Συναρτησιακές Εξαρτήσεις

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Συναρτησιακές Εξαρτήσεις"

Transcript

1 Συναρτησιακές Εξαρτήσεις Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Εισαγωγή Θεωρία για το πότε ένας σχεδιασμός είναι «καλός» Η θεωρία βασίζεται στις Συναρτησιακές Εξαρτήσεις (Functional Dependencies) Τι είναι; Συμβολισμός Εξαρτήσεις ανάμεσα σε σύνολα από γνωρίσματα S1 S2 (όπου S1, S2 σύνολα γνωρισμάτων) Τι σημαίνει: Αν ίδιες τιμές στα γνωρίσματα του S1 ίδιες τιμές στα γνωρίσματα του S2 Βάσεις Δεδομένων Ευαγγελία Πιτουρά 2 Βάσεις Δεδομένων : Συναρτησιακές Εξαρτήσεις 1

2 Συναρτησιακές Εξαρτήσεις Παράδειγμα: Σχήμα Σχέσης R(A, B, C, D) (Υπενθύμιση συμβολισμού) Στιγμιότυπο, r(r) Α Β C D r1 a 1 b 1 c 1 d 1 Συμβολισμός r1[a] = a 1 r2 r3 r4 a 1 b 2 c 1 d 2 a 2 b 3 c 2 d 3 a 3 b 3 c 2 d 4 r2[bc] = b 2 c 1 Έστω ένα σχήμα σχέσης R(Α 1, Α 2,, Α n ). Θα συμβολίζουμε με R = {Α 1, Α 2,, Α n } το σύνολο των γνωρισμάτων της R. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 3 Έστω X R και Y R, ΟΡΙΣΜΟΣ Συναρτησιακές Εξαρτήσεις μια συναρτησιακή εξάρτηση Χ Υ ισχύει στο σχήμα R αν για κάθε σχέση r(r), για κάθε ζεύγος πλειάδων t 1 και t 2 της r, τέτοιες ώστε t 1 [X] = t 2 [X] t 1 [Y] = t 2 [Y] Με απλά λόγια, μια συναρτησιακή εξάρτηση X Y μαςλέειότι αν οποιεσδήποτε δυο πλειάδες μιας σχέσης της R συμφωνούν (έχουν την ίδια τιμή) σε κάποια γνωρίσματα Χ R τότε συμφωνούν (έχουν την ίδια τιμή) και σε κάποια γνωρίσματα Y R. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 4 Βάσεις Δεδομένων : Συναρτησιακές Εξαρτήσεις 2

3 Αντί {Α 1, Α 2,, Αn} {Β 1, Β 2,, Β m } γράφουμε Συναρτησιακές Εξαρτήσεις Α 1 Α 2 Α n Β 1 Β 2 Β m Ισχύουν στο σχήμα - δηλαδή για όλες τις πιθανές σχέσεις (πλειάδες) Παράδειγμα: Ποιες (μη τετριμμένες) συναρτησιακές εξαρτήσεις ικανοποιεί η παρακάτω σχέση δεν ξέρουμε αν ισχύουν στο σχήμα Μπορούμε όμως να πούμε ποιες δεν ισχύουν Α Β C D a 1 b 1 c 1 d 1 a 1 b 2 c 1 d 2 a 2 b 3 c 2 d 3 a 3 b 3 c 2 d 4 Βάσεις Δεδομένων Ευαγγελία Πιτουρά 5 Συναρτησιακές Εξαρτήσεις To Y εξαρτάται συναρτησιακά από το X Γιατί καλούνται συναρτησιακές Κ R υπερκλειδί της R ανν K? Υπενθύμιση: R είναι το σύνολο των γνωρισμάτων του σχήματος Μια γενίκευση της έννοιας του κλειδιού Βάσεις Δεδομένων Ευαγγελία Πιτουρά 6 Βάσεις Δεδομένων : Συναρτησιακές Εξαρτήσεις 3

4 Συναρτησιακές Εξαρτήσεις Παρατήρηση Α 1 Α 2 Α n Β 1 και Α 1 Α 2 Α n Β 2 Α 1 Α 2 Α n Β 1 Β 2 Βάσεις Δεδομένων Ευαγγελία Πιτουρά 7 Παράδειγμα φυσικής σημασίας εξαρτήσεων Όπως και τα κλειδιά, οι συναρτησιακές εξαρτήσεις προκύπτουν από τη φυσική περιγραφή του προβλήματος από τον πραγματικό κόσμο Έστω το παρακάτω σχεσιακό σχήμα: Εγγραφή(Μάθημα, Φοιτητής, Ώρα+Μέρα, Αίθουσα, Βαθμός) (συντομογραφία) Ε(Μ, Φ, Ω, Α, Β) 1. Τα μαθήματα προσφέρονται μόνο μια φορά [σε μια συγκεκριμένη ώρα και αίθουσα]. 2. Οι φοιτητές δεν μπορούν να είναι σε δυο διαφορετικά μέρη ταυτόχρονα 3. ε γίνεται να έχουμε δυο μαθήματα ταυτόχρονα (την ίδια ώρα) στην ίδια αίθουσα 4. Ένας φοιτητής παίρνει μόνο ένα βαθμό σε κάθε μάθημα Ποιες συναρτησιακές εξαρτήσεις εκφράζουν αυτές τις συνθήκες. Ποιο (ποια) είναι το κλειδί αν ισχύουν τα (1) έως (4) 5. Τι σημαίνει Φ Μ, ΜΒ Φ Βάσεις Δεδομένων Ευαγγελία Πιτουρά 8 Βάσεις Δεδομένων : Συναρτησιακές Εξαρτήσεις 4

5 Συναρτησιακές Εξαρτήσεις Παράδειγμα: Στο παρακάτω σχήμα ένας λογαριασμός μπορεί να ανήκει σε παραπάνω από έναν πελάτη και ένας πελάτης πολλούς λογαριασμούς. Ποιες άλλες (εκτός του κλειδιού) συναρτησιακές εξαρτήσεις μπορεί να ισχύουν αλλά δε φαίνονται στο παρακάτω σχήμα; Λογαριασμός Όνομα-Υποκαταστήματος Αριθμός-Λογαριασμού Ποσό Όνομα-Πελάτη Παράδειγμα: Ένας Πελάτης πολλά δάνεια και ένα άνειο από παραπάνω από έναν πελάτη Πελάτης Όνομα-Πελάτη Οδός Πόλη Αριθμός-Δανείου Διεύθυνση πελάτη Σημείωση: Στα παραπάνω σχεσιακά μοντέλα, με τα κλειδιά εκφράζεται μόνο ένα υποσύνολο των περιορισμών ιαισθητικά, οι δύο παραπάνω σχεδιασμοί δεν είναι «καλοί», γιατί; Βάσεις Δεδομένων Ευαγγελία Πιτουρά 9 Συναρτησιακές Εξαρτήσεις Στο παρακάτω σχήμα, υπάρχει κάποιος περιορισμός που δεν εκφράζεται από τα κλειδιά; Ταινία Τίτλος Έτος Διάρκεια Είδος Παίζει Όνομα-Ηθοποιού Τίτλος Έτος Ηθοποιός Όνομα Διεύθυνση Έτος-Γέννησης Σύζυγος-Ηθοποιού Βάσεις Δεδομένων Ευαγγελία Πιτουρά 10 Βάσεις Δεδομένων : Συναρτησιακές Εξαρτήσεις 5

6 Συναρτησιακές Εξαρτήσεις Τετριμμένες εξαρτήσεις (ισχύουν για όλα τα σχήματα) Παράδειγμα: Α Α ή ΑΒ Β Γενικά, Χ Υ τετριμμένη, όταν Y X Βάσεις Δεδομένων Ευαγγελία Πιτουρά 11 Συναρτησιακές Εξαρτήσεις Οι συναρτησιακές εξαρτήσεις ορίζονται στο σχήμα μιας σχέσης Ένα σύνολο από συναρτησιακές εξαρτήσεις F ισχύει σε ένα σχήμα Έλεγχος αν μια σχέση ικανοποιεί το σύνολο F Βάσεις Δεδομένων Ευαγγελία Πιτουρά 12 Βάσεις Δεδομένων : Συναρτησιακές Εξαρτήσεις 6

7 Κανόνες Συμπερασμού Συνάγουμε νέες εξαρτήσεις από ένα δεδομένο σύνολο εξαρτήσεων F = X Y : ησυναρτησιακήεξάρτησηx Y συνάγεται από το σύνολο εξαρτήσεων F Βάσεις Δεδομένων Ευαγγελία Πιτουρά 13 Κανόνες Συμπερασμού F + : κλειστότητα του F: σύνολο όλων των συναρτησιακών εξαρτήσεων που συνάγονται από το F Κανόνες Συμπερασμού- γιατησυναγωγήεξαρτήσεων Βάσεις Δεδομένων Ευαγγελία Πιτουρά 14 Βάσεις Δεδομένων : Συναρτησιακές Εξαρτήσεις 7

8 Κανόνες Συμπερασμού Κανόνες Συμπερασμού (Inference Rules) 1. Ανακλαστικός Κανόνας Αν Χ Υ, τότε X Y 2. Επαυξητικός Κανόνας {X Y} = ΧΖ YZ 3. Μεταβατικός Κανόνας {X Y, Υ Z } = Χ Z Κανόνες του Amstrong: βάσιμοι (sound) δε δίνουν λανθασμένες εξαρτήσεις και πλήρεις (complete) μας δίνουν όλο το F + Βάσεις Δεδομένων Ευαγγελία Πιτουρά 15 Κανόνες Συμπερασμού {X Y} = ΧΖ YZ Επαυξητικός Κανόνας Απόδειξη (με επαγωγή σε άτοπο:) έστω ότι σε κάποιο στιγμιότυπο της r ισχύει X Y (1) αλλά όχι ΧΖ YZ (2) Από (2 & ορισμό), υπάρχουν δυο πλειάδες t1[xz] = t2[xz] (3) και t1[yz] t2[yz] Από (3), t1[x] = t2[x] (4) και t1[z] = t2[z] (5) Από (1) και (4), t1[y] = t2[υ] (6) Απόδειξη των 3 κανόνων Από (5) και (6), t1[υz] = t2[υz] Άτοπο! με βάση τον ορισμό Βάσεις Δεδομένων Ευαγγελία Πιτουρά 16 Βάσεις Δεδομένων : Συναρτησιακές Εξαρτήσεις 8

9 Κανόνες Συμπερασμού Επιπρόσθετοι κανόνες 4. Ενωτικός Κανόνας {X Y, Χ Z } = Χ YZ 5. ιασπαστικός Κανόνας {X YZ } = Χ Y 6. Ψευδομεταβατικός Κανόνας {X Y, ΥΖ W } = ΧZ W Βάσεις Δεδομένων Ευαγγελία Πιτουρά 17 Ενωτικός Κανόνας {X Y (1), Χ Z (2)} = Χ YZ Απόδειξη (με χρήση των κανόνων του Amstrong) Κανόνες Συμπερασμού (2) + Επαυξ. ΧY YZ (3) (1) + Επαυξ. X XY (4) (3) (4) Μεταβ. Χ YZ Απόδειξη των επιπλέον κανόνων με βάση τον ορισμό ή/και των κανόνων του Amstrong Ανακλαστικός Κανόνας Αν Χ Υ, τότε X Y Επαυξητικός Κανόνας {X Y} = ΧΖ YZ Μεταβατικός Κανόνας {X Y, Υ Z } = Χ Z Βάσεις Δεδομένων Ευαγγελία Πιτουρά 18 Βάσεις Δεδομένων : Συναρτησιακές Εξαρτήσεις 9

10 Κανόνες Συμπερασμού 1. Ανακλαστικός Κανόνας Αν Χ Υ, τότε X Y 2. Επαυξητικός Κανόνας {X Y} συνάγει ΧΖ YZ 3. Μεταβατικός Κανόνας {X Y, Υ Z} συνάγει Χ Z 4. Ενωτικός Κανόνας {X Y, Χ Z} συνάγει Χ YZ 5. ιασπαστικός Κανόνας {X YZ } συνάγει Χ Y 6. Ψευδομεταβατικός Κανόνας {X Y, ΥΖ W} συνάγει ΧZ W Βάσεις Δεδομένων Ευαγγελία Πιτουρά 19 Κανόνες Συμπερασμού Έστω R = {A, B, C, G, H, I} και F = {A B, A C, CG H, CG I, B H} Παραδείγματα συναρτησιακών εξαρτήσεων που συνάγονται από το F Α Η CG ΗI ΑG I (α) Υπάρχει τρόπος/αλγόριθμος να τις υπολογίσουμε όλες; (β) Πως μπορούμε να υπολογίσουμε το κλειδί; Βάσεις Δεδομένων Ευαγγελία Πιτουρά 20 Βάσεις Δεδομένων : Συναρτησιακές Εξαρτήσεις 10

11 Κλειστότητα Χ + : κλειστότητα (closure) ενός συνόλου X από γνωρίσματα aπό το F σύνολο όλων των γνωρισμάτων που εξαρτώνται συναρτησιακά από το X μέσω του F Υπολογισμός του Χ + Result := Χ while (αλλαγή στο Result) Για κάθε συναρτησιακή εξάρτηση: Υ Ζ F Αν Υ Result, Result := Result Z Βάσεις Δεδομένων Ευαγγελία Πιτουρά 21 Κλειστότητα Παράδειγμα Έστω R = {A, B, C, G, H, I} και F = {A B, A C, CG H, CG I, B H} Υπολογισμός του {A, G} + Βάσεις Δεδομένων Ευαγγελία Πιτουρά 22 Βάσεις Δεδομένων : Συναρτησιακές Εξαρτήσεις 11

12 Κλειστότητα Είναι ο αλγόριθμος σωστός (α) Για κάθε Y Result, ισχύει Υ Χ + (β) Για κάθε Υ Χ +, ισχύει Υ Result Πολυπλοκότητα χειρότερης περίπτωσης Βάσεις Δεδομένων Ευαγγελία Πιτουρά 23 Κλειστότητα Μπορούμε να χρησιμοποιήσουμε τον αλγόριθμο (πως;) για να: 1. είξουμε αν μια συναρτησιακή εξάρτηση ισχύει 2. Υπολογίσουμε τα κλειδιά ενός σχήματος σχέσης 3. Υπολογίσουμε το F + Βάσεις Δεδομένων Ευαγγελία Πιτουρά 24 Βάσεις Δεδομένων : Συναρτησιακές Εξαρτήσεις 12

13 Παράδειγμα I R(A, B, C, D) F = {AB C, C D, D A} 1. είξουμε αν μια συναρτησιακή εξάρτηση ισχύει C A? A D? AB D? Βάσεις Δεδομένων Ευαγγελία Πιτουρά 25 Παράδειγμα I R(A, B, C, D) F = {AB C, C D, D A} 2. Υπολογίσουμε τα κλειδιά ενός σχήματος σχέσης Βάσεις Δεδομένων Ευαγγελία Πιτουρά 26 Βάσεις Δεδομένων : Συναρτησιακές Εξαρτήσεις 13

14 Παράδειγμα I R(A, B, C, D) F = {AB C, C D, D A} 3. Υπολογίσουμε το F + Βάσεις Δεδομένων Ευαγγελία Πιτουρά 27 Παράδειγμα II R(A, B, C, D, Ε) F = {A ΒC, C ΑD, Β ΕD, AD E} 1. Υπολογίστε το Α +, Β +,C +, D +, E + 2. Υποψήφια κλειδιά; Βάσεις Δεδομένων Ευαγγελία Πιτουρά 28 Βάσεις Δεδομένων : Συναρτησιακές Εξαρτήσεις 14

15 Κάλυμμα Απλοποίηση ενός δοσμένου συνόλου συναρτησιακών εξαρτήσεων χωρίς να μεταβάλλουμε την κλειστότητά του Έστω δυο σύνολα συναρτησιακών εξαρτήσεων E και F Λέμε ότι το F καλύπτει το E (ή τοεκαλύπτεταιαπότοf), αν κάθε ΣΕ στο Ε, ανήκει στο F + (δηλαδή, συνάγεται από το F) (αλλιώς, Ε F + ) υο σύνολα συναρτησιακών εξαρτήσεων E και F είναι ισοδύναμα ανν E + = F +. (δηλαδή, αν το Ε καλύπτει το F και το F καλύπτει το Ε) Βάσεις Δεδομένων Ευαγγελία Πιτουρά 29 Κάλυμμα Πως μπορούμε να υπολογίσουμε αν ένα σύνολο F καλύπτει ένα σύνολο E; Πως μπορούμε να υπολογίσουμε αν ένα σύνολο F είναι ισοδύναμο με ένα σύνολο E; Βάσεις Δεδομένων Ευαγγελία Πιτουρά 30 Βάσεις Δεδομένων : Συναρτησιακές Εξαρτήσεις 15

16 Παράδειγμα F1 = {A C, B C} F2 = {A B, A C} F3 = {A B, AB C} F1 καλύπτει το F3; F3 καλύπτει το F1; F1 ισοδύναμο του F3; F2 καλύπτει το F3; Βάσεις Δεδομένων Ευαγγελία Πιτουρά 31 Ελάχιστο Κάλυμμα Ελάχιστο κάλυμμα F min της F: ελάχιστο σύνολο από ΣΕ που είναι ισοδύναμο με την F Ένα σύνολο F συναρτησιακών εξαρτήσεων είναι ελάχιστο αν: 1. κάθε ΣΕ στο F έχει ένα μόνο γνώρισμα στο δεξιό της μέρος 2. δε μπορούμε να αντικαταστήσουμε μια ΣΕ Χ ΖαπότοF με μια ΣΕ Υ Z τέτοια ώστε Y X και να πάρουμε ένα σύνολο ισοδύναμο του F(δεν υπάρχει περιττό γνώρισμα στο α.μ της συναρτησιακής εξάρτησης) 3. δε μπορούμε να αφαιρέσουμε μια ΣΕ από το F και να πάρουμε ένα σύνολο ισοδύναμο του F(ηΣΕείναιπεριττή) Βάσεις Δεδομένων Ευαγγελία Πιτουρά 32 Βάσεις Δεδομένων : Συναρτησιακές Εξαρτήσεις 16

17 Ελάχιστο Κάλυμμα Αλγόριθμος υπολογισμού ελάχιστου καλύμματος 1. Αντικατέστησε τις συναρτησιακές εξαρτήσεις Χ 1 Υ 1 Υ 2 με Χ 1 Υ 1 και Χ 1 Υ 2. 2.Για κάθε ΣΕ (i) Βρες τα περιττά γνωρίσματα στο α.μ., αφαίρεσε τα (ii) Έλεγξε αν είναι περιττή, αν ναι αφαίρεσέ τη Βάσεις Δεδομένων Ευαγγελία Πιτουρά 33 Ελάχιστο Κάλυμμα Περιττά γνωρίσματα: γνωρίσματα που αν αφαιρεθούν δεν επηρεάζουν το κλείσιμο (δηλαδή προκύπτει ισοδύναμο σύνολο) Για παράδειγμα: το γνώρισμα ΑΒ C το Α είναι περιττό στην εξάρτηση ανν F ισοδύναμο (F - {ΑΒ C}) {B C} Προφανώς το F καλύπτει το F, άρα αρκεί να ελέγξουμε αν το F καλύπτει το F F Βάσεις Δεδομένων Ευαγγελία Πιτουρά 34 Βάσεις Δεδομένων : Συναρτησιακές Εξαρτήσεις 17

18 Γενικεύοντας: Ελάχιστο Κάλυμμα Έστω ένα σύνολο F συναρτησιακών εξαρτήσεων και η ΣΕ Χ Υ F Το γνώρισμα Α Χείναιπεριττό στο Χ αν F καλύπτει (F - {Χ Υ}) {(Χ - A) Υ} Πως θα υπολογίσουμε αν ένα γνώρισμα στο α.μ. μιας ΣΕ είναι περιττό; Θα πρέπει να δείξουμε ότι οι ΣΕ του F ανήκουν στο F +, δηλαδή: Υπολόγισε το (Χ -{Α}) + με βάση τις ΣΕ του συνόλου F. Το Α είναι περιττό αν το Υ ανήκει στο (Χ -{Α}) + Βάσεις Δεδομένων Ευαγγελία Πιτουρά 35 Ελάχιστο Κάλυμμα Πως θα υπολογίσουμε αν μια ΣΕ Χ Β (μεέναγνώρισμαστοδ.μ.) είναι περιττή; Υπολογίζουμε το (Χ) + χρησιμοποιώντας το F {Χ Β} Περιττό αν το Β ανήκει στο (Χ) + Βάσεις Δεδομένων Ευαγγελία Πιτουρά 36 Βάσεις Δεδομένων : Συναρτησιακές Εξαρτήσεις 18

19 Ελάχιστο Κάλυμμα Αλγόριθμος υπολογισμού ελάχιστου καλύμματος 1. Αντικατέστησε τις συναρτησιακές εξαρτήσεις Χ 1 Υ 1 Υ 2 με Χ 1 Υ 1 και Χ 1 Υ 2. 2.Για κάθε ΣΕ (i) Βρες τα περιττά γνωρίσματα στο α.μ. Α περιττό στο Χ (Χ Υ): υπολόγισε το (Χ-{Α}) + (ii) Έλεγξε αν είναι περιττή, αν ναι αφαίρεσε τη Εξάρτηση Χ Βπεριττή: υπολόγισε το Χ + Βάσεις Δεδομένων Ευαγγελία Πιτουρά 37 Ελάχιστο Κάλυμμα Παράδειγμα Έστω R(A, B, C) και F = {A BC, B C, A B, AB C}. Βρείτε το F min. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 38 Βάσεις Δεδομένων : Συναρτησιακές Εξαρτήσεις 19

20 Ελάχιστο Κάλυμμa Παράδειγμα Έστω R(A, B, C) και F = {A BC, B C, A B, AB C}. Βρείτε το F min. Μετά το βήμα 1: {A B, A C, B C, Α C, AB C} Βήμα 2: Εξέταση αν το Α είναι περιττό στο AB C, υπολογίζοντας το (Β) + είναι περιττό Νέο σύνολο: {A B, A C, B C, B C} Βήμα 3: Εξέταση αν η ΣΕ A B είναι περιττή όχι Εξέταση αν η ΣΕ A C είναι περιττή ναι Νέο σύνολο: {A B, B C} Εξέταση αν η ΣΕ Β C είναι περιττή όχι Αποτέλεσμα: {A B, B C} Βάσεις Δεδομένων Ευαγγελία Πιτουρά 39 Ελάχιστο Κάλυμμa Παρατηρήσεις Το ελάχιστο κάλυμμα δεν είναι μοναδικό Το βήμα (i) πρέπει να προηγηθεί του βήματος (ii), δηλαδή πρέπει πρώτα να βρούμε τα περιττά γνωρίσματα στο α.μ. και μετά τις περιττές εξαρτήσεις Βάσεις Δεδομένων Ευαγγελία Πιτουρά 40 Βάσεις Δεδομένων : Συναρτησιακές Εξαρτήσεις 20

21 Συναρτησιακές Εξαρτήσεις (σύνοψη) Ανακεφαλαίωση Συναρτησιακή εξάρτηση Κανόνες συμπερασμού συναρτησιακών εξαρτήσεων Κλειστότητα γνωρίσματος Ισοδυναμία συνόλου εξαρτήσεων Ελάχιστο κάλυμμα Βάσεις Δεδομένων Ευαγγελία Πιτουρά 41 Βάσεις Δεδομένων : Συναρτησιακές Εξαρτήσεις 21

Συναρτησιακές Εξαρτήσεις

Συναρτησιακές Εξαρτήσεις Συναρτησιακές Εξαρτήσεις Βάσεις Δεδομένων 2010-2011 Ευαγγελία Πιτουρά 1 Εισαγωγή Θεωρία για το πότε ένας σχεδιασμός είναι «καλός» Η θεωρία βασίζεται στις Συναρτησιακές Εξαρτήσεις (Functional Dependencies)

Διαβάστε περισσότερα

Συναρτησιακές Εξαρτήσεις

Συναρτησιακές Εξαρτήσεις Εισαγωγή Θεωρία για το πότε ένας σχεδιασμός είναι «καλός» Η θεωρία βασίζεται στις Τι είναι; Εξαρτήσεις ανάμεσα σε σύνολα από γνωρίσματα Συμβολισμός S1 S2 (όπου S1, S2 σύνολα γνωρισμάτων) Τι σημαίνει: Αν

Διαβάστε περισσότερα

Συναρτησιακές Εξαρτήσεις

Συναρτησιακές Εξαρτήσεις Εισαγωγή Θεωρία για το πότε ένας σχεδιασμός είναι «καλός» Η θεωρία βασίζεται στις Τι είναι; Εξαρτήσεις ανάμεσα σε σύνολα από γνωρίσματα Συμβολισμός S1 S2 (όπου S1, S2 σύνολα γνωρισμάτων) Τι σημαίνει: Αν

Διαβάστε περισσότερα

Συναρτησιακές Εξαρτήσεις

Συναρτησιακές Εξαρτήσεις Βάσεις εδοµένων 2003-2004 Ευαγγελία Πιτουρά 1 Έστω ένα σχήµα σχέσης R(Α 1, Α 2,, Α n ). Aς συµβολίσουµε µε R = {Α 1, Α 2,, Α n } το σύνολο των γνωρισµάτων της R. Με απλά λόγια, µια συναρτησιακή εξάρτηση

Διαβάστε περισσότερα

Συναρτησιακές και Πλειότιµες Εξαρτήσεις

Συναρτησιακές και Πλειότιµες Εξαρτήσεις Συναρτησιακές και Πλειότιµες Εξαρτήσεις 1 Συναρτησιακές Εξαρτήσεις 2 Συναρτησιακές Εξαρτήσεις Έστω ένα σχήµα σχέσης R(Α 1, Α 2,, Α n ). Aς συµβολίσουµε µε R = {Α 1, Α 2,, Α n } το σύνολο των γνωρισµάτων

Διαβάστε περισσότερα

Συναρτησιακές Εξαρτήσεις Σχεδιασμός Βάσεων Δεδομένων

Συναρτησιακές Εξαρτήσεις Σχεδιασμός Βάσεων Δεδομένων Συναρτησιακές Εξαρτήσεις Σχεδιασμός Βάσεων Δεδομένων Μαρία Χαλκίδη 1 Εισαγωγή Θεωρία για το πότε ένας σχεδιασμός είναι «καλός» Η θεωρία βασίζεται στις Λειτουργικές (Συναρτησιακές) Εξαρτήσεις (Functional

Διαβάστε περισσότερα

Λογικός Σχεδιασμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Λογικός Σχεδιασμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Λογικός Σχεδιασμός Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Εισαγωγή Θα εξετάσουμε πότε ένα σχεσιακό σχήμα για μια βάση δεδομένων είναι «καλό» Μη τυπικές γενικές κατευθύνσεις Θεωρία κανονικών μορφών

Διαβάστε περισσότερα

Κανονικές Μορφές. Συνενώσεις Άνευ Απωλειών. Προσοχή με τις τιμές null στην αποσύνθεση

Κανονικές Μορφές. Συνενώσεις Άνευ Απωλειών. Προσοχή με τις τιμές null στην αποσύνθεση Κανονικές Μορφές Βάσεις Δεδομένων 2009-2010 Ευαγγελία Πιτουρά 1 Συνενώσεις Άνευ Απωλειών Προσοχή με τις τιμές null στην αποσύνθεση Αιωρούμενες πλειάδες (dangling tuples) Παράδειγμα: Εργαζόμενος - Τμήμα

Διαβάστε περισσότερα

Λογικός Σχεδιασμός Σχεσιακών Σχημάτων: Αποσύνθεση

Λογικός Σχεδιασμός Σχεσιακών Σχημάτων: Αποσύνθεση Λογικός Σχεδιασμός Σχεσιακών Σχημάτων: Αποσύνθεση Βάσεις Δεδομένων 2010-2011 Ευαγγελία Πιτουρά 1 Εισαγωγή Θα εξετάσουμε πότε ένα σχεσιακό σχήμα για μια βάση δεδομένων είναι «καλό» Γενικές Οδηγίες Η Μέθοδος

Διαβάστε περισσότερα

και Κανονικοποίηση για Σχεσιακές Βάσεις Δεδομένων Αντζουλάτος Γεράσιμος antzoulatos@upatras.gr Τμήμα Εφαρμογών Πληροφορικής στην Διοίκηση και Οικονομία ΤΕΙ Πατρών - Παράρτημα Αμαλιάδας 29 Νοεμβρίου 2012

Διαβάστε περισσότερα

Κανονικές Μορφές. Τι συμβαίνει με το (πρωτεύον) κλειδί και τις συναρτησιακές εξαρτήσεις; Παράδειγμα 1. Παράδειγμα 2

Κανονικές Μορφές. Τι συμβαίνει με το (πρωτεύον) κλειδί και τις συναρτησιακές εξαρτήσεις; Παράδειγμα 1. Παράδειγμα 2 Κανονικές Μορφές: Εισαγωγή Κανονικές Μορφές Στόχος: οσμένου ενός σχήματος, αν είναι «καλό» ή χρειάζεται περαιτέρω διάσπαση. Πως; Κανονικές μορφές. Ξέρουμε ότι αν ένα σχήμα είναι σε κάποια Κανονική Μορφή

Διαβάστε περισσότερα

Βάσεις Δεδομένων Συναρτησιακές Εξαρτήσεις (Functional Dependencies) Σχεδιασμός Βάσεων Δεδομένων και Κανονικοποίηση

Βάσεις Δεδομένων Συναρτησιακές Εξαρτήσεις (Functional Dependencies) Σχεδιασμός Βάσεων Δεδομένων και Κανονικοποίηση Βάσεις Δεδομένων Συναρτησιακές Εξαρτήσεις (Functional Dependencies) Σχεδιασμός Βάσεων Δεδομένων και Κανονικοποίηση Φροντιστήριο 6ο 26-1-2009 ΘΕΩΡΙΑ Συναρτησιακές-Λειτουργικές εξαρτήσεις Κανόνες συμπερασμού

Διαβάστε περισσότερα

Κανονικοποίηση Σχήµατος. Βάσεις εδοµένων Ευαγγελία Πιτουρά 1

Κανονικοποίηση Σχήµατος. Βάσεις εδοµένων Ευαγγελία Πιτουρά 1 Κανονικοποίηση Σχήµατος Ευαγγελία Πιτουρά 1 Λογικός Σχεδιασµός Σχεσιακών Σχηµάτων - Αποσύνθεση (διάσπαση) καθολικού σχήµατος Επιθυµητές ιδιότητες - διατήρηση εξαρτήσεων (F + = F + ) - όχι απώλειες στη

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 21: Κανονικοποίηση και Συναρτησιακές Εξαρτήσεις ΙI Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στις έννοιες: Συναρτησιακές Εξαρτήσεις Κανόνες Συμπερασμού για Συναρτησιακές

Διαβάστε περισσότερα

Κανονικοποίηση Σχήµατος

Κανονικοποίηση Σχήµατος Κανονικοποίηση Σχήµατος Ευαγγελία Πιτουρά 1 Λογικός Σχεδιασµός Σχεσιακών Σχηµάτων - Αποσύνθεση(διάσπαση) καθολικού σχήματος Επιθυμητές ιδιότητες -διατήρηση εξαρτήσεων (F + = F + ) - όχι απώλειες στη συνένωση(τομή

Διαβάστε περισσότερα

καλών σχεσιακών σχημάτων

καλών σχεσιακών σχημάτων Εισαγωγή Θα εξετάσουμε πότε ένα σχεσιακό σχήμα για μια βάση δεδομένων είναι «καλό» Λογικός Σχεδιασμός Σχεσιακών Σχημάτων Γενικές Οδηγίες Η Μέθοδος της Αποσύνθεσης (γενική μεθοδολογία) Επιθυμητές Ιδιότητες

Διαβάστε περισσότερα

Το Σχεσιακό Μοντέλο. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Το Σχεσιακό Μοντέλο. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Το Σχεσιακό Μοντέλο Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Μοντελοποίηση Σχήμα (database schema): η περιγραφή της δομής της πληροφορίας που είναι αποθηκευμένη στη βδ με τη χρήση ενός μοντέλου δεδομένων

Διαβάστε περισσότερα

Βάσεις εδοµένων. Συναρτησιακές Εξαρτήσεις (Functional Dependencies) Σχεδιασµός Βάσεων εδοµένων και. Κανονικοποίηση.

Βάσεις εδοµένων. Συναρτησιακές Εξαρτήσεις (Functional Dependencies) Σχεδιασµός Βάσεων εδοµένων και. Κανονικοποίηση. Βάσεις εδοµένων Συναρτησιακές Εξαρτήσεις (Functional Dependencies) Σχεδιασµός Βάσεων εδοµένων και Κανονικοποίηση Φροντιστήριο 9ο 17-12-2009 ΘΕΩΡΙΑ Συναρτησιακές-Λειτουργικές εξαρτήσεις Κανόνες συµπερασµού

Διαβάστε περισσότερα

καλών σχεσιακών σχημάτων

καλών σχεσιακών σχημάτων Εισαγωγή Θα εξετάσουμε πότε ένα σχεσιακό σχήμα για μια βάση δεδομένων είναι «καλό» Λογικός Γενικές Οδηγίες Η Μέθοδος της Αποσύνθεσης (γενική μεθοδολογία) Επιθυμητές Ιδιότητες της Αποσύνθεσης Συνένωση Άνευ

Διαβάστε περισσότερα

Βάσεις Δεδομένων : Λογικός Σχεδιασμός 1. καλών σχεσιακών σχημάτων. Λογικός Σχεδιασμός Σχεσιακών Σχημάτων. Γενικές Κατευθύνσεις.

Βάσεις Δεδομένων : Λογικός Σχεδιασμός 1. καλών σχεσιακών σχημάτων. Λογικός Σχεδιασμός Σχεσιακών Σχημάτων. Γενικές Κατευθύνσεις. Εισαγωγή Θα εξετάσουμε πότε ένα σχεσιακό σχήμα για μια βάση δεδομένων είναι «καλό» Λογικός Σχεδιασμός Σχεσιακών Σχημάτων Γενικές Οδηγίες Η Μέθοδος της Αποσύνθεσης (γενική μεθοδολογία) Επιθυμητές Ιδιότητες

Διαβάστε περισσότερα

Κανονικοποίηση. Σημασιολογία Γνωρισμάτων. Άτυπες Οδηγίες. Παράδειγμα. Αξιολόγηση Σχεσιακών Σχημάτων ΒΔ. Περιττές Τιμές και Ανωμαλίες Ενημέρωσης

Κανονικοποίηση. Σημασιολογία Γνωρισμάτων. Άτυπες Οδηγίες. Παράδειγμα. Αξιολόγηση Σχεσιακών Σχημάτων ΒΔ. Περιττές Τιμές και Ανωμαλίες Ενημέρωσης Αξιολόγηση Σχεσιακών Σχημάτων ΒΔ Κανονικοποίηση Παύλος Εφραιμίδης Βάσεις Δεδομένων Κανονικοποίηση 1 Πως μπορούμε να κρίνουμε εάν ένα Σχεσιακό Σχήμα είναι καλό ή αποδοτικό ή αν έχει λάθη; Σε γενικές γραμμές

Διαβάστε περισσότερα

Σχεδιασμός μιας Β : Βήματα

Σχεδιασμός μιας Β : Βήματα Σχεσιακό Μοντέλο 1 Εισαγωγή Ανάλυση Απαιτήσεων Σχεδιασμός μιας Β : Βήματα Τι δεδομένα θα αποθηκευτούν, ποιες εφαρμογές θα κτιστούν πάνω στα δεδομένα, ποιες λειτουργίες είναι συχνές Εννοιολογικός Σχεδιασμός

Διαβάστε περισσότερα

Λογικός Σχεδιασµός Σχεσιακών Σχηµάτων

Λογικός Σχεδιασµός Σχεσιακών Σχηµάτων Εισαγωγή Θα εξετάσουµε πότε ένα σχεσιακό σχήµα για µια βάση δεδοµένων είναι «καλό» Λογικός Σχεδιασµός Σχεσιακών Σχηµάτων Γενικές Οδηγίες Η Μέθοδος της Αποσύνθεσης Επιθυµητές Ιδιότητες της Αποσύνθεσης Συνένωση

Διαβάστε περισσότερα

ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων:. Πλεξουσάκης

ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων:. Πλεξουσάκης ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων:. Πλεξουσάκης Συναρτησιακές Εξαρτήσεις Αξιώµατα Armstrong Ελάχιστη κάλυψη Φροντιστήριο 1 Συναρτησιακές Εξαρτήσεις Οι Συναρτησιακές εξαρτήσεις είναι περιορισµοί

Διαβάστε περισσότερα

Ένας απλός τρόπος αναπαράστασης δεδομένων: ένας διδιάστατος πίνακας που λέγεται σχέση Γνωρίσματα

Ένας απλός τρόπος αναπαράστασης δεδομένων: ένας διδιάστατος πίνακας που λέγεται σχέση Γνωρίσματα Εισαγωγή Σχεσιακό Μοντέλο Σχεδιασμός μιας Β : Βήματα Ανάλυση Απαιτήσεων Τι δεδομένα θα αποθηκευτούν, ποιες εφαρμογές θα κτιστούν πάνω στα δεδομένα, ποιες λειτουργίες είναι συχνές Εννοιολογικός Σχεδιασμός

Διαβάστε περισσότερα

Το Σχεσιακό Μοντέλο. Βάσεις Δεδομένων 2014-2015. Ευαγγελία Πιτουρά 1

Το Σχεσιακό Μοντέλο. Βάσεις Δεδομένων 2014-2015. Ευαγγελία Πιτουρά 1 Το Σχεσιακό Μοντέλο Ευαγγελία Πιτουρά 1 Μοντελοποίηση Σχήμα (database schema): η περιγραφή της δομής της πληροφορίας που είναι αποθηκευμένη στη βδ με τη χρήση ενός μοντέλου δεδομένων Μοντέλο Δεδομένων:

Διαβάστε περισσότερα

Κλείσιμο Συνόλου Γνωρισμάτων

Κλείσιμο Συνόλου Γνωρισμάτων Κλείσιμο Συνόλου Γνωρισμάτων Ο υπολογισμός του κλεισίματος ενός συνόλου από ΣΕ μας δίνει τα σύνολα όλων των γνωρισμάτων τα οποία προσδιορίζονται συναρτησιακά από άλλα σύνολα γνωρισμάτων Ο υπολογισμός αυτός

Διαβάστε περισσότερα

Εισαγωγή. Σχεδιασµός µιας Β

Εισαγωγή. Σχεδιασµός µιας Β Σχεδιασµός µιας Β Εισαγωγή ανάλυση ποιας πληροφορίας και της σχέσης ανάµεσα στα στοιχεία της περιγραφή της δοµής - σχήµα σε διάφορους συµβολισµούς ή µοντέλα Μοντέλο Οντοτήτων - Συσχετίσεων (κεφ. 3) γραφικό

Διαβάστε περισσότερα

Σχεσιακό Μοντέλο. Εισαγωγή. Βάσεις εδοµένων : Σχεσιακό Μοντέλο 1

Σχεσιακό Μοντέλο. Εισαγωγή. Βάσεις εδοµένων : Σχεσιακό Μοντέλο 1 Σχεσιακό Μοντέλο Βάσεις εδοµένων 2011-2012 Ευαγγελία Πιτουρά 1 Εισαγωγή O σχεδιασμός μιας βάση δεδομένων κωδικοποιεί κάποιο μέρος του φυσικού κόσμου Ένα μοντέλο δεδομένων είναι ένα σύνολο από έννοιες για

Διαβάστε περισσότερα

Κανονικές Μορφές. Αποσύνθεση (decomposition)

Κανονικές Μορφές. Αποσύνθεση (decomposition) Σχεδιασµός Σχεσιακών Σχηµάτων Κανονικές Μορφές Γενικές Οδηγίες Η Μέθοδος της Αποσύνθεσης Επιθυµητές Ιδιότητες της Αποσύνθεσης Συνένωση Άνευ Απωλειών ιατήρηση Εξαρτήσεων Αποφυγή Επανάληψης Πληροφορίας 1

Διαβάστε περισσότερα

Σχεσιακή Άλγεβρα. Βάσεις Δεδομένων : Σχεσιακή Άλγεβρα 1

Σχεσιακή Άλγεβρα. Βάσεις Δεδομένων : Σχεσιακή Άλγεβρα 1 Εισαγωγή Στα προηγούμενα μαθήματα: Εννοιολογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων) Λογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Σχεσιακού Μοντέλου) Αντιστοιχία

Διαβάστε περισσότερα

Αρχεία και Βάσεις Δεδομένων

Αρχεία και Βάσεις Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αρχεία και Βάσεις Δεδομένων Διάλεξη 13η: Κλείσιμο Συνόλου Γνωρισμάτων - Ελάχιστη κάλυψη - Αποσύνθεση - Συναρτησιακές Εξαρτήσεις Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 6: Εισαγωγή στις βάσεις δεδομένων (Μέρος Α) Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης

Διαβάστε περισσότερα

Βάσεις Δεδομένων 2010-2011 Ευαγγελία Πιτουρά 2. Εννοιολογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων)

Βάσεις Δεδομένων 2010-2011 Ευαγγελία Πιτουρά 2. Εννοιολογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων) Σχεσιακή Άλγεβρα Βάσεις Δεδομένων 2010-2011 Ευαγγελία Πιτουρά 1 Εισαγωγή Στα προηγούμενα μαθήματα: Εννοιολογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων) Λογικός Σχεδιασμός

Διαβάστε περισσότερα

Λογικός Σχεδιασµός Σχεσιακών Σχηµάτων: Αποσύνθεση

Λογικός Σχεδιασµός Σχεσιακών Σχηµάτων: Αποσύνθεση Λογικός Σχεδιασµός Σχεσιακών Σχηµάτων: Αποσύνθεση Βάσεις εδοµένων 2012-2013 Ευαγγελία Πιτουρά 1 Εισαγωγή Θα εξετάσουμε πότε ένα σχεσιακό σχήμα για μια βάση δεδομένων είναι «καλό» Γενικές Οδηγίες Η Μέθοδος

Διαβάστε περισσότερα

Η SQL ως γλώσσα τροποποίησης Δεδομένων

Η SQL ως γλώσσα τροποποίησης Δεδομένων Η SQL ως γλώσσα τροποποίησης Δεδομένων Τροποποίηση Βάσης Δεδομένων: Γλώσσα Χειρισμού Δεδομένων (ΓXΔ) Τροποποιήσεις 1. Διαγραφή 2. Εισαγωγή 3. Ενημέρωση Οι εντολές αυτές ΤΡΟΠΟΠΟΙΟΥΝ το στιγμιότυπο της βάσης

Διαβάστε περισσότερα

Copyright 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley, ΕλληνικήΈκδοση, ίαυλος

Copyright 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley, ΕλληνικήΈκδοση, ίαυλος ιαφάνεια 10-1 Κεφάλαιο 10 Συναρτησιακές Εξαρτήσεις και Κανονικοποίηση για Σχεσιακές Βάσεις εδοµένων Copyright 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley, ΕλληνικήΈκδοση ίαυλος ΠεριεχόµεναΚεφαλαίου

Διαβάστε περισσότερα

Σχεδίαση Β.Δ. (Database Design)

Σχεδίαση Β.Δ. (Database Design) Σχεδίαση Β.Δ. (Database Design) Η σχεδίαση ενός σχήματος μιας Β.Δ. βασίζεται σε μεγάλο βαθμό στη διαίσθηση του σχεδιαστή σχετικά με τον κόσμο που θέλει να αναπαραστήσει. Η εννοιολογική σχεδίαση υπαρκτών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι Β. Μεγαλοοικονόμου, Δ. Χριστοδουλάκης Σχεδιασμός Βάσεων Δεδομένων και Κανονικοποίηση Ακ.Έτος 2008-09 (μεβάσητιςσημειώσειςτωνsilberchatz, Korth και Sudarshan

Διαβάστε περισσότερα

Σχεδιασµός Σχεσιακών Σχηµάτων

Σχεδιασµός Σχεσιακών Σχηµάτων Βάσεις εδοµένων 2003-2004 Ευαγγελία Πιτουρά 1 Σχεδιασµός Σχεσιακών Σχηµάτων Σχεδιασµός καλών σχεσιακών σχηµάτων Μη τυπικές - γενικές κατευθύνσεις Θεωρία κανονικών µορφών που θα βασίζεται στις συναρτησιακές

Διαβάστε περισσότερα

Λογικός Σχεδιασµός Σχεσιακών Σχηµάτων: Αποσύνθεση. Βάσεις εδοµένων Ευαγγελία Πιτουρά 1

Λογικός Σχεδιασµός Σχεσιακών Σχηµάτων: Αποσύνθεση. Βάσεις εδοµένων Ευαγγελία Πιτουρά 1 Λογικός Σχεδιασµός Σχεσιακών Σχηµάτων: Αποσύνθεση Βάσεις εδοµένων 2011-2012 Ευαγγελία Πιτουρά 1 Εισαγωγή Θα εξετάσουµε πότε ένα σχεσιακό σχήµα για µια βάση δεδοµένων είναι «καλό» Γενικές Οδηγίες Η Μέθοδος

Διαβάστε περισσότερα

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση

Σχέσεις. Διμελής Σχέση. ΣτοΊδιοΣύνολο. Αναπαράσταση Διμελής Σχέση Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Επιμέλεια διαφανειών: Δ. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διατεταγμένο ζεύγος (α, β): Δύο αντικείμενα

Διαβάστε περισσότερα

Σχεσιακή Άλγεβρα. Προγράμματα που απαντούν σε επερωτήσεις για τον τρέχον στιγμιότυπο της βάσης δεδομένων (querying)

Σχεσιακή Άλγεβρα. Προγράμματα που απαντούν σε επερωτήσεις για τον τρέχον στιγμιότυπο της βάσης δεδομένων (querying) Εισαγωγή Στα προηγούμενα μαθήματα: Εννοιολογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων) Λογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Σχεσιακού Μοντέλου) Μετατροπή

Διαβάστε περισσότερα

Σχεσιακή Άλγεβρα. Εισαγωγή. Εισαγωγή. Εισαγωγή. Παράδειγμα. Εισαγωγή. Ταινία Τίτλος Έτος Διάρκεια Είδος. Παίζει Όνομα-Ηθοποιού Τίτλος Έτος.

Σχεσιακή Άλγεβρα. Εισαγωγή. Εισαγωγή. Εισαγωγή. Παράδειγμα. Εισαγωγή. Ταινία Τίτλος Έτος Διάρκεια Είδος. Παίζει Όνομα-Ηθοποιού Τίτλος Έτος. Εισαγωγή Στα προηγούμενα μαθήματα: Εννοιολογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων) Λογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Σχεσιακού Μοντέλου) Αντιστοιχία

Διαβάστε περισσότερα

Αρχεία και Βάσεις Δεδομένων

Αρχεία και Βάσεις Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αρχεία και Βάσεις Δεδομένων Διάλεξη 12η: Συναρτησιακές Εξαρτήσεις - Αξιώματα Armstrong Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Συναρτησιακές Εξαρτήσεις

Διαβάστε περισσότερα

Βάσεις Δεδομένων Ευαγγελία Πιτουρά 2. Εννοιολογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων)

Βάσεις Δεδομένων Ευαγγελία Πιτουρά 2. Εννοιολογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων) Σχεσιακή Άλγεβρα Βάσεις Δεδομένων 2009-2010 Ευαγγελία Πιτουρά 1 Εισαγωγή Στα προηγούμενα μαθήματα: Εννοιολογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων) Λογικός Σχεδιασμός

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119)

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ ΙΩΑΝΝΗΣ Α. ΤΣΑΓΡΑΚΗΣ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (ΗΥ-119) ΜΕΡΟΣ 5: ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΥΠΟΧΩΡΟΙ ΓΡΑΜΜΙΚΗ ΑΝΕΞΑΡΤΗΣΙΑ ΒΑΣΕΙΣ & ΔΙΑΣΤΑΣΗ Δ.Χ. ΣΗΜΕΙΩΣΕΙΣ

Διαβάστε περισσότερα

Βάσεις Δεδομένων Ενότητα 7

Βάσεις Δεδομένων Ενότητα 7 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Συναρτησιακές Εξαρτήσεις και Κανονικοποίηση Ιωάννης Μανωλόπουλος, Καθηγητής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Θεωρία Κανονικοποίησης

Θεωρία Κανονικοποίησης Θεωρία Κανονικοποίησης Πρώτη Κανονική Μορφή (1NF) Αποσύνθεση Συναρτησιακές Εξαρτήσεις Δεύτερη (2NF) και Τρίτη Κανονική Μορφή (3NF) Boyce Codd Κανονική Μορφή (BCNF) Καθολική Διαδικασία Σχεδίασης ΒΔ Βασική

Διαβάστε περισσότερα

Βάσεις δεδομένων. (9 ο μάθημα) Ηρακλής Βαρλάμης

Βάσεις δεδομένων. (9 ο μάθημα) Ηρακλής Βαρλάμης Βάσεις δεδομένων (9 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr Περιεχόμενα Βελτίωση σχεδιασμού Αποσύνθεση σχέσης Συναρτησιακές εξαρτήσεις Θεωρία κανονικών μορφών 1 η NF 2 η NF 3 η NF 2 Βελτίωση σχεδιασμού

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου

ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 2016 Λύσεις ασκήσεων προόδου ΗΥ118: Διακριτά Μαθηματικά Εαρινό εξάμηνο 016 Λύσεις ασκήσεων προόδου Θέμα 1: [16 μονάδες] [8] Έστω ότι μας δίνουν τα παρακάτω δεδομένα: Εάν αυτό το πρόγραμμα ΗΥ είναι αποδοτικό, τότε εκτελείται γρήγορα.

Διαβάστε περισσότερα

Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών Κανονικές Μορφές (Normal Forms)

Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών Κανονικές Μορφές (Normal Forms) Κανονικές Μορφές (Normal Forms) Παρέχουν ένα τυπικό πλαίσιο για ανάλυση σχεσιακών σχημάτων βασισμένη στον ορισμό κλειδιών και συναρτησιακών εξαρτήσεων. Σχεσιακά σχήματα που ανήκουν σε συγκεκριμένες κανονικές

Διαβάστε περισσότερα

Μοντέλο Οντοτήτων-Συσχετίσεων

Μοντέλο Οντοτήτων-Συσχετίσεων Μοντέλο Οντοτήτων-Συσχετίσεων 1 Εισαγωγή Σχεδιασμός μιας εφαρμογής ΒΔ: Βήματα 1. Συλλογή και Ανάλυση Απαιτήσεων (requirement analysis) Τι δεδομένα θα αποθηκευτούν, ποιες εφαρμογές θα κτιστούν πάνω στα

Διαβάστε περισσότερα

antzoulatos@upatras.gr

antzoulatos@upatras.gr Κανονικοποίηση για Σχεσιακές Βάσεις Δεδομένων Αντζουλάτος Γεράσιμος antzoulatos@upatras.gr Τμήμα Εφαρμογών Πληροφορικής στην Διοίκηση και Οικονομία ΤΕΙ Πατρών - Παράρτημα Αμαλιάδας 10 Ιανουαρίου 2013 Περιεχομενα

Διαβάστε περισσότερα

2 ο Σύνολο Ασκήσεων. Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1

2 ο Σύνολο Ασκήσεων. Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 2 ο Σύνολο Ασκήσεων Οι βαθμοί θα ανακοινωθούν αύριο μαζί με τους βαθμούς της προγραμματιστικής άσκησης Τα αστεράκια δείχνουν τον εκτιμώμενο βαθμό δυσκολίας (*) εύκολο (**) μέτριο (***) δύσκολο Βάσεις Δεδομένων

Διαβάστε περισσότερα

Σχεδιασµός Σχεσιακών Σχηµάτων

Σχεδιασµός Σχεσιακών Σχηµάτων Σχεδιασµός Σχεσιακών Σχηµάτων 1 Σχεδιασµός Σχεσιακών Σχηµάτων Σχεδιασµός καλών σχεσιακών σχηµάτων Μη τυπικές - γενικές κατευθύνσεις Θεωρία κανονικών µορφών που θα βασίζεται στις συναρτησιακές εξαρτήσεις

Διαβάστε περισσότερα

Μοντέλο Οντοτήτων-Συσχετίσεων

Μοντέλο Οντοτήτων-Συσχετίσεων Εισαγωγή Μοντέλο Οντοτήτων-Συσχετίσεων Σχεδιασμός μιας Β : Βήματα Συλλογή και Ανάλυση Απαιτήσεων Τι δεδομένα θα αποθηκευτούν, ποιες εφαρμογές θα κτιστούν πάνω στα δεδομένα, ποιες λειτουργίες είναι συχνές

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία

Διαβάστε περισσότερα

Μοντέλο Οντοτήτων-Συσχετίσεων

Μοντέλο Οντοτήτων-Συσχετίσεων Εισαγωγή Σχεδιασμός μιας Β : Βήματα Συλλογή και Ανάλυση Απαιτήσεων Τι δεδομένα θα αποθηκευτούν, ποιες εφαρμογές θα κτιστούν πάνω στα δεδομένα, ποιες λειτουργίες είναι συχνές Λειτουργικές απαιτήσεις (πράξεις

Διαβάστε περισσότερα

H SQL είναι η γλώσσα για όλα τα εμπορικά σχεσιακά συστήματα διαχείρισης βάσεων δεδομένων

H SQL είναι η γλώσσα για όλα τα εμπορικά σχεσιακά συστήματα διαχείρισης βάσεων δεδομένων Η γλώσσα SQL H SQL είναι η γλώσσα για όλα τα εμπορικά σχεσιακά συστήματα διαχείρισης βάσεων δεδομένων H SQL έχει διάφορα τμήματα: Γλώσσα Ορισμού Δεδομένων (ΓΟΔ) Γλώσσα Χειρισμού Δεδομένων (ΓΧΔ) Ενσωματωμένη

Διαβάστε περισσότερα

Μοντέλο Οντοτήτων-Συσχετίσεων

Μοντέλο Οντοτήτων-Συσχετίσεων Εισαγωγή Εισαγωγή Σχεδιασµός µιας Β ανάλυση ποιας πληροφορίας και της σχέσης ανάµεσα στα στοιχεία της περιγραφή της δοµής - σχήµα σε διάφορους συµβολισµούς ή µοντέλα Μοντέλο Οντοτήτων - Συσχετίσεων γραφικό

Διαβάστε περισσότερα

Ορισμοί Σχεσιακού Μοντέλου και (απλές)τροποποιήσεις Σχέσεων στην SQL. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Ορισμοί Σχεσιακού Μοντέλου και (απλές)τροποποιήσεις Σχέσεων στην SQL. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Ορισμοί Σχεσιακού Μοντέλου και (απλές)τροποποιήσεις Σχέσεων στην SQL Ευαγγελία Πιτουρά 1 Τι έχουμε δει Μοντελοποίηση Εννοιολογικός Σχεδιασμός Βάσεων Δεδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων)

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

Αρχεία και Βάσεις Δεδομένων

Αρχεία και Βάσεις Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αρχεία και Βάσεις Δεδομένων Διάλεξη 14η: Κανονικές Μορφές Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Κανονικές Μορφές (Normal Forms) Παρέχουν ένα τυπικό πλαίσιο

Διαβάστε περισσότερα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

Βάσεις δεδομένων. (3 ο μάθημα) Ηρακλής Βαρλάμης

Βάσεις δεδομένων. (3 ο μάθημα) Ηρακλής Βαρλάμης Βάσεις δεδομένων (3 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr Περιεχόμενα Σχεσιακό μοντέλο δεδομένων Σχέσεις, γνωρίσματα, πλειάδες, πεδία ορισμού Πράξεις ενημέρωσης σε σχέσεις Απεικόνιση μοντέλου οντοτήτωνσυσχετίσεων

Διαβάστε περισσότερα

Ορισμοί Σχεσιακού Μοντέλου και Τροποποιήσεις Σχέσεων σε SQL

Ορισμοί Σχεσιακού Μοντέλου και Τροποποιήσεις Σχέσεων σε SQL Ορισμοί Σχεσιακού Μοντέλου και Τροποποιήσεις Σχέσεων σε SQL Βάσεις Δεδομένων 2009-2010 Ευαγγελία Πιτουρά 1 Εισαγωγή Μοντελοποίηση Στα προηγούμενα μαθήματα: Εννοιολογικός Σχεδιασμός Βάσεων εδομένων (με

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι Β. Μεγαλοοικονόμου, Δ. Χριστοδουλάκης Σχεσιακό Μοντέλο ΙΙΙ Ακ.Έτος 2008-09 (μεβάσητιςσημειώσειςτωνsilberchatz, Korth και Sudarshan και του C. Faloutsos CMU)

Διαβάστε περισσότερα

Κεφάλαιο 8. ΣΧΕ ΙΑΣΜΟΣ ΒΑΣΕΩΝ Ε ΟΜΕΝΩΝ ΚΑΙ ΚΑΝΟΝΙΚΟΠΟΙΗΣΗ (Normalization) Ι.Β Σχεδιασµός Σχεσιακών Β και Κανονικοποίηση Σελίδα 4.1

Κεφάλαιο 8. ΣΧΕ ΙΑΣΜΟΣ ΒΑΣΕΩΝ Ε ΟΜΕΝΩΝ ΚΑΙ ΚΑΝΟΝΙΚΟΠΟΙΗΣΗ (Normalization) Ι.Β Σχεδιασµός Σχεσιακών Β και Κανονικοποίηση Σελίδα 4.1 Κεφάλαιο 8 ΣΧΕ ΙΑΣΜΟΣ ΒΑΣΕΩΝ Ε ΟΜΕΝΩΝ ΚΑΙ ΚΑΝΟΝΙΚΟΠΟΙΗΣΗ (Normalization) Ι.Β Σχεδιασµός Σχεσιακών Β και Κανονικοποίηση Σελίδα 4.1 Σύνοψη Λογικός Σχεδιασµός Σχεσιακών Βάσεων εδοµένων και Κανονικοποίηση

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2)

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2) Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Κανονικές Εκφράσεις (1.3) Τυπικός Ορισμός Ισοδυναμία με κανονικές γλώσσες Μη Κανονικές

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Επεξεργασία Ερωτήσεων ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήματος 1. Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασμός) 2. Προγραμματισμός (Σχεσιακή Άλγεβρα, SQL) ημιουργία/κατασκευή Εισαγωγή εδομένων

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Σ Β Σύνολο από προγράμματα για τη διαχείριση της Β Επεξεργασία Ερωτήσεων Αρχεία ευρετηρίου Κατάλογος συστήματος Αρχεία δεδομένων ΒΑΣΗ Ε ΟΜΕΝΩΝ Σύστημα Βάσεων εδομένων (ΣΒ ) Βάσεις Δεδομένων 2007-2008

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις.

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. 2x 1. είναι Τότε έχουμε: » τον χρησιμοποιούμε κυρίως σε θεωρητικές ασκήσεις. ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ : ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο. Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα.

Διαβάστε περισσότερα

Lecture 23: Functional Dependencies and Normalization

Lecture 23: Functional Dependencies and Normalization Department of Computer Science University of Cyprus EPL342 Databases Lecture 23: Functional Dependencies and Normalization Normalization and Normal Forms (Chapter 10.3-10.4, Elmasri-Navathe 5ED) ιδάσκων:

Διαβάστε περισσότερα

Βάσεις δεδομένων. (4 ο μάθημα) Ηρακλής Βαρλάμης

Βάσεις δεδομένων. (4 ο μάθημα) Ηρακλής Βαρλάμης Βάσεις δεδομένων (4 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr Περιεχόμενα Επέκταση του μοντέλου ΟΣ Κληρονομικότητα Εξειδίκευση/Γενίκευση Περιορισμοί Ιεραρχίες και πλέγματα Συνάθροιση Συνέχεια στο σχεσιακό

Διαβάστε περισσότερα

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου

Διαβάστε περισσότερα

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή

1. στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι αβελιανή οµάδα, δηλαδή KΕΦΑΛΑΙΟ ΤΟ ΣΥΝΟΛΟ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ιατεταγµένα σώµατα-αξίωµα πληρότητας Ένα σύνολο Σ καλείται διατεταγµένο σώµα όταν στο σύνολο Σ έχει ορισθεί η πράξη της πρόσθεσης ως προς την οποία το Σ είναι

Διαβάστε περισσότερα

Σχεσιακή Άλγεβρα. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Σχεσιακή Άλγεβρα. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Σχεσιακή Άλγεβρα Ευαγγελία Πιτουρά 1 Τι έχουμε δει έως σήμερα Σχεδιασμό και Υλοποίηση Σχεσιακών Βάσεων δεδομένων Μια γλώσσα ορισμού δεδομένων ΓΟΔ (για τον ορισμό των σχημάτων) ένας μεταφραστής της ΓΟΔ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά

Εφαρμοσμένα Μαθηματικά Εφαρμοσμένα Μαθηματικά ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ενότητα 6: Διπλά Ολοκληρώματα Δρ. Περικλής Παπαδόπουλος Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε Κάντε κλικ για

Διαβάστε περισσότερα

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Εισαγωγή στην Επεξεργασία Ερωτήσεων Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα Βάσεις

Διαβάστε περισσότερα

Σχέδιο Μαθήματος - "Ευθεία Απόδειξη"

Σχέδιο Μαθήματος - Ευθεία Απόδειξη Σχέδιο Μαθήματος - "Ευθεία Απόδειξη" ΤΑΞΗ: Α Λυκείου Μάθημα: Άλγεβρα Τίτλος Ενότητας: Μέθοδοι Απόδειξης - Ευθεία απόδειξη Ώρες Διδασκαλίας: 1. Σκοποί Να κατανοήσουν οι μαθητές την διαδικασία της ευθείας

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 2:Στοιχεία Μαθηματικής Λογικής Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Σχεσιακός Λογισµός. Σχεσιακό Μοντέλο. Έννοιες Τυπικές Γλώσσες Ερωτήσεων Σχεσιακή Άλγεβρα Σχεσιακός Λογισµός Πλειάδων Σχεσιακός Λογισµός Πεδίου

Σχεσιακός Λογισµός. Σχεσιακό Μοντέλο. Έννοιες Τυπικές Γλώσσες Ερωτήσεων Σχεσιακή Άλγεβρα Σχεσιακός Λογισµός Πλειάδων Σχεσιακός Λογισµός Πεδίου Σχεσιακός Λογισµός Βάσεις εδοµένων 2002-2003 Ευαγγελία Πιτουρά 1 Σχεσιακός Λογισµός Σχεσιακό Μοντέλο Έννοιες Τυπικές Γλώσσες Ερωτήσεων Σχεσιακή Άλγεβρα Σχεσιακός Λογισµός Πλειάδων Σχεσιακός Λογισµός Πεδίου

Διαβάστε περισσότερα

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος

Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παραδείγματα Διανυσματικοί Χώροι Ι. Λυχναρόπουλος Παράδειγμα Έστω το σύνολο V το σύνολο όλων των θετικών πραγματικών αριθμών εφοδιασμένο με την ακόλουθη πράξη της πρόσθεσης: y y με, y V και του πολλαπλασιασμού

Διαβάστε περισσότερα

1 Η εναλλάσσουσα ομάδα

1 Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις

Διαβάστε περισσότερα

BΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΕΞΕΤΑΣΗ ΦΕΒΡΟΥΑΡΙΟΥ 2005

BΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΕΞΕΤΑΣΗ ΦΕΒΡΟΥΑΡΙΟΥ 2005 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ BΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΕΞΕΤΑΣΗ ΦΕΒΡΟΥΑΡΙΟΥ 2005 ΛΥΣΕΙΣ Ι. Βασιλείου -----------------------------------------------------------------------------------------------------

Διαβάστε περισσότερα

Βάσεις εδοµένων 2002-2003 Ευαγγελία Πιτουρά 2

Βάσεις εδοµένων 2002-2003 Ευαγγελία Πιτουρά 2 Η Γλώσσα SQL Βάσεις εδοµένων 2002-2003 Ευαγγελία Πιτουρά 1 Η γλώσσα SQL What men or gods are these? What maidens loth? What mad pursuit? What struggle to escape? What pipes and timbrels? What wild ectasy?

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 8: Σχέσεις - Πράξεις Δομές Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Σχεσιακή Άλγεβρα. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Σχεσιακή Άλγεβρα. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Σχεσιακή Άλγεβρα Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Τι έχουμε δει έως σήμερα Σχεδιασμό και Υλοποίηση Σχεσιακών Βάσεων δεδομένων Μια γλώσσα ορισμού δεδομένων ΓΟΔ (για τον ορισμό των σχημάτων)

Διαβάστε περισσότερα

Σχεσιακό Μοντέλο Δεδομένων

Σχεσιακό Μοντέλο Δεδομένων Σχεσιακό Μοντέλο Δεδομένων Παύλος Εφραιμίδης Βάσεις Δεδομένων Σχεσιακό Μοντέλο Δεδομένων 1 Μοντέλα Δεδομένων Μοντέλα Δεδομένων Σχεσιακό Ιεραρχικό Δικτυακό Tο κυρίαρχο μοντέλο δεδομένων στις σύγχρονες βάσεις

Διαβάστε περισσότερα

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων

ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων ΗΥ118: Διακριτά Μαθηματικά - Εαρινό Εξάμηνο 2016 Τελική Εξέταση Ιουνίου - Τετάρτη, 15/06/2016 Λύσεις Θεμάτων Θέμα 1: [14 μονάδες] 1. [5] Έστω Y(x): «Το αντικείμενο x είναι ηλεκτρονικός υπολογιστής», Φ(y):

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων

K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων K15 Ψηφιακή Λογική Σχεδίαση 7-8: Ανάλυση και σύνθεση συνδυαστικών λογικών κυκλωμάτων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Η έννοια του συνδυαστικού

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ 1 ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΑΝΑΛΥΣΗ 1 ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης. ΑΝΑΛΥΣΗ 1 ΤΕΤΑΡΤΟ ΜΑΘΗΜΑ, 15-10-13 Μ. Παπαδημητράκης. 1 Παράδειγμα. Ως εφαρμογή της Αρχιμήδειας Ιδιότητας θα μελετήσουμε το σύνολο { 1 } A = n N = {1, 1 n 2, 1 } 3,.... Κατ αρχάς το σύνολο A έχει προφανώς

Διαβάστε περισσότερα

IV. Συνέχεια Συνάρτησης. math-gr

IV. Συνέχεια Συνάρτησης. math-gr IV Συνέχεια Συνάρτησης mth-gr mth-gr Παντελής Μπουμπούλης, MSc, PhD σελ mth-grblogspotcom, bouboulismyschgr ΜΕΡΟΣ Συνέχεια Συνάρτησης Α Ορισμός Συνέχεια σε σημείο: Θα λέμε ότι μια συνάρτηση είναι συνεχής

Διαβάστε περισσότερα

Σειρά Προβλημάτων 5 Λύσεις

Σειρά Προβλημάτων 5 Λύσεις Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { Μ η Μ είναι μια ΤΜ η οποία διαγιγνώσκει το πρόβλημα ΙΣΟΔΥΝΑΜΙΑ ΤΜ (διαφάνεια 9 25)} (α) Γνωρίζουμε ότι το

Διαβάστε περισσότερα

Σχεσιακό Μοντέλο Περιορισμοί Μετατροπή ER σε Σχεσιακό Παράδειγμα.. Εργαστήριο Βάσεων Δεδομένων. Relational Model

Σχεσιακό Μοντέλο Περιορισμοί Μετατροπή ER σε Σχεσιακό Παράδειγμα.. Εργαστήριο Βάσεων Δεδομένων. Relational Model .. Εργαστήριο Βάσεων Δεδομένων Relational Model . Σχεσιακό Μοντέλο (Relational Model) Το σχεσιακό μοντέλο παρουσιάζει μια βάση ως συλλογή από σχέσεις Μια σχέση είναι ένας πίνακας με διακριτό όνομα Κάθε

Διαβάστε περισσότερα

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ Μαθηματικά Πληροφορικής 2ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης.

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας ΠΕΡΙΓΡΑΦΗ Σε αυτή την άσκηση καλείστε να αναλύσετε και να υπολογίσετε το

Διαβάστε περισσότερα

Βάσεις δεδομένων. (2 ο μάθημα) Ηρακλής Βαρλάμης

Βάσεις δεδομένων. (2 ο μάθημα) Ηρακλής Βαρλάμης Βάσεις δεδομένων (2 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr Περιεχόμενα Μοντελοποίηση δεδομένων Μοντέλο Οντοτήτων Συσχετίσεων Παραδείγματα Διαγραμματικές τεχνικές Συμβολισμοί Τριαδικές συσχετίσεις 2

Διαβάστε περισσότερα