ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ
|
|
- Ποσειδώνιος Μακρή
- 9 χρόνια πριν
- Προβολές:
Transcript
1 H O G feature descriptor global feature the most common algorithm associated with person detection Με τα Ιστογράμματα της Βάθμωσης (Gradient) μετράμε τον προσανατολισμό και την ένταση της βάθμωσης σε μία περιοχή της εικόνας ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Σπύρος Φωτόπουλος ΔΠΜΣ-ΗΕΠ ΗΕ- ΣΕΣΕ
2 Ένα ερώτημα H O G Πως θα γίνει Ανίχνευση/ταξινόμηση αυτοκινήτου με κινούμενο παράθυρο Car/non-car Classifier The HOG person detector uses a detection window that is 64 pixels wide by 28 pixels tall. ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Σπύρος Φωτόπουλος ΔΠΜΣ-ΗΕΠ ΗΕ- ΣΕΣΕ 2
3 H O G Βασικό paper Gradient-based feature descriptor developed for people detection Authors: Dalal&Triggs (INRIA Grenoble, F) ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Σπύρος Φωτόπουλος ΔΠΜΣ-ΗΕΠ ΗΕ- ΣΕΣΕ 3
4 H O G Τα βήματα συνοπτικά: Προεπεξεργασία Υπολογισμός Βάθμωσης - gradient Ομαδοποίηση των κελιών blocks Κανονικοποίηση f = ( h,..., h, h,..., h, h,..., h, h h ) 9 9 9,..., 9 ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Σπύρος Φωτόπουλος ΔΠΜΣ-ΗΕΠ ΗΕ- ΣΕΣΕ 4
5 Υπολογισμός Βάθμωσης -gradient Kernel συνέλιξης Magnitude = (g x 2 + g y2 ) Angle = arctan(g y /g x ) ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Σπύρος Φωτόπουλος ΔΠΜΣ-ΗΕΠ ΗΕ- ΣΕΣΕ 5
6 Τύπος μάσκας D centered D uncentered D cubic-corrected 2x2 diagonal 3x3 Sobel τελεστής [-,, ] [-, ] [, -8,, 8, -] Υπολογισμός Βάθμωσης (gradient) ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Σπύρος Φωτόπουλος ΔΠΜΣ-ΗΕΠ ΗΕ- ΣΕΣΕ 6
7 κελί ιστόγραμμα βάθμωσης Σε κάθε κελί (cell) Έχουμε ιστόγραμμα 9 bins Σε κάθε bin «συσσωρεύουμε» το μέτρο της βάθμωσης Δηλ. «Gradient histogram» Μετρά την διεύθυνση και την ένταση της βαθμωσης σε ένα τμήμα της εικόνας ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Σπύρος Φωτόπουλος ΔΠΜΣ-ΗΕΠ ΗΕ- ΣΕΣΕ 7
8 ιστόγραμμα βάθμωσης- υπολογισμός f = ( h,..., h, h,..., h, h,..., h, h h ) 9 9 9,..., 9 Angle Magnitude Magnitude voting ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Σπύρος Φωτόπουλος ΔΠΜΣ-ΗΕΠ ΗΕ- ΣΕΣΕ 8
9 Ιστόγραμμα βάθμωσης - παραδειγμα 8 8 cell ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Σπύρος Φωτόπουλος ΔΠΜΣ-ΗΕΠ ΗΕ- ΣΕΣΕ 9
10 Ομαδοποίηση των κελιών(cells) blocks Cells blocks Block Block2 4 cells σε κάθε block Τα Blocks επικαλύπτονται Parameters Gradient scale Orientation bins Block overlap area ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Σπύρος Φωτόπουλος ΔΠΜΣ-ΗΕΠ ΗΕ- ΣΕΣΕ
11 Κανονικοποίηση Σε κάθε block L norm = L sqrt = L2 norm = v v v + ε v + ε v v ε ν είναι το διάνυσμα -4 ιστογράμματασε κάθε Block 4 shells x9 bins =36 Επιτυγχάνεται ανεξαρτησία σε μεταβολές έντασης ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Σπύρος Φωτόπουλος ΔΠΜΣ-ΗΕΠ ΗΕ- ΣΕΣΕ
12 Τελικό διάνυσμα HOG Concatenation of Blocks The 64 x 28 pixel detection window will be divided into 7 blocks across and 5 blocks vertically, for a total of 5 blocks. Each block contains 4 cells with a 9-bin histogram for each cell, for a total of 36 values per block. This brings the final vector size to 7 blocks across x 5 blocks vertically x 4 cells per block x 9-bins per histogram = 3,78 values. ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Σπύρος Φωτόπουλος ΔΠΜΣ-ΗΕΠ ΗΕ- ΣΕΣΕ 2
13 H O G ανακεφαλαίωση. Υπολογίζουμε βάθμωση 2. Υπολογίζουμε το ιστόγραμμα της βάθμωσης σε ένα κελί πχ. 8x8 pixels 3. Κανονικοποιούμε το ιστόγραμμα σε επικαλυπτόμενα blocks (πχ 2x2 cells) 4. Συνενώνουμε (concatenate) τα ιστογράμματα στο παράθυρο ελεγχου ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Σπύρος Φωτόπουλος ΔΠΜΣ-ΗΕΠ ΗΕ- ΣΕΣΕ 3
14 παραδειγμα: ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Σπύρος Φωτόπουλος ΔΠΜΣ-ΗΕΠ ΗΕ- ΣΕΣΕ 4
15 Παραδείγματα-συνέχεια Τρείς εικόνες και τα αντίστοιχα R-HOG διανύσματα ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Σπύρος Φωτόπουλος ΔΠΜΣ-ΗΕΠ ΗΕ- ΣΕΣΕ 5
16 Τελικό στάδιο - ταξινόμηση Support Vector Machines (SVMs) Discriminative classifier based on optimal separating line (for 2D case) Maximize the margin between the positive and negative training examples ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Σπύρος Φωτόπουλος ΔΠΜΣ-ΗΕΠ ΗΕ- ΣΕΣΕ 6
17 Support vector machines Want line that maximizes the margin. x x i i positive ( y negative( y i i = ) : = ) : x x i i w + b w + b For support, vectors, x i w + b = ± Support vectors Margin ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Σπύρος Φωτόπουλος ΔΠΜΣ-ΗΕΠ ΗΕ- ΣΕΣΕ 7
18 Person detection, ca. 25. Represent each example with a single, fixed HoG template 2. Learn a single [linear] SVM as a detector ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Σπύρος Φωτόπουλος ΔΠΜΣ-ΗΕΠ ΗΕ- ΣΕΣΕ 8
19 Positive and negative examples + thousands more + millions more ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Σπύρος Φωτόπουλος ΔΠΜΣ-ΗΕΠ ΗΕ- ΣΕΣΕ 9
20 HoG templates for person detection ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ Σπύρος Φωτόπουλος ΔΠΜΣ-ΗΕΠ ΗΕ- ΣΕΣΕ 2
D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2):91-110, 2004.
D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2):91-110, 2004. 1/45 Τι είναι ο SIFT-Γενικά Scale-invariant feature transform detect and
D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2):91-110, 2004.
D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2):91-110, 2004. Εισαγωγικά: SIFT~Harris Harris Detector: Δεν είναι ανεξάρτητος της κλίμακας
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
5-1. Industrial Vision. Machine Vision Systems : Image Acquisition Image processing Analysis/Exploitation
5 Industrial Vision Machine Vision Systems : Image Acquisition Image processing Analysis/Exploitation 5- Image processing Y (colomns) 35 3 38 3 5 35 69 8 3 38 3 3 69 79 39 3 3 33 9 37 6 77 X (rows) 7 38
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Ραδιομετρική Ενίσχυση - Χωρική Επεξεργασία Δορυφορικών Εικόνων
Πανεπιστήμιο Θεσσαλίας Πολυτεχνική Σχολή Τμήμα Μηχανικών Χωροταξίας Πολεοδομίας και Περιφερειακής Ανάπτυξης Ραδιομετρική Ενίσχυση - Χωρική Επεξεργασία Δορυφορικών Εικόνων Ιωάννης Φαρασλής Τηλ : 24210-74466,
Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ
Ψηφιακή Επεξεργασία Εικόνας ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46 Περιλαμβάνει: Βελτίωση (Enhancement) Ανακατασκευή (Restoration) Κωδικοποίηση (Coding) Ανάλυση, Κατανόηση Τμηματοποίηση (Segmentation)
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Τηλεπισκόπηση - Φωτοερμηνεία
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Τηλεπισκόπηση - Φωτοερμηνεία Ενότητα 10: Ραδιομετρική Ενίσχυση Χωρική Επεξεργασία Δορυφορικών Εικόνων. Κωνσταντίνος Περάκης Ιωάννης Φαρασλής Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας
Νευρωνικά ίκτυα και Εξελικτικός
Νευρωνικά ίκτυα και Εξελικτικός Προγραµµατισµός Σηµερινό Μάθηµα RBF (Radial Basis Functions) δίκτυα Παρεµβολή συνάρτησης Θεώρηµα Cover ιαχωρισµός προτύπων Υβριδική Εκµάθηση Σύγκριση µε MLP Εφαρµογή: Αναγνώριση
6-Aνίχνευση. Ακμών - Περιγράμματος
6-Aνίχνευση Ακμών - Περιγράμματος Ανίχνευση ακμών Μετατροπή 2 εικόνας σε σύνολο ακμών Εξαγωγή βασικών χαρακτηριστικών της εικόνας Πιο «συμπαγής» αναπαράσταση Ανίχνευση ακμών Στόχος: ανίχνευση ασυνεχειών
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Εξαγωγή χαρακτηριστικών μαστογραφικών μαζών και σύγκριση
Μάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 8 ο Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας. Ένας αποδεκτός ορισμός της ακμής είναι ο ακόλουθος: «Το σύνορο μεταξύ δύο ομοιογενών περιοχών με
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
Μάθημα 8 ο. Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1
Μάθημα 8 ο Ανίχνευση Ακμών ΤΜΗΥΠ / ΕΕΣΤ 1 Εισαγωγή (1) Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας Προς το παρόν δεν υπάρχει ακόμα ένας ευρέως αποδεκτός ορισμός της ακμής. Εδώ θα θεωρούμε ως ακμή:
Προχωρημένες Εργασίες
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τεχνολογία και Ανάλυση Εικόνων και Βίντεο Προχωρημένες Εργασίες Χειμερινό Εξάμηνο 2007-2008 1. Εισαγωγή Σε σχέση με τις
ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης ης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ (7 ο Εξάμηνο Σχολής Μηχ.Μηχ. ΕΜΠ)
MPEG7 Multimedia Content Description Interface
MPEG7 Multimedia Content Description Interface Τυποποιεί την περιγραφή του περιεχοµένου των πολυµέσων (video audio) εν επεξεργάζεται αλλά! Συλλέγει χαρακτηριστικά πού χρειάζονται για περιγραφή δεδοµένων
Ανάπτυξη ολοκληρωμένου περιβάλλοντος ανάλυσης και ταξινόμησης μαστογραφικών εικόνων
ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ "ΤΕΧΝΟΛΟΓΙΕΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗΝ ΙΑΤΡΙΚΗ ΚΑΙ ΤΗ ΒΙΟΛΟΓΙΑ"
Τεχνικές Συµπίεσης Βίντεο. Δρ. Μαρία Κοζύρη Τµήµα Πληροφορικής Πανεπιστήµιο Θεσσαλίας
Τεχνικές Συµπίεσης Βίντεο Δρ. Μαρία Κοζύρη Τµήµα Πληροφορικής Πανεπιστήµιο Θεσσαλίας Ενότητα 3: Entropy Coding Δρ. Μαρία Κοζύρη Τεχνικές Συµπίεσης Βίντεο Ενότητα 3 2 Θεωρία Πληροφορίας Κωδικοποίηση Θεµελιώθηκε
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Δίκτυα Επικοινωνιών ΙΙ: OSPF Configuration
Δίκτυα Επικοινωνιών ΙΙ: OSPF Configuration Δρ. Απόστολος Γκάμας Διδάσκων 407/80 gkamas@uop.gr Δίκτυα Επικοινωνιών ΙΙ Διαφάνεια 1 1 Dynamic Routing Configuration Router (config) # router protocol [ keyword
Tutorial on Multinomial Logistic Regression
Tutorial on Multinomial Logistic Regression Javier R Movellan June 19, 2013 1 1 General Model The inputs are n-dimensional vectors the outputs are c-dimensional vectors The training sample consist of m
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διαλέξεις 7 8 Μπεϋζιανή εκτίμηση συνέχεια Μη παραμετρικές μέθοδοι εκτίμησης πυκνότητας Εκτίμηση ML για την κανονική κατανομή Μπεϋζιανή εκτίμηση για την κανονική κατανομή Γνωστή
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ιπλωµατική Εργασία του φοιτητή του τµήµατος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Ηλεκτρονικών
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2
Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας Version 2 1 Άλλοι τύποι νευρωνικών δικτύων Αυτοοργανούμενοι χάρτες (Self-organizing maps - SOMs) Αναδρομικά νευρωνικά δίκτυα (Recurrent Neural Networks): γενικής
Topic 4 Image Segmentation
Topic 4 Image Segmentation What is Segmentation? Why? Segmentation important contributing factor to the success of an automated image analysis process What is Image Analysis: Processing images to derive
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο
Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Επεξεργασία Πολυµέσων. Δρ. Μαρία Κοζύρη Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας
Π.Μ.Σ. «Εφαρµοσµένη Πληροφορική» Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Πανεπιστήµιο Θεσσαλίας Ενότητα 3: Επισκόπηση Συµπίεσης 2 Θεωρία Πληροφορίας Κωδικοποίηση Θεµελιώθηκε απο τον Claude
The ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
CMOS Technology for Computer Architects
CMOS Technology for Computer Architects Iakovos Mavroidis Giorgos Passas Manolis Katevenis Lecture 13: On chip SRAM Technology FORTH ICS / EURECCA & UoC GREECE ABC A A E F A BCDAECF A AB C DE ABCDAECF
Ανίχνευση ανθρώπου και παρακολούθηση της κίνησης του (Human detection and tracking)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΠΜΣ ΗΛΕΚΤΡΟΝΙΚΗ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Ανίχνευση ανθρώπου και παρακολούθηση της κίνησης του (Human detecton and trackng) ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΒΛΑΧΟΣΤΑΘΗ
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
encouraged to use the Version of Record that, when published, will replace this version. The most /BCJ BIOCHEMICAL JOURNAL
Biochemical Journal: this is an Accepted Manuscript, not the final Version of Record. You are encouraged to use the Version of Record that, when published, will replace this version. The most up-to-date
Πεξηβάιινλ θαη Αλάπηπμε ΔΘΝΙΚΟ ΜΔΣΟΒΙΟ ΠΟΛΤΣΔΥΝΔΙΟ ΓΙΔΠΙΣΗΜΟΝΙΚΟ - ΓΙΑΣΜΗΜΑΣΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΙΑΚΧΝ ΠΟΤΓΧΝ (Γ.Π.Μ..) "ΠΔΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΣΤΞΗ"
ΔΘΝΙΚΟ ΜΔΣΟΒΙΟ ΠΟΛΤΣΔΥΝΔΙΟ ΓΙΔΠΙΣΗΜΟΝΙΚΟ - ΓΙΑΣΜΗΜΑΣΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΙΑΚΧΝ ΠΟΤΓΧΝ (Γ.Π.Μ..) "ΠΔΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΣΤΞΗ" 2 ε ΚΑΣΔΤΘΤΝΗ ΠΟΤΓΧΝ «ΠΔΡΙΒΑΛΛΟΝ ΚΑΙ ΑΝΑΠΣΤΞΗ ΣΧΝ ΟΡΔΙΝΧΝ ΠΔΡΙΟΥΧΝ» Πεξηβάιινλ
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ
ΙΑΤΡΙΚΗ ΑΠΕΙΚΟΝΙΣΗ & ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΙΑΤΡΙΚΗΣ ΕΙΚΟΝΑΣ ΔΡ. Γ. ΜΑΤΣΟΠΟΥΛΟΣ ΕΠ. ΚΑΘΗΓΗΤΗΣ ΣΧΟΛΗ ΗΛΕΚΤΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επεξεργασία Ιατρικών Εικόνων
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
Ψηφιακή Επεξεργασία Εικόνας. Σ. Φωτόπουλος ΨΕΕ ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46
Ψηφιακή Επεξεργασία Εικόνας Σ. Φωτόπουλος ΨΕΕ ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕ ΙΣΤΟΓΡΑΜΜΑ ΔΠΜΣ ΗΕΠ 1/46 Περιλαμβάνει: Βελτίωση (Enhancement) Ανακατασκευή (Restoration) Κωδικοποίηση (Coding) Ανάλυση, Κατανόηση Τμηματοποίηση
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
PP #1 Μηχανικές αρχές και η εφαρµογή τους στην Ενόργανη Γυµναστική
PP #1 Μηχανικές αρχές και η εφαρµογή τους στην Ενόργανη Γυµναστική Σηµαντικοί παράγοντες στην εκτέλεση από µηχανικής απόψεως ικανότητα απόκτησης ύψους ικανότητα περιστροφής ικανότητα αιώρησης ικανότητα
22 .5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation
Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F
ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
Ε.Α.Υ. Υπολογιστική Όραση. Κατάτμηση Εικόνας
Ε.Α.Υ. Υπολογιστική Όραση Κατάτμηση Εικόνας Γεώργιος Παπαϊωάννου 2015 ΚΑΤΩΦΛΙΩΣΗ Κατωφλίωση - Γενικά Είναι η πιο απλή μέθοδος segmentation εικόνας Χωρίζουμε την εικόνα σε 2 (binary) ή περισσότερες στάθμες
ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ ΚΑΙ ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ. Data Mining - Classification
ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ ΚΑΙ ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ Data Mining - Classification Data Mining Ανακάλυψη προτύπων σε μεγάλο όγκο δεδομένων. Σαν πεδίο περιλαμβάνει κλάσεις εργασιών: Anomaly Detection:
Advances in Digital Imaging and Computer Vision
Advances in Digital Imaging and Computer Vision Lecture and Lab XXX Introduction to Python Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας 21/2/2017 1 Image Processing and Computer Vision with
10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations
//.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Προσωπική Aνάπτυξη. Ενότητα 4: Συνεργασία. Juan Carlos Martínez Director of Projects Development Department
Προσωπική Aνάπτυξη Ενότητα 4: Συνεργασία Juan Carlos Martínez Director of Projects Development Department Σκοπός 1. Πώς να χτίσετε και να διατηρήσετε μια αποτελεσματική ομάδα Σε αυτό πρόγραμμα, εντός
ΠΣΤΥΗΑΚΖ ΔΡΓΑΗΑ. Αλαθαηαζθεπή εηθφλσλ ζε απνρξψζεηο ηνπ γθξη κε ηελ ρξήζε ησλ PHTs κεηαζρεκαηηζκψλ ΠΑΝΣΔΡΜΟ ΔΜΜΑΝΟΤΖΛ Α.Μ.:2131
ΣΕΥΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΤΣΙΚΟ ΙΔΡΤΜΑ ΑΝΑΣΟΛΙΚΗ ΜΑΚΕΔΟΝΙΑ ΚΑΙ ΘΡΑΚΗ ΣΜΖΜΑ ΜΖΥΑΝΗΚΧΝ ΠΛΖΡΟΦΟΡΗΚΖ ΣΔ ΠΣΤΥΗΑΚΖ ΔΡΓΑΗΑ Αλαθαηαζθεπή εηθφλσλ ζε απνρξψζεηο ηνπ γθξη κε ηελ ρξήζε ησλ PHTs κεηαζρεκαηηζκψλ ΠΑΝΣΔΡΜΟ ΔΜΜΑΝΟΤΖΛ
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
Chapter 7 Transformations of Stress and Strain
Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1
ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011
Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι
Queensland University of Technology Transport Data Analysis and Modeling Methodologies
Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206
ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ/ΒΙΝΤΕΟ ΓΙΑ ΑΝΙΧΝΕΥΣΗ ΖΩΩΝ ΣΕ ΦΥΣΙΚΑ ΤΟΠΙΑ
ΕΠΕΞΕΡΓΑΣΙΑ ΕΙΚΟΝΑΣ/ΒΙΝΤΕΟ ΓΙΑ ΑΝΙΧΝΕΥΣΗ ΖΩΩΝ ΣΕ ΦΥΣΙΚΑ ΤΟΠΙΑ ANIMAL DETECTION IN NATURAL SCENES THROUGH IMAGE AND VIDEO PROCESSING Μαυρόπουλος Ευάγγελος Διπλωματική εργασία Πανεπιστήμιο Θεσσαλίας Τμήμα
Detection and Recognition of Traffic Signal Using Machine Learning
1 1 1 Detection and Recognition of Traffic Signal Using Machine Learning Akihiro Nakano, 1 Hiroshi Koyasu 1 and Hitoshi Maekawa 1 To improve road safety by assisting the driver, traffic signal recognition
Section 8.2 Graphs of Polar Equations
Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση
Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά
Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ
Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Η προβολή επιστημονικών θεμάτων από τα ελληνικά ΜΜΕ : Η κάλυψή τους στον ελληνικό ημερήσιο τύπο Σαραλιώτου
Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.
B-Trees Index files can become quite large for large main files Indices on index files are possible 3 rd -level index 2 nd -level index 1 st -level index Main file 1 The 1 st -level index consists of pairs
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
. Βάθος χρώματος: Πραγματικό χρώμα. . Βάθος χρώματος: Αποχρώσεις του γκρίζου 8bit. . Βάθος χρώματος: Αποχρώσεις του γκρίζου 1bit.
Α ΤΕΙ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ, ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΗΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ: A ΧΕΙΜΕΡΙΝΟ 2011-2012 ΕΞΕΤΑΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ: ΨΗΦΙΑΚΗ ΕΙΚΟΝΑ ΚΑΙ ΗΧΟΣ (7-2-2012) Διάρκεια εξέτασης: 2.0 ώρες (08:00 10:30)
ΕΘΝΙΚΗ ΣΧΟΛΗ ΤΟΠΙΚΗΣ ΑΥΤΟ ΙΟΙΚΗΣΗΣ Β ΕΚΠΑΙ ΕΥΤΙΚΗ ΣΕΙΡΑ ΤΜΗΜΑ: ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ. Θέµα:
Ε ΕΘΝΙΚΗ ΣΧΟΛΗ ΤΟΠΙΚΗΣ ΑΥΤΟ ΙΟΙΚΗΣΗΣ Β ΕΚΠΑΙ ΕΥΤΙΚΗ ΣΕΙΡΑ ΤΜΗΜΑ: ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ Θέµα: Πολιτιστική Επικοινωνία και Τοπική ηµοσιότητα: Η αξιοποίηση των Μέσων Ενηµέρωσης, ο ρόλος των
Current Status of PF SAXS beamlines. 07/23/2014 Nobutaka Shimizu
Current Status of PF SAXS beamlines 07/23/2014 Nobutaka Shimizu BL-6A Detector SAXS:PILATUS3 1M WAXD:PILATUS 100K Wavelength 1.5Å (Fix) Camera Length 0.25, 0.5, 1.0, 2.0, 2.5 m +WAXD Chamber:0.75, 1.0,
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διαλέξεις 9 20 Kernel methods Support vector machines Εκπαίδευση νευρωνικών δικτύων backpropagation:. Υπολογισμός μεταβλητών δικτύου «τρέχον» w () () (2) (2) aj = wji xi ak
Projects Στα Ειδικά Θέµατα Επεξεργασίας Σήµατος και Εικόνας
Projects Στα Ειδικά Θέµατα Επεξεργασίας Σήµατος και Εικόνας Τα projects θα γίνουν απο δύο άτοµα Για τα projects 1-4 υπεύθυνος είναι ο κ. Αναστασόπουλος Για τα 5-11 ο κ. Φωτόπουλος Για τα 12-15 οι κ. Φωτόπουλος
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους
TMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
ΑΣΚΗΣΗ 3 ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕΛΕΤΗ ΙΣΤΟΓΡΑΜΜΑΤΟΣ. ( ) 1, αν Ι(i,j)=k hk ( ), διαφορετικά
ΑΣΚΗΣΗ 3 ΒΕΛΤΙΩΣΗ ΕΙΚΟΝΑΣ ΜΕΛΕΤΗ ΙΣΤΟΓΡΑΜΜΑΤΟΣ Αντικείμενο: Εξαγωγή ιστογράμματος εικόνας, απλοί μετασχηματισμοί με αυτό, ισοστάθμιση ιστογράμματος. Εφαρμογή βασικών παραθύρων με την βοήθεια του ΜΑΤLAB
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί
Μέθοδοι Αναπαράστασης Περιοχών
KEΣ 3 Αναγνώριση Προτύπων και Ανάλυση Εικόνας Μέθοδοι Αναπαράστασης Περιοχών ΤµήµαΕπιστήµης και Τεχνολογίας Τηλεπικοινωνιών Πανεπιστήµιο Πελοποννήσου Εισαγωγή Χαρακτηριστικά χώρου Χαρακτηριστικά από µετασχηµατισµό
CTEC-153: ΥΠΟΛΟΓΙΣΤΙΚΑ ΦΥΛΛΑ
ΜΑΘΗΜΑ 5 ΣΤΟΧΟΙ: 1. Μορφοποίηση Αριθμών 2. Αλλαγή Μεγέθους Και Τύπου Γραμματοσειράς 3. Χρησιμοποίηση Πλάγιων, Έντονων, Υπογραμμισμένων Χαρακτήρων 4. Αλλαγή Χρώματος Γραμματοσειράς 5. Παράθυρο Διαλόγου
ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΔΕ. 11 ΙΟΥΝΙΟΥ 2012
ΔΕ. ΙΟΥΝΙΟΥ Δίνονται τα εξής πρότυπα: [ ] [ ] [ ] [ ] Άσκηση η ( μονάδες) Χρησιμοποιώντας το κριτήριο της ομοιότητας να απορριφθεί ένα χαρακτηριστικό με βάσει το συντελεστή συσχέτισης. (γράψτε ποιο χαρακτηριστικό
ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ
ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ : ΥΠΟΒΡΥΧΙΕΣ ΚΟΠΕΣ ΚΑΙ ΣΥΓΚΟΛΛΗΣΕΙΣ ΑΣΦΑΛΕΙΑ ΥΤΩΝ ΣΠΟΥ ΑΣΤΗΣ : [ΥΦΑΝΤΗΣ ΡΑΦΑΗΛ] ΑΜ : [4187] ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑ ΟΣΗΣ : 9/1/2013
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Ε Ρ Γ Α Σ Τ Η Ρ Ι Α9 Κ Η Α Σ Κ Η Σ Η
Ε Ρ Γ Α Σ Τ Η Ρ Ι Α9 Κ Η Α Σ Κ Η Σ Η Επεξεργασία Σήματος VIDEO σε Πραγματικό Χρόνο 1. Εισαγωγή Σκοπός της άσκησης αυτής είναι η υλοποίηση-επίδειξη αλγορίθμων επεξεργασίας σημάτων video σε πραγματικό χρόνο
Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»
Ανώτατο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ανατολικής Μακεδονίας και Θράκης Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων
1η εργασία για το μάθημα «Αναγνώριση προτύπων»
1η εργασία για το μάθημα «Αναγνώριση προτύπων» Σημειώσεις: 1. Η παρούσα εργασία είναι η πρώτη από 2 συνολικά εργασίες, η κάθε μια από τις οποίες θα βαθμολογηθεί με 0.4 μονάδες του τελικού βαθμού του μαθήματος.
Elements of Information Theory
Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure
On a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
Κεφάλαιο 11 Ταξινομήσεις
Κεφάλαιο 11 Ταξινομήσεις Κωνσταντίνος Γ. Περάκης Σύνοψη Στην εισαγωγή του ενδεκάτου κεφαλαίου αναλύεται η έννοια της ταξινόμησης στην Τηλεπισκόπηση και διαχωρίζονται οι ταξινομήσεις σε δύο μεγάλες κατηγορίες
2. Δημιουργία και Διαχείριση Πολυφασματικών εικόνων
1 2. Δημιουργία και Διαχείριση Πολυφασματικών εικόνων Προαπαιτούμενα: MULTISPEC και οι εικόνες του φακέλου «Multispec_tutorial_files\ Images and Files Σκοπός: Η προσαρμογή της χωρικής ανάλυσης διαφορετικών
Περιοχή διαγωνισμού Rethink Athens
Περιοχή διαγωνισμού Rethink Athens Πρόγραμμα : Statistical_Analysis_1.prg Ανάλυση : 28/06/2012 13:05 Κατάλογος : C:\Workspace\Planning\Mst\2010\Statistics\Analysis_5\ Vesrion : 2.8.0, 20-06-2011 Τα κοινά
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διαλέξεις 7-8 Μπεϋζιανή εκτίμηση - συνέχεια Μη παραμετρικές μέθοδοι εκτίμησης πυκνότητας Δυαδικές τ.μ. κατανομή Bernoulli : Εκτίμηση ML: Εκτίμηση Bayes για εκ των προτέρων
Ψηφιακή Επεξεργασία Εικόνας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Block Ciphers Modes. Ramki Thurimella
Block Ciphers Modes Ramki Thurimella Only Encryption I.e. messages could be modified Should not assume that nonsensical messages do no harm Always must be combined with authentication 2 Padding Must be
Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction
() () Study on e-adhesion control by monitoring excessive angular momentum in electric railway traction Takafumi Hara, Student Member, Takafumi Koseki, Member, Yutaka Tsukinokizawa, Non-member Abstract
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Προσωπική Aνάπτυξη. Ενότητα 2: Διαπραγμάτευση. Juan Carlos Martínez Director of Projects Development Department
Προσωπική Aνάπτυξη Ενότητα 2: Διαπραγμάτευση Juan Carlos Martínez Director of Projects Development Department Unit Scope Σε αυτή την ενότητα θα μελετήσουμε τα βασικά των καταστάσεων διαπραγμάτευσης winwin,
Μορφοποίηση υπό όρους : Μορφή > Μορφοποίηση υπό όρους/γραμμές δεδομένων/μορφοποίηση μόο των κελιών που περιέχουν/
Μορφοποίηση υπό όρους : Μορφή > Μορφοποίηση υπό όρους/γραμμές δεδομένων/μορφοποίηση μόο των κελιών που περιέχουν/ Συνάρτηση round() Περιγραφή Η συνάρτηση ROUND στρογγυλοποιεί έναν αριθμό στον δεδομένο
Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation
Review: Molecules Start with the full amiltonian Ze e = + + ZZe A A B i A i me A ma ia, 4πε 0riA i< j4πε 0rij A< B4πε 0rAB Use the Born-Oppenheimer approximation elec Ze e = + + A A B i i me ia, 4πε 0riA