει πάνω στην εικόνα (στο παραπάνω παράδειγμα stride=1) Όσο μεγαλύτερο είναι το stride, τόσο μικρότεροι είναι οι παραγόμενοι χάρτες χαρακτ. Γέμισμα με μηδενικά (Zero padding): Το γέμισμα της εικόνας εισόδου με 0 s γύρω από τα όριά της, επιτρέπει την εφαρμογή του φίλτρου και στα εικονοστοιχεία που βρίσκονται στα όρια της εικόνας.
10 (b) Μη γραμμικότητα (συνάρτηση ReLU) Εφαρμόζεται χωριστά σε κάθε εικονοστοιχείο του χάρτη χαράκτ. που παράχθηκε από το βήμα (a). Στην πραγματικότητα η ReLU θέτει όλες τις αρνητικές τιμές ίσες με 0. (επιδιορθώνει ( rectifies ) τον πίνακα χαρακτηριστικών). Μπορούν επίσης να χρησιμοποιηθούν και άλλοι τύποι μη γραμμικότητας (π.χ. σιγμοειδείς) παρότι αυτό δε γίνεται συχνά. Παράδειγμα: Η επίδραση της ReLU f(.): Rectified Linear Unit (ReLU) f(t)=t(0), if t (<)0
11 (c) Η λειτουργία συγκέντρωσης (pooling - downsampling) Εφαρμόζεται πάνω στους επιδιορθωμένους χάρτες χαρακτηριστικών. Μειώνει τη διάστασή τους διατηρώντας την πιο σημαντική πληροφορία. Οι τελεστές που εφαρμόζονται μπορεί να είναι άθροισμα (sum), μέγιστο (max), μέσος όρος (average), etc. Η λειτουργία αυτή φαίνεται μέσω του ακόλουθου παραδείγματος.
12 Στη συνέχεια συζητάμε πώς συνδυάζονται τα παραπάνω χαρακτηριστικά Το πρώτο στάδιο επεξεργασίας σε ένα CNN (a) εφαρμόζει έναν αριθμό διαφορετικών φίλτρων στην εικόνα εισόδου και παράγει τους αντίστοιχους χάρτες χαρακτηριστικών. (b) εφαρμόζει τη συνάρτηση ReLU στους παραγόμενους πίνακες χαρακτηριστικών (τις επιδιορθώνει ) (c) εφαρμόζει τη λειτουργία συγκέντρωσης σε καθένα από τους επιδιορθωμένους χάρτες χαρακτηριστικών, χωριστά.
13 Στη συνέχεια συζητάμε πώς συνδυάζονται τα παραπάνω χαρακτηριστικά Το πρώτο στάδιο επεξεργασίας σε ένα CNN: (a) εφαρμόζει έναν αριθμό διαφορετικών φίλτρων στην εικόνα εισόδου και παράγει τους αντίστοιχους χάρτες χαρακτηριστικών. (b) εφαρμόζει τη συνάρτηση ReLU στους παραγόμενους πίνακες χαρακτηριστικών (τις επιδιορθώνει ) (c) εφαρμόζει τη λειτουργία συγκέντρωσης σε καθένα από τους επιδιορθωμένους χάρτες χαρακτηριστικών, χωριστά.
14 Κατά τo δεύτερο στάδιο επεξεργασίας σ ένα CNN εφαρμόζεται ακριβώς η ίδια επεξεργασία πάνω στα αποτελέσματα του πρώτου σταδίου. Η μόνη διαφορά είναι ότι η συνέλιξη εφαρμόζεται τώρα πάνω σε όλους τους (μειωμένου μεγέθους) χάρτες χαρακτηριστικών που παρήχθησαν από το 1 ο στάδιο επεξεργασίας. Μπορούν να εισαχθούν και επιπλέον στάδια επεξεργασίας, καθένα από τα οποία εφαρμόζεται στα αποτελέσματα του προηγούμενου.
15 To τελικό στάδιο επεξεργασίας ενός CNN πραγματοποιείται από ένα δίκτυο 2 ή 3 επιπέδων, όπου κάθε νευρώνας εξόδου αντιστοιχεί σε μια κλάση. Παρατηρήσεις: Στην πράξη, οι συντελεστές του φίλτρου δεν προεπιλέγονται, αλλά εκτιμούνται κατά τη φάση της εκπαίδευσης. Η εκπαίδευση ακολουθεί τη στρατηγική οπίσθιας διάδοσης (Back propagation), λαμβάνοντας υπόψιν τα κοινά βάρη στα συνελικτικά επίπεδα. Οι νευρώνες εξόδου του δικτύου χρησιμοποιούν την softmax ως συνάρτηση εξόδου. Αυτό, εγγυάται ότι τα αποτελέσματα θα βρίσκονται στο διάστημα (0,1).
16 Συνάρτηση softmax: Έστω s=[s 1, s 2,,s M ] T οι έξοδοι της ReLU στο δίκτυο εξόδου. Το τελικό αποτέλεσμα των νευρώνων του επιπέδου αυτού θα είναι yˆ = [ yˆ 1, yˆ 2,..., yˆ M ] T = [ e s M s s M j M e,..., e / j= 1 j= 1 1 / e s j ] T Θυμηθείτε ότι κάθε επίπεδο ανιχνεύει χαρακτηριστικά υψηλότερου επιπέδου από το προηγούμενό του.
17 Example:
18 Εκπ/ση δικτύων «βαθιάς» αρχιτεκτονικής Γενική στρατηγική Προ-εκπαίδευσε τα βάρη που σχετίζονται με κάθε κρυφό επίπεδο ακολουθιακά με χρήση μη επιβλεπόμενων τεχνικών, ξεκινώντας από το πρώτο. Προ-εκπαίδευσε τα βάρη που σχετίζονται με επίπεδο εξόδου με χρήση επιβλεπόμενων τεχνικών. Χρησιμοποίησε τις παραπάνω τιμές των βαρών ως αρχικές τιμές και εφάρμοσε τον αλγόριθμο BP algorithm ώστε να προκύψουν οι τελικές εκτιμήσεις όλων των βαρών του δικτύου. Δημοφιλής επιλογή για προ-εκπαίδευση: Restricted Boltzmann Machines (RBMs).
Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων. Δρ. Ε. Χάρου
Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων Δρ. Ε. Χάρου Πρόγραμμα υπολογιστικής ευφυίας Ινστιτούτο Πληροφορικής & Τηλεπικοινωνιών ΕΚΕΦΕ ΔΗΜΟΚΡΙΤΟΣ exarou@iit.demokritos.gr Μηχανική
Διαβάστε περισσότεραΣέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Η παραπάνω ανάλυση ήταν χρήσιμη προκειμένου να κατανοήσουμε τη λογική των δικτύων perceptrons πολλών επιπέδων
Διαβάστε περισσότεραΤο Πολυεπίπεδο Perceptron. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
Το Πολυ Perceptron Δίκτυα Πρόσθιας Τροφοδότησης (feedforward) Tο αντίστοιχο γράφημα του δικτύου δεν περιλαμβάνει κύκλους: δεν υπάρχει δηλαδή ανατροφοδότηση της εξόδου ενός νευρώνα προς τους νευρώνες από
Διαβάστε περισσότεραΣέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΟΥ ΧΩΡΟΥ ΤΩΝ ΤΑΞΙΝΟΜΗΤΩΝ Ταξινομητές Ταξινομητές συναρτ. διάκρισης Ταξινομητές επιφανειών απόφ. Παραμετρικοί ταξινομητές Μη παραμετρικοί
Διαβάστε περισσότεραΔΙΚΤΥO RBF. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
ΔΙΚΤΥO RBF Αρχιτεκτονική δικτύου RBF Δίκτυα RBF: δίκτυα συναρτήσεων πυρήνα (radial basis function networks). Πρόσθιας τροφοδότησης (feedforward) για προβλήματα μάθησης με επίβλεψη. Εναλλακτικό του MLP.
Διαβάστε περισσότεραΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το
Διαβάστε περισσότεραΣΥΝΕΛΙΚΤΙΚΑ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΜΑ ΦΥΣΙΚΗΣ - Δ.Π.Μ.Σ. «Ηλεκτρονική και Επεξεργασία της Πληροφορίας» ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΣΥΝΕΛΙΚΤΙΚΑ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΣΤΗΝ ΥΠΟΛΟΓΙΣΤΙΚΗ ΌΡΑΣΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ : ΠΑΠΑΔΟΠΟΥΛΟΣ ΑΘΑΝΑΣΙΟΣ
Διαβάστε περισσότεραΜοντέλο Perceptron πολλών στρωμάτων Multi Layer Perceptron (MLP)
Μοντέλο Perceptron πολλών στρωμάτων Multi Layer Perceptron (MLP) x -0,5 a x x 2 0 0 0 0 - -0,5 y y 0 0 x 2 -,5 a 2 θ η τιμή κατωφλίου Μία λύση του προβλήματος XOR Multi Layer Perceptron (MLP) x -0,5 Μία
Διαβάστε περισσότεραΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΤΕΙ Δυτικής Μακεδονίας ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ 2015-2016 Τεχνητή Νοημοσύνη Νευρώνας Perceptron Διδάσκων: Τσίπουρας Μάρκος Εκπαιδευτικό Υλικό: Τσίπουρας Μάρκος Τζώρτζης Γρηγόρης Περιεχόμενα Εισαγωγή
Διαβάστε περισσότεραΤηλεπικοινωνιακά Συστήματα ΙΙ
Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 13: Συνελικτικοί Κώδικες Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Κώδικες: Εισαγωγή Συνελικτικοί κώδικες Ατζέντα Ιστορική αναδρομή Μαθηματικό υπόβαθρο Αναπαράσταση
Διαβάστε περισσότεραΥπολογιστική Νοημοσύνη. Μάθημα 13: Αναδρομικά Δίκτυα - Recurrent Networks
Υπολογιστική Νοημοσύνη Μάθημα 13: Αναδρομικά Δίκτυα - Recurrent Networks Γενικά Ένα νευρωνικό δίκτυο λέγεται αναδρομικό, εάν υπάρχει έστω και μια σύνδεση από έναν νευρώνα επιπέδου i προς έναν νευρώνα επιπέδου
Διαβάστε περισσότεραΣέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΟΥ ΧΩΡΟΥ ΤΩΝ ΤΑΞΙΝΟΜΗΤΩΝ Ταξινομητές Ταξινομητές συναρτ. διάκρισης Ταξινομητές επιφανειών απόφ. Παραμετρικοί ταξινομητές Μη παραμετρικοί
Διαβάστε περισσότεραΤεχνητά Νευρωνικά Δίκτυα. Τσιριγώτης Γεώργιος Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Ανατολικής Μακεδονίας & Θράκης
Τεχνητά Τσιριγώτης Γεώργιος Τμήμα Μηχανικών Πληροφορικής ΤΕΙ Ανατολικής Μακεδονίας & Θράκης Ο Βιολογικός Νευρώνας Δενδρίτες Συνάψεις Πυρήνας (Σώμα) Άξονας 2 Ο Βιολογικός Νευρώνας 3 Βασικά Χαρακτηριστικά
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ
ΘΕΜΑ ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 26 Ιανουαρίου 2004 ιάρκεια: 2 ώρες (9:00-:00) Στην παρακάτω
Διαβάστε περισσότεραΑριθμητική Ανάλυση και Εφαρμογές
Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα
Διαβάστε περισσότερα6-Aνίχνευση. Ακμών - Περιγράμματος
6-Aνίχνευση Ακμών - Περιγράμματος Ανίχνευση ακμών Μετατροπή 2 εικόνας σε σύνολο ακμών Εξαγωγή βασικών χαρακτηριστικών της εικόνας Πιο «συμπαγής» αναπαράσταση Ανίχνευση ακμών Στόχος: ανίχνευση ασυνεχειών
Διαβάστε περισσότεραΤεχνητή Νοημοσύνη. 19η διάλεξη ( ) Ίων Ανδρουτσόπουλος.
Τεχνητή Νοημοσύνη 19η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτές βασίζονται σε ύλη των βιβλίων: Artificia Inteigence A Modern Approach των S. Russe και P.
Διαβάστε περισσότεραΜέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων
Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Εισηγητής: ρ Ηλίας Ζαφειρόπουλος Εισαγωγή Ιατρικά δεδοµένα: Συλλογή Οργάνωση Αξιοποίηση Data Mining ιαχείριση εδοµένων Εκπαίδευση
Διαβάστε περισσότεραΜεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Χωρικά φίλτρα Χωρικά φίλτρα Γενικά Σε αντίθεση με τις σημειακές πράξεις και μετασχηματισμούς, στα
Διαβάστε περισσότεραΣέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Version 2 1 ΜΗ ΓΡΑΜΜΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΔΕΝΔΡΑ ΑΠΟΦΑΣΗΣ Πρόκειται για μια οικογένεια μη γραμμικών ταξινομητών Είναι συστήματα απόφασης πολλών σταδίων (multistage),
Διαβάστε περισσότεραΕ ΘΝΙΚΟ Μ ΕΤΣΟΒΙΟ Π ΟΛΥΤΕΧΝΕΙΟ
Ε ΘΝΙΚΟ Μ ΕΤΣΟΒΙΟ Π ΟΛΥΤΕΧΝΕΙΟ Σ ΧΟΛΗ Η ΛΕΚΤΡΟΛΟΓΩΝ Μ ΗΧΑΝΙΚΩΝ Κ ΑΙ Μ ΗΧΑΝΙΚΩΝ Υ ΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Χρήση Τεχνικών Βαθιάς Μηχανικής Μάθησης για την Αυτόματη Δημιουργία
Διαβάστε περισσότεραΠανεπιστήµιο Κύπρου Πολυτεχνική Σχολή
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδηµαϊκό έτος 2010-11 Χειµερινό Εξάµηνο Τελική εξέταση Τρίτη, 21 εκεµβρίου 2010,
Διαβάστε περισσότεραHMY 795: Αναγνώριση Προτύπων. Διαλέξεις 15-16
HMY 795: Αναγνώριση Προτύπων Διαλέξεις 15-16 Νευρωνικά Δίκτυα(Neural Networks) Fisher s linear discriminant: Μείωση διαστάσεων (dimensionality reduction) y Τ =w x s + s =w S w 2 2 Τ 1 2 W ( ) 2 2 ( ) m2
Διαβάστε περισσότεραΝευρωνικά ίκτυα και Εξελικτικός
Νευρωνικά ίκτυα και Εξελικτικός Προγραµµατισµός Σηµερινό Μάθηµα Μη επιβλεπόµενη Μάθηση Ανταγωνιστική Μάθηση Αλγόριθµος Leader-follower clusterng Αυτοοργανούµενοι χάρτες Kohonen Ανταγωνισµός Συνεργασία
Διαβάστε περισσότεραΑσκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 5 o Φροντιστήριο
Πρόβλημα ο Ασκήσεις Φροντιστηρίου 5 o Φροντιστήριο Δίνεται το παρακάτω σύνολο εκπαίδευσης: # Είσοδος Κατηγορία 0 0 0 Α 2 0 0 Α 0 Β 4 0 0 Α 5 0 Β 6 0 0 Α 7 0 Β 8 Β α) Στον παρακάτω κύβο τοποθετείστε τα
Διαβάστε περισσότεραΣέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson ΜΙΑ ΣΥΜΒΑΣΗ: Προκειμένου να καταστήσουμε πιο συμπαγή το συμβολισμό H : ορίζουμε Ετσι έχουμε *=[ ] an *=[ ]. H : * * ΣΗΜΕΙΩΣΗ: Στη συνέχεια εκτός αν ορίζεται
Διαβάστε περισσότεραΣέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson 2 B MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η Bayesan περίπτωση - Διαθέσιμα δεδομένα: X=X X 2 X M. Κάθε X αντιστοιχεί στην κλάση
Διαβάστε περισσότεραΥπολογιστική Νοημοσύνη. Μάθημα 4: Μάθηση στον απλό τεχνητό νευρώνα (2)
Υπολογιστική Νοημοσύνη Μάθημα 4: Μάθηση στον απλό τεχνητό νευρώνα (2) Ο κανόνας Δέλτα για συνεχείς συναρτήσεις ενεργοποίησης (1/2) Για συνεχείς συναρτήσεις ενεργοποίησης, θα θέλαμε να αλλάξουμε περισσότερο
Διαβάστε περισσότεραΠληροφοριακά Συστήματα & Περιβάλλον
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Πληροφοριακά Συστήματα & Περιβάλλον Ενότητα 8: Τεχνητά Νευρωνικά Δίκτυα Παναγιώτης Λεφάκης Δασολογίας & Φυσικού Περιβάλλοντος Άδειες Χρήσης
Διαβάστε περισσότεραΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ. Καραγιώργου Σοφία
ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Καραγιώργου Σοφία Εισαγωγή Προσομοιώνει βιολογικές διεργασίες (π.χ. λειτουργία του εγκεφάλου, διαδικασία
Διαβάστε περισσότεραΜάθηση και Γενίκευση. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
Μάθηση και Γενίκευση Το Πολυεπίπεδο Perceptron (MultiLayer Perceptron (MLP)) Έστω σύνολο εκπαίδευσης D={(x n,t n )}, n=1,,n. x n =(x n1,, x nd ) T, t n =(t n1,, t np ) T Θα πρέπει το MLP να έχει d νευρώνες
Διαβάστε περισσότεραΕισαγωγικά για την αναγνώριση έκφρασης προσώπου (Facial Expression Recognition)
Ο στόχος της διπλωματικής είναι η αναγνώριση του συναισθήματος ενός συγκεκριμένου ανθρώπου από μια αλληλουχία εικόνων στις οποίες παίρνει διάφορες εκφράσεις. Αυτό θα γίνει κάνοντας χρήση τεχνικών βαθιάς
Διαβάστε περισσότεραΑναγνώριση Προτύπων Ι
Αναγνώριση Προτύπων Ι Ενότητα 4: Νευρωνικά Δίκτυα στην Ταξιμόμηση Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΑνάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου
Ανάλυση αλγορίθμων Παράμετροι απόδοσης ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, επικοινωνία (π.χ. σε κατανεμημένα συστήματα) Προσπάθεια υλοποίησης Ανάλυση της απόδοσης Θεωρητική
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ
ΘΕΜΑ ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις Παρασκευή 9 Ιανουαρίου 2007 5:00-8:00 εδοµένου ότι η
Διαβάστε περισσότεραΣέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson Σχεδιαζόντας ταξινομητές: Τα δεδομένα Στην πράξη η γνώση σχετικά διαδικασία γέννεσης των δεδομένων είναι πολύ σπάνια γνωστή. Το μόνο που έχουμε στη διάθεσή
Διαβάστε περισσότεραΔρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης
Μάθημα 1ο Δρ. Ανέστης Γ. Χατζημιχαηλίδης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Αξιολόγηση μαθήματος Εισαγωγή στην ΥΝ Τεχνητά Νευρωνικά Δίκτυα (ΤΝΔ) Προγραμματισμός
Διαβάστε περισσότεραΨηφιακή Επεξεργασία Σημάτων
Ψηφιακή Επεξεργασία Σημάτων Ενότητα 3: Συστήματα Διακριτού Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Συστήματα Διακριτού Χρόνου Εισαγωγή στα Συστήματα Διακριτού Χρόνου Ταξινόμηση Συστημάτων ΔΧ
Διαβάστε περισσότερα4.3. Γραµµικοί ταξινοµητές
Γραµµικοί ταξινοµητές Γραµµικός ταξινοµητής είναι ένα σύστηµα ταξινόµησης που χρησιµοποιεί γραµµικές διακριτικές συναρτήσεις Οι ταξινοµητές αυτοί αναπαρίστανται συχνά µε οµάδες κόµβων εντός των οποίων
Διαβάστε περισσότεραΘεωρία Πληροφορίας. Διάλεξη 10: Κωδικοποίηση καναλιού με συνελικτικούς κώδικες. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Θεωρία Πληροφορίας Διάλεξη 10: Κωδικοποίηση καναλιού με συνελικτικούς κώδικες Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Κωδικοποίηση καναλιού: Σύντομη επανάληψη Συνελικτικοί κώδικες Ιστορική
Διαβάστε περισσότεραΣέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson Μέθοδοι ελαχίστων τετραγώνων Least square methos Αν οι κλάσεις είναι γραμμικώς διαχωρίσιμες το perceptron θα δώσει σαν έξοδο ± Αν οι κλάσεις ΔΕΝ είναι
Διαβάστε περισσότεραΣέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson 2 1 ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΟΥ ΧΩΡΟΥ ΤΩΝ ΤΑΞΙΝΟΜΗΤΩΝ Ταξινομητές Ταξινομητές συναρτ. διάκρισης Ταξινομητές επιφανειών απόφ. Παραμετρικοί ταξινομητές Μη παραμετρικοί
Διαβάστε περισσότεραHMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διαλέξεις 17 18 Νευρωνικά Δίκτυα (Neural Networks) συνέχεια Minimum squared error procedure for classification 1 ( T T wls = X X) X b= X b Xw = b Logistic sigmoidal function
Διαβάστε περισσότεραΣέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson 2 1 C MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΕΠΙΦΑΝΕΙΕΣ ΑΠΟΦΑΣΗΣ Υπενθύμιση: είναι το σύνολο δεδομένων που περιέχει τα διαθέσιμα δεδομένα από όλες
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 13: Αλγόριθμοι-Μεγάλων ακεραίων- Εκθετοποίηση- Πολλαπλασιασμός πινάκων -Strassen Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΒασικές αρχές εκπαίδευσης ΤΝΔ: το perceptron. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
Βασικές αρχές εκπαίδευσης ΤΝΔ: το perceptron Βιολογικός Νευρώνας Δενδρίτες, που αποτελούν τις γραμμές εισόδου των ερεθισμάτων (βιολογικών σημάτων) Σώμα, στο οποίο γίνεται η συσσώρευση των ερεθισμάτων και
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ
ΘΕΜΑ 1 ο (2,5 μονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Τελικές εξετάσεις Πέμπτη 21 Ιουνίου 2012 16:30-19:30 Υποθέστε ότι θέλουμε
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ
ΘΕΜΑ ο 2.5 µονάδες ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 2 Σεπτεµβρίου 2005 5:00-8:00 Σχεδιάστε έναν αισθητήρα ercetro
Διαβάστε περισσότεραΑναγνώριση Προτύπων Ι
Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ
ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΨΗΦΙΑΚΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΗΛΕΚΤΡΟΝΙΚΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΟΜΑ Α Α Αριθµητική Λογική Μονάδα των 8-bit 1. Εισαγωγή Γενικά µια αριθµητική λογική µονάδα (ALU, Arithmetic Logic Unit)
Διαβάστε περισσότεραΣέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson 2 1 M = 1 N = N prob k N k { k n ω wrongly classfed} = (1 ) N k 2 Η συνάρτηση πιθανοφάνειας L(p) μεγιστοποιείται όταν =k/n. 3 Αφού τα s είναι άγνωστα,
Διαβάστε περισσότεραΤσαντεκίδης Αβραάμ. Αρχιτεκτονικές και Εκπαίδευση Βαθιών Νευρωνικών Δικτύων. Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Αρχιτεκτονικές και Εκπαίδευση Βαθιών Νευρωνικών Δικτύων Τσαντεκίδης Αβραάμ Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής Ιούνιος 2016 Αυτή η πτυχιακή κατατέθηκε για
Διαβάστε περισσότεραΗ δυαδική σχέση M ( «παράγει σε ένα βήμα» ) ορίζεται ως εξής: (q, w) M (q, w ), αν και μόνο αν w = σw, για κάποιο σ Σ
Πεπερασμένα Αυτόματα (ΠΑ) Τα πεπερασμένα αυτόματα είναι οι απλούστερες «υπολογιστικές μηχανές». Δεν έχουν μνήμη, μόνο μία εσωτερική μονάδα με πεπερασμένο αριθμό καταστάσεων. Διαβάζουν τη συμβολοσειρά εισόδου
Διαβάστε περισσότεραΚΙΝΔΥΝΟΥ ΤΩΝ ΚΑΤΟΛΙΣΘΗΣΕΩΝ ΜΕ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΣΕ ΠΕΡΙΒΑΛΛΟΝ ΓΕΩΓΡΑΦΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΕΚΤΙΜΗΣΗ ΔΙΑΤΡΙΒΗ
ΕΚΤΙΜΗΣΗ ΚΙΝΔΥΝΟΥ ΤΩΝ ΚΑΤΟΛΙΣΘΗΣΕΩΝ ΜΕ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ ΣΕ ΠΕΡΙΒΑΛΛΟΝ ΓΕΩΓΡΑΦΙΚΩΝ ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΔΙΑΤΡΙΒΗ ΓΙΑ ΤΟΝ ΕΠΙΣΤΗΜΟΝΙΚΟ ΤΙΤΛΟ ΤΗΣ ΔΙΔΑΚΤΟΡΟΣ ΤΟΥ Ε.Μ.Π ΥΠΟΒΛΗΘΕΙΣΑ ΣΤΗ ΣΧΟΛΗ ΑΓΡΟΝΟΜΩΝ ΤΟΠΟΓΡΑΦΩΝ
Διαβάστε περισσότεραΤεχνικές Βαθιάς Μηχανικής Μάθησης και Γνώσης για Ανάλυση Συναισθήματος στην Αλληλεπίδραση Ανθρώπου Μηχανής ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Τεχνικές Βαθιάς Μηχανικής Μάθησης και Γνώσης για Ανάλυση Συναισθήματος
Διαβάστε περισσότεραΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ
1 ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτό το μέρος της πτυχιακής θα ασχοληθούμε λεπτομερώς με το φίλτρο kalman και θα δούμε μια καινούρια έκδοση του φίλτρου πάνω στην εφαρμογή της γραμμικής εκτίμησης διακριτού
Διαβάστε περισσότεραΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Σημάτων, Ελέγχου και Ρομποτικής Εργαστήριο Όρασης Υπολογιστών, Επικοινωνίας Λόγου και Επεξεργασίας Σημάτων Αναγνώριση
Διαβάστε περισσότεραΕισαγωγή στους Νευρώνες. Κυριακίδης Ιωάννης 2013
Εισαγωγή στους Νευρώνες Κυριακίδης Ιωάννης 2013 Τι είναι τα Τεχνητά Νευρωνικά Δίκτυα; Είναι μια προσπάθεια μαθηματικής προσομοίωσης της λειτουργίας του ανθρώπινου εγκεφάλου. Είναι ένα υπολογιστικό μοντέλο
Διαβάστε περισσότεραΑνδρέας Παπαζώης. Τμ. Διοίκησης Επιχειρήσεων
Ανδρέας Παπαζώης Τμ. Διοίκησης Επιχειρήσεων Περιεχόμενα Εργ. Μαθήματος Βιολογικά Νευρωνικά Δίκτυα Η έννοια των Τεχνητών Νευρωνικών Δικτύων Η δομή ενός νευρώνα Διαδικασία εκπαίδευσης Παραδείγματα απλών
Διαβάστε περισσότεραΑκαδημαϊκό Έτος , Χειμερινό Εξάμηνο Διδάσκων Καθ.: Νίκος Τσαπατσούλης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ, ΤΜΗΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΕΣ 3: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΚΑΙ ΑΝΑΛΥΣΗ ΕΙΚΟΝΑΣ Ακαδημαϊκό Έτος 7 8, Χειμερινό Εξάμηνο Καθ.: Νίκος Τσαπατσούλης ΕΡΩΤΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Το παρόν
Διαβάστε περισσότεραΓενικά. PDF created with pdffactory trial version
Γενικά Οι συναρτήσεις είναι προκαθορισμένοι τύποι, οι οποίοι εκτελούν υπολογισμούς με συγκεκριμένη σειρά ή δομή και μπορούν να χρησιμοποιηθούν για την εκτέλεση απλών ή πολύπλοκων υπολογισμών. Οι συναρτήσεις
Διαβάστε περισσότεραΕκπαίδευση ΤΝΔ με ελαχιστοποίηση του τετραγωνικού σφάλματος εκπαίδευσης. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν.
Εκπαίδευση ΤΝΔ με ελαχιστοποίηση του τετραγωνικού σφάλματος εκπαίδευσης Ελαχιστοποίηση συνάρτησης σφάλματος Εκπαίδευση ΤΝΔ: μπορεί να διατυπωθεί ως πρόβλημα ελαχιστοποίησης μιας συνάρτησης σφάλματος E(w)
Διαβάστε περισσότεραΕισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι
Εισαγωγή στην επιστήμη των υπολογιστών Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση
Διαβάστε περισσότεραΣέργιου Καραγιαννάκου του Γεωργίου
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ Τομέας Τηλεπικοινωνιών και Τεχνολογίας της Πληροφορίας Εργαστήριο Ενσύρματης Τηλεπικοινωνίας Διπλωματική Εργασία του φοιτητή
Διαβάστε περισσότεραΣτοιχειώδης προγραμματισμός σε C++
Στοιχειώδης προγραμματισμός σε C++ Σύντομο Ιστορικό. Το πρόγραμμα Hello World. Ο τελεστής εξόδου. Μεταβλητές και δηλώσεις τους. Αντικείμενα, μεταβλητές, σταθερές. Ο τελεστής εισόδου. Θεμελιώδεις τύποι.
Διαβάστε περισσότεραΝευρωνικά ίκτυα και Εξελικτικός. Σηµερινό Μάθηµα. επανάληψη Γενετικών Αλγορίθµων 1 η εργασία Επανάληψη νευρωνικών δικτύων Ασκήσεις εφαρµογές
Νευρωνικά ίκτυα και Εξελικτικός Προγραµµατισµός Σηµερινό Μάθηµα επανάληψη Γενετικών Αλγορίθµων η εργασία Επανάληψη νευρωνικών δικτύων Ασκήσεις εφαρµογές Κωδικοποίηση Αντικειµενική Συνάρτ Αρχικοποίηση Αξιολόγηση
Διαβάστε περισσότεραΣέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Verson 2 B MH ΠΑΡΑΜΕΤΡΙΚΟΙ ΤΑΞΙΝΟΜΗΤΕΣ ΒΑΣΙΣΜΕΝΟΙ ΣΕ ΣΥΝΑΡΤΗΣΕΙΣ ΔΙΑΚΡΙΣΗΣ Η Bayesan περίπτωση - Διαθέσιμα δεδομένα: XX X 2 X M. Κάθε X αντιστοιχεί στην κλάση
Διαβάστε περισσότεραΚινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού
Κινητά Δίκτυα Επικοινωνιών Συμπληρωματικό υλικό Προσαρμοστική Ισοστάθμιση Καναλιού Προσαρμοστικοί Ισοσταθμιστές Για να υπολογίσουμε τους συντελεστές του ισοσταθμιστή MMSE, απαιτείται να λύσουμε ένα γραμμικό
Διαβάστε περισσότεραΤο μοντέλο Perceptron
Το μοντέλο Perceptron Αποτελείται από έναν μόνο νευρώνα McCulloch-Pitts w j x x 1, x2,..., w x T 1 1 x 2 w 2 Σ u x n f(u) Άνυσμα Εισόδου s i x j x n w n -θ w w 1, w2,..., w n T Άνυσμα Βαρών 1 Το μοντέλο
Διαβάστε περισσότεραΆσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα).
Κ08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού Διδάσκων: Μανόλης Κουμπαράκης Εαρινό Εξάμηνο 2016-2017. Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα).
Διαβάστε περισσότεραΝευρωνικά ίκτυα. Σηµερινό Μάθηµα
Νευρωνικά ίκτυα Σηµερινό Μάθηµα Perceptron (Αισθητήρας) Aλγόριθµος µάθησης του Perceptron Οι εξισώσεις των Wiener-Hopf Μέθοδος Ταχύτερης Καθόδου (Steepest Descent) Οαλγόριθµος Ελάχιστου Μέσου Τετραγωνικού
Διαβάστε περισσότεραΠληροφορική 2. Αλγόριθμοι
Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται
Διαβάστε περισσότερα(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση
Διαβάστε περισσότεραHEAD INPUT. q0 q1 CONTROL UNIT
Πεπερασμένα Αυτόματα (ΠΑ) Τα πεπερασμένα αυτόματα είναι οι απλούστερες «υπολογιστικές μηχανές». Δεν έχουν μνήμη, μόνο μία εσωτερική μονάδα με πεπερασμένο αριθμό καταστάσεων. Διαβάζουν τη συμβολοσειρά εισόδου
Διαβάστε περισσότεραΔομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 19 Hashing - Κατακερματισμός 1 / 23 Πίνακες απευθείας πρόσβασης (Direct Access Tables) Οι πίνακες απευθείας
Διαβάστε περισσότεραΠεριεχόμενα ΕΝΟΤΗΤΑ I. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Πρόλογος 15
Περιεχόμενα Πρόλογος 15 ΕΝΟΤΗΤΑ I. ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ 1 Τεχνητή νοημοσύνη 21 1.1 Εισαγωγή 21 1.2 Ιστορική εξέλιξη 22 1.3 Εφαρμογές Τεχνητής Νοημοσύνης 25 2 Επίλυση Προβλημάτων 29 2.1 Διαμόρφωση
Διαβάστε περισσότερα4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER
4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι
Διαβάστε περισσότεραΔιαχείριση Εφοδιαστικής Αλυσίδας ΙΙ
Διαχείριση Εφοδιαστικής Αλυσίδας ΙΙ 1 η Διάλεξη: Αναδρομή στον Μαθηματικό Προγραμματισμό 2019, Πολυτεχνική Σχολή Εργαστήριο Συστημάτων Σχεδιασμού, Παραγωγής και Λειτουργιών Περιεχόμενα 1. Γραμμικός Προγραμματισμός
Διαβάστε περισσότεραΑριθμητική εύρεση ριζών μη γραμμικών εξισώσεων
Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ
ΘΕΜΑ ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 25 Αυγούστου 26 :-4: Κατασκευάστε έναν αισθητήρα (perceptron)
Διαβάστε περισσότερα(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις
Διαβάστε περισσότερα(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες:. Φωτάκης. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση
Διαβάστε περισσότεραΕισαγωγή στα Συστήματα Ψηφιακής Επεξεργασίας Σήματος
ΕΣ 08 Επεξεργαστές Ψηφιακών Σημάτων Εισαγωγή στα Συστήματα Ψηφιακής Επεξεργασίας Σήματος Κλήμης Νταλιάνης Λέκτορας Π.Δ.407/80 Τμήμα Επιστήμη και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήμιο Πελοποννήσου Αρχιτεκτονική
Διαβάστε περισσότεραΑριθμητική Ανάλυση & Εφαρμογές
Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ
ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 21 Σεπτεµβρίου 2004 ιάρκεια: 3 ώρες Το παρακάτω σύνολο
Διαβάστε περισσότεραΔιακριτικές Συναρτήσεις
Διακριτικές Συναρτήσεις Δρ. Δηµήτριος Τσέλιος Επίκουρος Καθηγητής ΤΕΙ Θεσσαλίας Τµήµα Διοίκησης Επιχειρήσεων Θερµικός χάρτης των XYZ ξενοδοχείων σε σχέση µε τη γεωγραφική περιοχή τους P. Adamopoulos New
Διαβάστε περισσότεραE[ (x- ) ]= trace[(x-x)(x- ) ]
1 ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Σε αυτό το μέρος της πτυχιακής θα ασχοληθούμε λεπτομερώς με το φίλτρο kalman και θα δούμε μια καινούρια έκδοση του φίλτρου πάνω στην εφαρμογή της γραμμικής εκτίμησης διακριτού
Διαβάστε περισσότεραΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες
Διαβάστε περισσότεραΕιδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων
Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Άσκηση 1 α) Η δομή σταθμισμένης ένωσης με συμπίεση διαδρομής μπορεί να τροποποιηθεί πολύ εύκολα ώστε να υποστηρίζει τις
Διαβάστε περισσότερα(Computed Tomography, CT)
Υπολογιστική Τοµογραφία (Computed Tomography, CT) Κωσταρίδου Ελένη Αναπληρώτρια Καθηγήτρια Ιατρικής Φυσικής Εργαστήριο Ιατρικής Φυσικής, Τµήµα Ιατρικής, Πανεπιστήµιο Πατρών Περιεχόµενα µαθήµατος Φυσικό
Διαβάστε περισσότεραΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ
H O G feature descriptor global feature the most common algorithm associated with person detection Με τα Ιστογράμματα της Βάθμωσης (Gradient) μετράμε τον προσανατολισμό και την ένταση της βάθμωσης σε μία
Διαβάστε περισσότεραΕφαρμογές μεθοδολογιών μηχανικής εκμάθησης στο χώρο της παραγωγής υδρογονανθράκων. Βασίλης Γαγάνης
Εφαρμογές μεθοδολογιών μηχανικής εκμάθησης στο χώρο της παραγωγής υδρογονανθράκων Μέθοδοι μηχανικής εκμάθησης Εύρεση μαθηματικής έκφρασης μοντέλου (κανόνα) ο κανόνας διέπει το υπό μελέτη πρόβλημα ανάπτυξη
Διαβάστε περισσότεραΚεφάλαιο 8. Αριθμητική Λογική μονάδα
Κεφάλαιο 8 Αριθμητική Λογική μονάδα 8.1 Εισαγωγή Στη μηχανική υπολογιστών η αριθμητική/λογική μονάδα (ALU) είναι ένα ψηφιακό κύκλωμα το οποίο εκτελεί αριθμητικούς και λογικούς υπολογισμούς. Η ALU είναι
Διαβάστε περισσότεραΤμήμα Μηχανικών Η/Υ και Πληροφορικής
Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Επεξεργασίας Σημάτων και Τηλεπικοινωνιών Κινητά Δίκτυα Επικοινωνιών Μέρος Α: Τηλεπικοινωνιακά Θέματα: Τεχνικές Ισοστάθμισης Διαύλου Βασικές αρχές Ισοστάθμισης
Διαβάστε περισσότεραΥπολογιστική Νοημοσύνη. Μάθημα 6: Μάθηση με Οπισθοδιάδοση Σφάλματος Backpropagation Learning
Υπολογιστική Νοημοσύνη Μάθημα 6: Μάθηση με Οπισθοδιάδοση Σφάλματος Backpropagation Learning Κεντρική ιδέα Τα παραδείγματα μάθησης παρουσιάζονται στο μηεκπαιδευμένο δίκτυο και υπολογίζονται οι έξοδοι. Για
Διαβάστε περισσότεραΠροσομοίωση Νευρωνικού Δικτύου στο MATLAB. Κυριακίδης Ιωάννης 2013
Προσομοίωση Νευρωνικού Δικτύου στο MATLAB Κυριακίδης Ιωάννης 2013 Εισαγωγή Ένα νευρωνικό δίκτυο αποτελεί μια πολύπλοκη δομή, όπου τα βασικά σημεία που περιλαμβάνει είναι τα εξής: Πίνακες με τα βάρη των
Διαβάστε περισσότεραΣυσχετιστικές Μνήμες Δίκτυο Hopfield. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων
Συσχετιστικές Μνήμες Δίκτυο Hopfield Συσχετιστική Μνήμη Η ανάκληση ενός γεγονότος σε μία χρονική στιγμή προκαλείται από τη συσχέτιση αυτού του γεγονότος με κάποιο ερέθισμα. Πολλές φορές επίσης καλούμαστε
Διαβάστε περισσότεραDigital Image Processing
Digital Image Processing Χωρικό φιλτράρισμα Πέτρος Καρβέλης pkarvelis@gmail.com Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 008. Χωρικού Φιλτράρισμα Η μηχανική
Διαβάστε περισσότεραΣέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Version Εκφράζοντας τον ταξινομητή Bayes (a) Με χρήση συναρτήσεων διάκρισης (discriminant functions) - Έστω g q (x)=f(p(ω q )p(x ω q )), q=,,m, όπου f γνησίως
Διαβάστε περισσότεραΜαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων
Π Π Τ Μ Τ Μ Η/Υ Π Δ Μ Π Μαθηματικά των Υπολογιστών και των Αποφάσεων Τεχνητή Νοημοσύνη 1η Σειρά Ασκήσεων Φοιτητής: Ν. Χασιώτης (AM: 0000) Καθηγητής: Ι. Χατζηλυγερούδης 22 Οκτωβρίου 2010 ΑΣΚΗΣΗ 1. Δίνεται
Διαβάστε περισσότερα