Κλείσιμο Συνόλου Γνωρισμάτων

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κλείσιμο Συνόλου Γνωρισμάτων"

Transcript

1 Κλείσιμο Συνόλου Γνωρισμάτων Ο υπολογισμός του κλεισίματος ενός συνόλου από ΣΕ μας δίνει τα σύνολα όλων των γνωρισμάτων τα οποία προσδιορίζονται συναρτησιακά από άλλα σύνολα γνωρισμάτων Ο υπολογισμός αυτός έχει κόστος εκθετικό ως προς το μέγεθος του αρχικού συνόλου των ΣΕ. Δεδομένου ενός συνόλου F από ΣΕ μιας σχέσης R και ενός συνόλου X από γνωρίσματα του σχήματος της R, το κλείσιμο του X, X + είναι το μέγιστο σύνολο γνωρισμάτων Y, για τα οποία X Y F +. Ο υπολογισμός του κλεισίματος ενός συνόλου γνωρισμάτων έχει κόστος πολυωνυμικό ως προς το μέγεθος του συνόλου αυτού (πιο αποδοτικός από τον υπολογισμό κλεισίματος συνόλου ΣΕ) 1

2 Κλείσιμο Συνόλου Γνωρισμάτων Ο ακόλουθος αλγόριθμος υπολογίζει το X + δεδομένου ενός συνόλου ΣΕ F. I:= 0; X[I]:=X; Επανάλαβε I:=I+1; X[I]:=X[I-1]; Για κάθε Z W στο F Αν Z X[I] τότε X[I]:=X[I] W; Μέχρι X[I]=X[I-1]; Επέστρεψε X + =X[I]; Ο υπολογισμός του X + βασίζεται στην εφαρμογή του κανόνα συσσώρευσης. 2

3 Κλείσιμο Συνόλου Γνωρισμάτων Παράδειγμα: X = B, F = B CD, AD E, B A Αρχικά: X 0 = B I=1: X 1 = B X 1 = BCD (λόγω της B CD) X 1 = ABCD (λόγω της B A) I=2: X 2 = ABCD X 2 = ABCDE (λόγω της AD E) I=3: X 3 = ABCDE = X[2] To loop τερματίζει, επομένως X + = ABCDE 3

4 Ελάχιστη Κάλυψη (Minimum Cover) Χρειαζόμαστε μια μέθοδο κατασκευής μιας κάλυψης για ένα σύνολο από ΣΕ και επιπλέον η κάλυψη πρέπει να είναι ελάχιστη. Ο ακόλουθος αλγόριθμος κατασκευάζει μια ελάχιστη κάλυψη Μ ενός συνόλου ΣΕ. 1. Δημιουργούμε ένα ισοδύναμο σύνολο H από ΣΕ με ένα μόνο γνώρισμα στο δεξί μέλος. H:= ; Για κάθε X Y στο F Για κάθε A στο Y H:= H X A ; Στο τέλος του 1 ου βήματος, H F 4

5 Ελάχιστη Κάλυψη (Minimum Cover) 2. Αφαιρούμε από το H τις ΣΕ οι οποίες αν αφαιρεθούν δεν επηρεάζουν το H + Για κάθε X A στο H J:= H X A ; Υπολόγισε X + για το J; Αν A X + τότε H:=J; Το 2 ο βήμα μετατρέπει το H σε ένα μικρότερο αλλά ισοδύναμο σύνολο. 5

6 Ελάχιστη Κάλυψη (Minimum Cover) 3. Αντικαθιστούμε ΣΕ με άλλες οι οποίες έχουν λιγότερα γνωρίσματα στο αριστερό μέλος εφόσον δεν επηρεάζεται το H +. Για κάθε X A στο H Για κάθε B X Y:= X {B}; J:= H X A Y A ; Υπολόγισε Y + για το J και Y + για το H; Αν (Y + για το J) = (Y + για το H) τότε H:=J; Καθώς το H + δεν αλλάζει, το σύνολο που προκύπτει είναι ισοδύναμο με το αρχικό. Άλλος τρόπος να ελέγξουμε ότι to H + δεν αλλάζει είναι να δούμε αν το Y + για το J περιέχει το B ή να δούμε αν υπάρχει εξάρτηση B Y 6

7 Ελάχιστη Κάλυψη (Minimum Cover) 4. Εφαρμόζουμε τον κανόνα της ένωσης στις ΣΕ με κοινό αριστερό μέλος. Υποθέτουμε ότι όλες οι ΣΕ είναι μη- μαρκαρισμένες στην αρχή αυτού του βήματος M:= ; Για κάθε X A στο H Αν είναι μαρκαρισμένη, συνέχισε; Μαρκάρισε X A Y:={A}; Για όλες τις υπόλοιπες X B στο H Μαρκάρισε X B Y:=Y B ; M:=M X Y ; Επέστρεψε M; Το αποτέλεσμα είναι η ελάχιστη κάλυψη Μ. 7

8 Ελάχιστη Κάλυψη (Minimum Cover) Παράδειγμα: Κατασκευάστε την ελάχιστη κάλυψη Μ για το σύνολο F = A AC, B ABC, D ABC 1. H = A A, A C, B A, B B, B C, D A, D B, D C 2. (a) A A τετριμμένη μπορεί να αφαιρεθεί (b) A C δε μπορεί να αφαιρεθεί καθώς δεν υπάρχει άλλη ΣΕ με Α στο αριστερό μέλος (c) B A δε μπορεί να αφαιρεθεί καθώς B + = BC για το J = H B A (d) B B τετριμμένη = μπορεί να αφαιρεθεί (e) B C μπορεί να αφαιρεθεί καθώς B + = ABC για το J = H B C (f) D A μπορεί να αφαιρεθεί καθώς D + = DBA για το J = H D A 8

9 Ελάχιστη Κάλυψη (Minimum Cover) 2. (g) D B δε μπορεί να αφαιρεθεί καθώς D + = DC για το J = H D B (h) D C μπορεί να αφαιρεθεί καθώς D + = DBAC για το J = H D C Μετά το βήμα 2, H = A C, B A, D B 3. Τα βήματα 3 και 4 δε μεταβάλλουν το Η. Άρα M = A C, B A, D B 9

10 Ελάχιστη Κάλυψη (Minimum Cover) Παράδειγμα: Θεωρείστε τη σχέση R A, B, C, D, E, G που περιέχει δεδομένα για εργοστάσια, όπου Α id διευθυντή B όνομα εργοστασίου C id εργαζομένου D μισθός εργαζομένου E φόροι εργαζομένου G bonus εργαζομένου Τα δεδομένα ικανοποιούν τους εξής περιορισμούς: Κάθε διευθυντής διευθύνει ένα εργοστάσιο, αλλά ένα εργοστάσιο μπορεί να έχει πάνω από ένα διευθυντή. Κάθε εργαζόμενος εργάζεται σε ένα εργοστάσιο, αλλά σε κάθε εργοστάσιο εργάζονται πάνω από ένας εργαζόμενοι. Οι φόροι ενός εργαζομένου καθορίζονται βάσει του μισθού του Το bonus ενός εργαζομένου καθορίζεται από το μισθό και την πολιτική του εργοστασίου 10

11 Ελάχιστη Κάλυψη (Minimum Cover) Παράδειγμα: Θεωρείστε τη σχέση R A, B, C, D, E, G που περιέχει δεδομένα για εργοστάσια, όπου Α id διευθυντή B όνομα εργοστασίου C id εργαζομένου D μισθός εργαζομένου E φόροι εργαζομένου G bonus εργαζομένου Συνεπώς, το σύνολο των εξαρτήσεων που προκύπτουν είναι: A B, C BD, C G, CD E, BCDE G Εφαρμόζουμε τον αλγόριθμο για να βρούμε την ελάχιστη κάλυψη. 11

12 Ελάχιστη Κάλυψη (Minimum Cover) 1. H = A B, C B, C D, C G, CD E, BCDE G 2. (a) A B δε μπορεί να αφαιρεθεί καθώς δεν υπάρχει άλλη ΣΕ με Α στο αριστερό μέλος (b) C B δε μπορεί να αφαιρεθεί καθώς C + = CDE για το J = H C B (c) C D δε μπορεί να αφαιρεθεί καθώς C + = BC για το J = H C D (d) C G μπορεί να αφαιρεθεί καθώς C + = BCDEG για το J = H C D (e) BCDE G δε μπορεί να αφαιρεθεί καθώς {BCDE} + = BCDE για το J = H BCDE G 12

13 Ελάχιστη Κάλυψη (Minimum Cover) 3. (a) Αντικαθιστούμε τη CD E με τη D E. Επειδή στο σύνολο μας υπάρχει η εξάρτηση C D διατηρούμε την αντικατάσταση. (b) Αντικαθιστούμε τη BCDE G με τη CDE G. Υπολογίζουμε το (CDE) + = BCDEG το οποίο είναι ίδιο και στο αρχικό σύνολο, άρα διατηρούμε την αντικατάσταση. (c) Αντικαθιστούμε τη CDE G με τη DE G. Υπολογίζουμε το (DE) + = DEG το οποίο είναι ίδιο και στο αρχικό σύνολο, άρα διατηρούμε την αντικατάσταση. (d) Αντικαθιστούμε τη DE G με τη E G. Επειδή στο σύνολο μας υπάρχει η εξάρτηση D E διατηρούμε την αντικατάσταση. 13

14 Ελάχιστη Κάλυψη (Minimum Cover) 4. Μετά τις συνενώσεις, προκύπτει η ελάχιστη κάλυψη M = A B, C BD, D E, E G Δηλαδή id διευθυντή όνομα εργοστασίου id εργαζομένου όνομα εργοστασίου, μισθός εργαζομένου μισθός εργαζομένου φόροι εργαζομένου φόροι εργαζομένου bonus εργαζομένου 14

15 Αποσύνθεση χωρίς Απώλεια Πληροφορίας (Lossless-Join Decomposition) Η κανονικοποίηση σχημάτων σχεσιακών ΒΔ εξαρτάται από τη δυνατότητα αποσύνθεσης σχημάτων με «μικρότερα» αποφεύγοντας συγχρόνως ανωμαλίες ενημέρωσης. Δεδομένης μιας σχέσης R, μια αποσύνθεση (decomposition) της R σε k σχέσεις είναι ένα σύνολο {R 1, R 2,, R k } τέτοιο ώστε: Head R = k i=1 Head(Ri) Δεδομένου ενός στιγμιότυπου της R, το περιεχόμενο κάθε μιας από τις σχέσεις R i, καθορίζεται από την προβολή των πλειάδων της R στα γνωρίσματα της R i. 15

16 Αποσύνθεση χωρίς Απώλεια Πληροφορίας Μια αποσύνθεση {R 1, R 2,, R k } της σχέσης R με συναρτησιακές εξαρτήσεις F λέγεται αποσύνθεση χωρίς απώλεια πληροφορίας (lossless-join decomposition) αν, ανεξάρτητα από το περιεχόμενο της R, οι συναρτησιακές εξαρτήσεις, εξασφαλίζουν ότι R = R 1 R 2 Rk Σε μια αποσύνθεση χωρίς απώλεια πληροφορίας, μπορούμε πάντα να ανακατασκευάσουμε την αρχική σχέση από τον υπολογισμό της συνένωσης (join) των σχέσεων που προκύπτουν από την αποσύνθεση. Διαφορετικά, η συνένωση των σχέσεων μπορεί να δώσει πληροφορία η οποία δεν υπήρχε στην αρχική σχέση. 16

17 Παράδειγμα: Αποσύνθεση με απώλεια πληροφορίας 17

18 Παράδειγμα: Αποσύνθεση με απώλεια πληροφορίας Εξετάζοντας μόνο τις R1 και R2 δεν μπορούμε να πούμε από ποια σχέση προήλθαν. Θα μπορούσαν να έχουν προέλθει και από την Η απώλεια πληροφορίας προήλθε από τις πλειάδες (α 2, 200, c 4 ) και (α 4, 200, c 2 ). Εμφανίζονται στην R 1 R 2 επειδή έχουν κοινή τιμή στο γνώρισμα Β αλλά όχι στην αρχική σχέση. 18

19 Παράδειγμα: Αποσύνθεση με απώλεια πληροφορίας Τι θα συμβεί όμως αν το περιεχόμενο της R αλλάξει και προστεθεί μια πλειάδα με τιμή που ήδη υπάρχει στο κοινό γνώρισμα; Δεν μπορούμε να κρίνουμε αν μια αποσύνθεση πάσχει από απώλεια πληροφορίας εξετάζοντας μόνο το περιεχόμενο των σχέσεων. Χρειάζονται επιπλέον κανόνες, οι οποίοι λαμβάνουν υπόψη τους τις συναρτησιακές εξαρτήσεις. 19

20 Παράδειγμα: αποσύνθεση συναρτησιακές εξαρτήσεις Παράδειγμα: Έστω η εξάρτηση Β C ισχύει για τη σχέση R. Η εισαγωγή της πλειάδας (a 4, 200, c 4 ) αποτυγχάνει γιατί ισχύει η εξάρτηση Β C. H εισαγωγή της πλειάδας (α 4, 200, c 2 ) επιτρέπεται. 20

21 Παράδειγμα: αποσύνθεση συναρτησιακές εξαρτήσεις Η ακόλουθη αποσύνθεση δεν πάσχει από απώλεια πληροφορίας. 21

22 Θεώρημα: κλειδιά συναρτησιακές εξαρτήσεις Το ακόλουθο θεώρημα προσδιορίζει τη σχέση μεταξύ κλειδιών σχέσεων και συναρτησιακών εξαρτήσεων. Θεώρημα: Έστω μια σχέση R και ένα σύνολο γνωρισμάτων Χ Head(R). Τότε οι ακόλουθες προτάσεις είναι ισοδύναμες: (1) Χ είναι κλειδί της R, (2) X προσδιορίζει συναρτησιακά όλα τα γνωρίσματα στην R. Απόδειξη: (1) (2): αν το Χ είναι κλειδί, τότε δεν μπορούν να υπάρχουν στην R πλειάδες οι οποίες συμφωνούν σε όλα τα γνωρίσματα του Χ. Άρα, δεν είναι δυνατόν να υπάρχουν πλειάδες οι οποίες συμφωνούν στις τιμές των γνωρισμάτων Χ και δεν συμφωνούν στα υπόλοιπα γνωρίσματα. Εξ ορισμού η συναρτησιακή εξάρτηση Χ Head(R) ισχύει. 22

23 Θεώρημα: κλειδιά συναρτησιακές εξαρτήσεις (2) (1): αν ισχύει η Χ Head(R), τότε δεν είναι δυνατόν να υπάρχουν δύο πλειάδες οι οποίες συμφωνούν στα γνωρίσματα Χ και δεν συμφωνούν στα υπόλοιπα γνωρίσματα. Άρα, είτε δύο πλειάδες οι οποίες συμφωνούν στα γνωρίσματα Χ θα συμφωνούν και στα υπόλοιπα γνωρίσματα, είτε όλες οι πλειάδες έχουν διακεκριμένες τιμές στα γνωρίσματα του Χ. Καθώς δεν επιτρέπεται να υπάρχουν επαναλαμβανόμενες πλειάδες σε μια σχέση, και οι δύο αυτές περιπτώσεις μας οδηγούν στο συμπέρασμα ότι το Χ είναι κλειδί της R. Άρα, (1) (2) 23

24 Θεώρημα Μια ικανή συνθήκη για έλεγχο της ιδιότητας της μη απώλειας πληροφορίας για μια αποσύνθεση: Θεώρημα: Δεδομένης μιας σχέσης R και ενός συνόλου ΣΕ F οι οποίες πληρούνται στην R, μια αποσύνθεση της R στις σχέσεις R1 και R2 δεν πάσχει από απώλεια πληροφορίας αν τουλάχιστον μια από τις ακόλουθες ΣΕ είναι λογική συνέπεια των ΣΕ στο F. (1) Head R1 Head R2 Head(R1) (2) Head R1 Head R2 Head(R2) 24

25 Παράδειγμα Παράδειγμα: Έστω ότι η ΣΕ B C ισχύει στη σχέση R(ABC). Η R αποσυντίθεται στις R1(AB) και R2(BC). Εξετάστε αν η αποσύνθεση πάσχει από απώλεια πληροφορίας. Head R1 Head R2 = Β Πρέπει να δείξουμε ότι ισχύει μια από τις ΣΕ (1) B ΑΒ και (2) B BC Από την B C εξάγεται η B BC με χρήση του κανόνα επαύξησης. Άρα, η αποσύνθεση δεν πάσχει από απώλεια πληροφορίας. Πόρισμα: Αν {R1,R2) είναι μια αποσύνθεση χωρίς απώλεια πληροφορίας για τη σχέση R και {R3,R4} είναι μια αποσύνθεση χωρίς απώλεια πληροφορίας της σχέσης R2, τότε {R1,R3,R4} είναι μια αποσύνθεση χωρίς απώλεια πληροφορίας της R. 25

26 Παράδειγμα Παράδειγμα: Αποσύνθεση της σχέσης emp_info Συναρτησιακές εξαρτήσεις: 1. emp_id emp_name emp_phone dept_name 2. dept_name dept_phone dept_mgrname 3. skill_id skill_name 4. emp_id skill_id skill_date skill_lvl 26

27 Παράδειγμα Η ακόλουθη αποσύνθεση δεν πάσχει από απώλεια πληροφορίας 27

Αρχεία και Βάσεις Δεδομένων

Αρχεία και Βάσεις Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αρχεία και Βάσεις Δεδομένων Διάλεξη 13η: Κλείσιμο Συνόλου Γνωρισμάτων - Ελάχιστη κάλυψη - Αποσύνθεση - Συναρτησιακές Εξαρτήσεις Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης

Διαβάστε περισσότερα

Σχεδίαση Β.Δ. (Database Design)

Σχεδίαση Β.Δ. (Database Design) Σχεδίαση Β.Δ. (Database Design) Η σχεδίαση ενός σχήματος μιας Β.Δ. βασίζεται σε μεγάλο βαθμό στη διαίσθηση του σχεδιαστή σχετικά με τον κόσμο που θέλει να αναπαραστήσει. Η εννοιολογική σχεδίαση υπαρκτών

Διαβάστε περισσότερα

Αρχεία και Βάσεις Δεδομένων

Αρχεία και Βάσεις Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αρχεία και Βάσεις Δεδομένων Διάλεξη 12η: Συναρτησιακές Εξαρτήσεις - Αξιώματα Armstrong Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Συναρτησιακές Εξαρτήσεις

Διαβάστε περισσότερα

Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών Κανονικές Μορφές (Normal Forms)

Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών Κανονικές Μορφές (Normal Forms) Κανονικές Μορφές (Normal Forms) Παρέχουν ένα τυπικό πλαίσιο για ανάλυση σχεσιακών σχημάτων βασισμένη στον ορισμό κλειδιών και συναρτησιακών εξαρτήσεων. Σχεσιακά σχήματα που ανήκουν σε συγκεκριμένες κανονικές

Διαβάστε περισσότερα

Αρχεία και Βάσεις Δεδομένων

Αρχεία και Βάσεις Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αρχεία και Βάσεις Δεδομένων Διάλεξη 14η: Κανονικές Μορφές Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Κανονικές Μορφές (Normal Forms) Παρέχουν ένα τυπικό πλαίσιο

Διαβάστε περισσότερα

ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων:. Πλεξουσάκης

ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων:. Πλεξουσάκης ΗΥ360 Αρχεία και Βάσεις εδοµένων ιδάσκων:. Πλεξουσάκης Συναρτησιακές Εξαρτήσεις Αξιώµατα Armstrong Ελάχιστη κάλυψη Φροντιστήριο 1 Συναρτησιακές Εξαρτήσεις Οι Συναρτησιακές εξαρτήσεις είναι περιορισµοί

Διαβάστε περισσότερα

ΗΥ360 Αρχεία και Βάσεις Δεδομένων

ΗΥ360 Αρχεία και Βάσεις Δεδομένων ΗΥ360 Αρχεία και Βάσεις Δεδομένων Φροντιστήριο Συναρτησιακές Εξαρτήσεις Αξιώματα Armstrong Ελάχιστη Κάλυψη Συναρτησιακές Εξαρτήσεις Τι είναι : Οι Συναρτησιακές εξαρτήσεις είναι περιορισμοί ακεραιότητας

Διαβάστε περισσότερα

καλών σχεσιακών σχημάτων

καλών σχεσιακών σχημάτων Εισαγωγή Θα εξετάσουμε πότε ένα σχεσιακό σχήμα για μια βάση δεδομένων είναι «καλό» Λογικός Σχεδιασμός Σχεσιακών Σχημάτων Γενικές Οδηγίες Η Μέθοδος της Αποσύνθεσης (γενική μεθοδολογία) Επιθυμητές Ιδιότητες

Διαβάστε περισσότερα

Βάσεις Δεδομένων : Λογικός Σχεδιασμός 1. καλών σχεσιακών σχημάτων. Λογικός Σχεδιασμός Σχεσιακών Σχημάτων. Γενικές Κατευθύνσεις.

Βάσεις Δεδομένων : Λογικός Σχεδιασμός 1. καλών σχεσιακών σχημάτων. Λογικός Σχεδιασμός Σχεσιακών Σχημάτων. Γενικές Κατευθύνσεις. Εισαγωγή Θα εξετάσουμε πότε ένα σχεσιακό σχήμα για μια βάση δεδομένων είναι «καλό» Λογικός Σχεδιασμός Σχεσιακών Σχημάτων Γενικές Οδηγίες Η Μέθοδος της Αποσύνθεσης (γενική μεθοδολογία) Επιθυμητές Ιδιότητες

Διαβάστε περισσότερα

Λογικός Σχεδιασμός Σχεσιακών Σχημάτων: Αποσύνθεση

Λογικός Σχεδιασμός Σχεσιακών Σχημάτων: Αποσύνθεση Λογικός Σχεδιασμός Σχεσιακών Σχημάτων: Αποσύνθεση Βάσεις Δεδομένων 2010-2011 Ευαγγελία Πιτουρά 1 Εισαγωγή Θα εξετάσουμε πότε ένα σχεσιακό σχήμα για μια βάση δεδομένων είναι «καλό» Γενικές Οδηγίες Η Μέθοδος

Διαβάστε περισσότερα

BΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΕΞΕΤΑΣΗ ΦΕΒΡΟΥΑΡΙΟΥ 2005

BΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΕΞΕΤΑΣΗ ΦΕΒΡΟΥΑΡΙΟΥ 2005 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ BΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΕΞΕΤΑΣΗ ΦΕΒΡΟΥΑΡΙΟΥ 2005 ΛΥΣΕΙΣ Ι. Βασιλείου -----------------------------------------------------------------------------------------------------

Διαβάστε περισσότερα

Συναρτησιακές Εξαρτήσεις

Συναρτησιακές Εξαρτήσεις Εισαγωγή Θεωρία για το πότε ένας σχεδιασμός είναι «καλός» Η θεωρία βασίζεται στις (Functional Dependencies) Τι είναι; Εξαρτήσεις ανάμεσα σε σύνολα από γνωρίσματα Συμβολισμός S1 S2 (όπου S1, S2 σύνολα γνωρισμάτων)

Διαβάστε περισσότερα

καλών σχεσιακών σχημάτων

καλών σχεσιακών σχημάτων Εισαγωγή Θα εξετάσουμε πότε ένα σχεσιακό σχήμα για μια βάση δεδομένων είναι «καλό» Λογικός Γενικές Οδηγίες Η Μέθοδος της Αποσύνθεσης (γενική μεθοδολογία) Επιθυμητές Ιδιότητες της Αποσύνθεσης Συνένωση Άνευ

Διαβάστε περισσότερα

Συναρτησιακές Εξαρτήσεις

Συναρτησιακές Εξαρτήσεις Συναρτησιακές Εξαρτήσεις Βάσεις Δεδομένων 2009-2010 Ευαγγελία Πιτουρά 1 Εισαγωγή Θεωρία για το πότε ένας σχεδιασμός είναι «καλός» Η θεωρία βασίζεται στις Συναρτησιακές Εξαρτήσεις (Functional Dependencies)

Διαβάστε περισσότερα

Συναρτησιακές Εξαρτήσεις

Συναρτησιακές Εξαρτήσεις Συναρτησιακές Εξαρτήσεις Βάσεις Δεδομένων 2010-2011 Ευαγγελία Πιτουρά 1 Εισαγωγή Θεωρία για το πότε ένας σχεδιασμός είναι «καλός» Η θεωρία βασίζεται στις Συναρτησιακές Εξαρτήσεις (Functional Dependencies)

Διαβάστε περισσότερα

και Κανονικοποίηση για Σχεσιακές Βάσεις Δεδομένων Αντζουλάτος Γεράσιμος antzoulatos@upatras.gr Τμήμα Εφαρμογών Πληροφορικής στην Διοίκηση και Οικονομία ΤΕΙ Πατρών - Παράρτημα Αμαλιάδας 29 Νοεμβρίου 2012

Διαβάστε περισσότερα

Βάσεις δεδομένων. (9 ο μάθημα) Ηρακλής Βαρλάμης

Βάσεις δεδομένων. (9 ο μάθημα) Ηρακλής Βαρλάμης Βάσεις δεδομένων (9 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr Περιεχόμενα Βελτίωση σχεδιασμού Αποσύνθεση σχέσης Συναρτησιακές εξαρτήσεις Θεωρία κανονικών μορφών 1 η NF 2 η NF 3 η NF 2 Βελτίωση σχεδιασμού

Διαβάστε περισσότερα

Βάσεις Δεδομένων Συναρτησιακές Εξαρτήσεις (Functional Dependencies) Σχεδιασμός Βάσεων Δεδομένων και Κανονικοποίηση

Βάσεις Δεδομένων Συναρτησιακές Εξαρτήσεις (Functional Dependencies) Σχεδιασμός Βάσεων Δεδομένων και Κανονικοποίηση Βάσεις Δεδομένων Συναρτησιακές Εξαρτήσεις (Functional Dependencies) Σχεδιασμός Βάσεων Δεδομένων και Κανονικοποίηση Φροντιστήριο 6ο 26-1-2009 ΘΕΩΡΙΑ Συναρτησιακές-Λειτουργικές εξαρτήσεις Κανόνες συμπερασμού

Διαβάστε περισσότερα

Συναρτησιακές Εξαρτήσεις

Συναρτησιακές Εξαρτήσεις Εισαγωγή Θεωρία για το πότε ένας σχεδιασμός είναι «καλός» Η θεωρία βασίζεται στις Τι είναι; Εξαρτήσεις ανάμεσα σε σύνολα από γνωρίσματα Συμβολισμός S1 S2 (όπου S1, S2 σύνολα γνωρισμάτων) Τι σημαίνει: Αν

Διαβάστε περισσότερα

Κανονικές Μορφές. Βάσεις Δεδομένων : Κανονικές Μορφές. ηλαδή, i = 1,.., n R i R. Σύντομη επανάληψη αποσύνθεσης.

Κανονικές Μορφές. Βάσεις Δεδομένων : Κανονικές Μορφές. ηλαδή, i = 1,.., n R i R. Σύντομη επανάληψη αποσύνθεσης. Κανονικές Μορφές Σύντομη επανάληψη αποσύνθεσης Βάσεις Δεδομένων 2008-2009 Ευαγγελία Πιτουρά 1 Βάσεις Δεδομένων 2008-2009 Ευαγγελία Πιτουρά 2 Αλγόριθμος Σχεδιασμού Αλγόριθμος Σχεδιασμού Ένας γενικός (θεωρητικός)

Διαβάστε περισσότερα

Συναρτησιακές Εξαρτήσεις

Συναρτησιακές Εξαρτήσεις Εισαγωγή Θεωρία για το πότε ένας σχεδιασμός είναι «καλός» Η θεωρία βασίζεται στις Τι είναι; Εξαρτήσεις ανάμεσα σε σύνολα από γνωρίσματα Συμβολισμός S1 S2 (όπου S1, S2 σύνολα γνωρισμάτων) Τι σημαίνει: Αν

Διαβάστε περισσότερα

Λογικός Σχεδιασµός Σχεσιακών Σχηµάτων: Αποσύνθεση

Λογικός Σχεδιασµός Σχεσιακών Σχηµάτων: Αποσύνθεση Λογικός Σχεδιασµός Σχεσιακών Σχηµάτων: Αποσύνθεση Βάσεις εδοµένων 2012-2013 Ευαγγελία Πιτουρά 1 Εισαγωγή Θα εξετάσουμε πότε ένα σχεσιακό σχήμα για μια βάση δεδομένων είναι «καλό» Γενικές Οδηγίες Η Μέθοδος

Διαβάστε περισσότερα

Συναρτησιακές Εξαρτήσεις

Συναρτησιακές Εξαρτήσεις Συναρτησιακές Εξαρτήσεις Βάσεις εδοµένων 2012-2013 Ευαγγελία Πιτουρά 1 Θεωρία για το πότε ένας σχεδιασμός είναι«καλός» Εισαγωγή Η θεωρία βασίζεται στις Συναρτησιακές Εξαρτήσεις (Functional Dependencies)

Διαβάστε περισσότερα

Σχεδιασµός Σχεσιακών Σχηµάτων

Σχεδιασµός Σχεσιακών Σχηµάτων Σχεδιασµός Σχεσιακών Σχηµάτων 1 Σχεδιασµός Σχεσιακών Σχηµάτων Σχεδιασµός καλών σχεσιακών σχηµάτων Μη τυπικές - γενικές κατευθύνσεις Θεωρία κανονικών µορφών που θα βασίζεται στις συναρτησιακές εξαρτήσεις

Διαβάστε περισσότερα

2η ΔΙΑΛΕΞΗ Συναρτησιακές εξαρτήσεις

2η ΔΙΑΛΕΞΗ Συναρτησιακές εξαρτήσεις 2η ΔΙΑΛΕΞΗ 1 Συναρτησιακές εξαρτήσεις Συναρτησιακές εξαρτήσεις 2 Θέματα Ανάπτυξης Έννοια και ορισμός των συναρτησιακών εξαρτήσεων Κανόνες του Armstrong Μη αναγώγιμα σύνολα εξαρτήσεων Στόχος και Αποτελέσματα

Διαβάστε περισσότερα

Σχεδιασµός Σχεσιακών Σχηµάτων

Σχεδιασµός Σχεσιακών Σχηµάτων Βάσεις εδοµένων 2003-2004 Ευαγγελία Πιτουρά 1 Σχεδιασµός Σχεσιακών Σχηµάτων Σχεδιασµός καλών σχεσιακών σχηµάτων Μη τυπικές - γενικές κατευθύνσεις Θεωρία κανονικών µορφών που θα βασίζεται στις συναρτησιακές

Διαβάστε περισσότερα

Λογικός Σχεδιασµός Σχεσιακών Σχηµάτων: Αποσύνθεση. Βάσεις εδοµένων Ευαγγελία Πιτουρά 1

Λογικός Σχεδιασµός Σχεσιακών Σχηµάτων: Αποσύνθεση. Βάσεις εδοµένων Ευαγγελία Πιτουρά 1 Λογικός Σχεδιασµός Σχεσιακών Σχηµάτων: Αποσύνθεση Βάσεις εδοµένων 2011-2012 Ευαγγελία Πιτουρά 1 Εισαγωγή Θα εξετάσουµε πότε ένα σχεσιακό σχήµα για µια βάση δεδοµένων είναι «καλό» Γενικές Οδηγίες Η Μέθοδος

Διαβάστε περισσότερα

Αρχεία και Βάσεις Δεδομένων

Αρχεία και Βάσεις Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αρχεία και Βάσεις Δεδομένων Διάλεξη 11η: Περιορισμοί Ακεραιότητας - Κανονικές Μορφές Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Αποτελούν μηχανισμό για τον

Διαβάστε περισσότερα

Λογικός Σχεδιασμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Λογικός Σχεδιασμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Λογικός Σχεδιασμός Ευαγγελία Πιτουρά 1 Εισαγωγή Θα εξετάσουμε πότε ένα σχεσιακό σχήμα για μια βάση δεδομένων είναι «καλό» Μη τυπικές γενικές κατευθύνσεις Θεωρία κανονικών μορφών η οποία βασίζεται στην

Διαβάστε περισσότερα

Λογικός Σχεδιασμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Λογικός Σχεδιασμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Λογικός Σχεδιασμός 1 Ανακοινώθηκε το 2 ο Σύνολο Ασκήσεων στη σελίδα του μαθήματος Ημερομηνία Παράδοσης 6/12/2016 2 Εισαγωγή Θα εξετάσουμε πότε ένα σχεσιακό σχήμα για μια βάση δεδομένων είναι «καλό» Μη

Διαβάστε περισσότερα

Συναρτησιακές Εξαρτήσεις. Βάσεις εδοµένων Ευαγγελία Πιτουρά 1

Συναρτησιακές Εξαρτήσεις. Βάσεις εδοµένων Ευαγγελία Πιτουρά 1 Συναρτησιακές Εξαρτήσεις Βάσεις εδοµένων 2011-2012 Ευαγγελία Πιτουρά 1 Εισαγωγή Θεωρία για το πότε ένας σχεδιασµός είναι «καλός» Η θεωρία βασίζεται στις Συναρτησιακές Εξαρτήσεις (Functional Dependencies)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι Β. Μεγαλοοικονόμου, Δ. Χριστοδουλάκης Σχεδιασμός Βάσεων Δεδομένων και Κανονικοποίηση Ακ.Έτος 2008-09 (μεβάσητιςσημειώσειςτωνsilberchatz, Korth και Sudarshan

Διαβάστε περισσότερα

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

!!  &' ':  /.., c #$% & - & ' (),..., * +,.. * ' + * - - * (),...(. ..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$

Διαβάστε περισσότερα

Κανονικοποίηση. Σημασιολογία Γνωρισμάτων. Άτυπες Οδηγίες. Παράδειγμα. Αξιολόγηση Σχεσιακών Σχημάτων ΒΔ. Περιττές Τιμές και Ανωμαλίες Ενημέρωσης

Κανονικοποίηση. Σημασιολογία Γνωρισμάτων. Άτυπες Οδηγίες. Παράδειγμα. Αξιολόγηση Σχεσιακών Σχημάτων ΒΔ. Περιττές Τιμές και Ανωμαλίες Ενημέρωσης Αξιολόγηση Σχεσιακών Σχημάτων ΒΔ Κανονικοποίηση Παύλος Εφραιμίδης Βάσεις Δεδομένων Κανονικοποίηση 1 Πως μπορούμε να κρίνουμε εάν ένα Σχεσιακό Σχήμα είναι καλό ή αποδοτικό ή αν έχει λάθη; Σε γενικές γραμμές

Διαβάστε περισσότερα

Συναρτησιακές Εξαρτήσεις Σχεδιασμός Βάσεων Δεδομένων

Συναρτησιακές Εξαρτήσεις Σχεδιασμός Βάσεων Δεδομένων Συναρτησιακές Εξαρτήσεις Σχεδιασμός Βάσεων Δεδομένων Μαρία Χαλκίδη 1 Εισαγωγή Θεωρία για το πότε ένας σχεδιασμός είναι «καλός» Η θεωρία βασίζεται στις Λειτουργικές (Συναρτησιακές) Εξαρτήσεις (Functional

Διαβάστε περισσότερα

Ο Αλγόριθμος FP-Growth

Ο Αλγόριθμος FP-Growth Ο Αλγόριθμος FP-Growth Με λίγα λόγια: Ο αλγόριθμος χρησιμοποιεί μια συμπιεσμένη αναπαράσταση της βάσης των συναλλαγών με τη μορφή ενός FP-δέντρου Το δέντρο μοιάζει με προθεματικό δέντρο - prefix tree (trie)

Διαβάστε περισσότερα

Αρχεία και Βάσεις Δεδομένων Φροντιστήριο Κανονικές Μορφές

Αρχεία και Βάσεις Δεδομένων Φροντιστήριο Κανονικές Μορφές ΗΥ-360 Αρχεία και Βάσεις Δεδομένων Φροντιστήριο Κανονικές Μορφές 1 Κλειστότητα Συναρτησιακών Eξαρτήσεων: Πώς συμβολίζεται: F + Τι σημαίνει : Το ΣΥΝΟΛΟ των Σ.Ε. που μπορούν να παραχθούν από ένα σύνολο εξαρτήσεων

Διαβάστε περισσότερα

Λογικός Σχεδιασµός Σχεσιακών Σχηµάτων

Λογικός Σχεδιασµός Σχεσιακών Σχηµάτων Εισαγωγή Θα εξετάσουµε πότε ένα σχεσιακό σχήµα για µια βάση δεδοµένων είναι «καλό» Λογικός Σχεδιασµός Σχεσιακών Σχηµάτων Γενικές Οδηγίες Η Μέθοδος της Αποσύνθεσης Επιθυµητές Ιδιότητες της Αποσύνθεσης Συνένωση

Διαβάστε περισσότερα

Βάσεις εδοµένων. Συναρτησιακές Εξαρτήσεις (Functional Dependencies) Σχεδιασµός Βάσεων εδοµένων και. Κανονικοποίηση.

Βάσεις εδοµένων. Συναρτησιακές Εξαρτήσεις (Functional Dependencies) Σχεδιασµός Βάσεων εδοµένων και. Κανονικοποίηση. Βάσεις εδοµένων Συναρτησιακές Εξαρτήσεις (Functional Dependencies) Σχεδιασµός Βάσεων εδοµένων και Κανονικοποίηση Φροντιστήριο 9ο 17-12-2009 ΘΕΩΡΙΑ Συναρτησιακές-Λειτουργικές εξαρτήσεις Κανόνες συµπερασµού

Διαβάστε περισσότερα

Βάσεις Δεδομένων : Σχεσιακό Μοντέλο 1. Ένας απλός τρόπος αναπαράστασης δεδομένων: ένας διδιάστατος πίνακας που λέγεται σχέση.

Βάσεις Δεδομένων : Σχεσιακό Μοντέλο 1. Ένας απλός τρόπος αναπαράστασης δεδομένων: ένας διδιάστατος πίνακας που λέγεται σχέση. Εισαγωγή Σχεσιακό Μοντέλο Ανάλυση Απαιτήσεων Σχεδιασμός μιας Β : Βήματα Τι δεδομένα θα αποθηκευτούν, ποιες εφαρμογές θα κτιστούν πάνω στα δεδομένα, ποιες λειτουργίες είναι συχνές Εννοιολογικός Σχεδιασμός

Διαβάστε περισσότερα

Λογικός Σχεδιασμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Λογικός Σχεδιασμός. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Λογικός Σχεδιασμός Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Εισαγωγή Θα εξετάσουμε πότε ένα σχεσιακό σχήμα για μια βάση δεδομένων είναι «καλό» Μη τυπικές γενικές κατευθύνσεις Θεωρία κανονικών μορφών

Διαβάστε περισσότερα

Συναρτησιακές Εξαρτήσεις

Συναρτησιακές Εξαρτήσεις Εισαγωγή Θεωρία για το πότε ένας σχεδιασµός είναι «καλός» Η θεωρία βασίζεται στις Τι είναι; Εξαρτήσεις ανάµεσα σε σύνολα από γνωρίσµατα S1 S2 (όπου S1, S2 σύνολα γνωρισµάτων): αν ίδιες τιµές στα γνωρίσµατα

Διαβάστε περισσότερα

Ανάλυση Συσχέτισης IΙ

Ανάλυση Συσχέτισης IΙ Ανάλυση Συσχέτισης IΙ Οι διαφάνειες στηρίζονται στο P.-N. Tan, M.Steinbach, V. Kumar, «Introduction to Data Mining», Addison Wesley, 2006 ΟΑλγόριθμοςFP-Growth Εξόρυξη Δεδομένων: Ακ. Έτος 2010-2011 ΚΑΝΟΝΕΣ

Διαβάστε περισσότερα

Ένας απλός τρόπος αναπαράστασης δεδομένων: ένας διδιάστατος πίνακας που λέγεται σχέση Γνωρίσματα

Ένας απλός τρόπος αναπαράστασης δεδομένων: ένας διδιάστατος πίνακας που λέγεται σχέση Γνωρίσματα Εισαγωγή Σχεσιακό Μοντέλο Σχεδιασμός μιας Β : Βήματα Ανάλυση Απαιτήσεων Τι δεδομένα θα αποθηκευτούν, ποιες εφαρμογές θα κτιστούν πάνω στα δεδομένα, ποιες λειτουργίες είναι συχνές Εννοιολογικός Σχεδιασμός

Διαβάστε περισσότερα

Ένας απλός τρόπος αναπαράστασης δεδομένων: ένας διδιάστατος πίνακας που λέγεται σχέση Γνωρίσματα

Ένας απλός τρόπος αναπαράστασης δεδομένων: ένας διδιάστατος πίνακας που λέγεται σχέση Γνωρίσματα Εισαγωγή Σχεσιακό Μοντέλο Σχεδιασμός μιας Β : Βήματα Ανάλυση Απαιτήσεων Τι δεδομένα θα αποθηκευτούν, ποιες εφαρμογές θα κτιστούν πάνω στα δεδομένα, ποιες λειτουργίες είναι συχνές Εννοιολογικός Σχεδιασμός

Διαβάστε περισσότερα

Κανονικοποίηση. Παύλος Εφραιμίδης. Βάσεις Δεδομένων Κανονικοποίηση 1

Κανονικοποίηση. Παύλος Εφραιμίδης. Βάσεις Δεδομένων Κανονικοποίηση 1 Κανονικοποίηση Παύλος Εφραιμίδης Βάσεις Δεδομένων Κανονικοποίηση 1 Αξιολόγηση Σχεσιακών Σχημάτων ΒΔ Πως μπορούμε να κρίνουμε εάν ένα Σχεσιακό Σχήμα είναι καλό ή αποδοτικό ή αν έχει λάθη; Σε γενικές γραμμές

Διαβάστε περισσότερα

Συναρτησιακές Εξαρτήσεις

Συναρτησιακές Εξαρτήσεις Βάσεις εδοµένων 2003-2004 Ευαγγελία Πιτουρά 1 Έστω ένα σχήµα σχέσης R(Α 1, Α 2,, Α n ). Aς συµβολίσουµε µε R = {Α 1, Α 2,, Α n } το σύνολο των γνωρισµάτων της R. Με απλά λόγια, µια συναρτησιακή εξάρτηση

Διαβάστε περισσότερα

Συναρτησιακές Εξαρτήσεις και Κανονικοποίηση

Συναρτησιακές Εξαρτήσεις και Κανονικοποίηση Συναρτησιακές Εξαρτήσεις και Κανονικοποίηση Κανονικές Μορφές - Πρώτη κανονική μορφή (1NF) - Δεύτερη κανονική μορφή (2NF) - Τρίτη κανονική μορφή (3NF) 1 Κανονικοποίηση Κανονικές Μορφές Οι σχέσεις μπορούν

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Δημήτρης Πλεξουσάκης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 2ο μέρος σημειώσεων: Συστήματα Αποδείξεων για τον ΠΛ, Μορφολογική Παραγωγή, Κατασκευή Μοντέλων Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης

Διαβάστε περισσότερα

Σχεδιασμός μιας Β : Βήματα

Σχεδιασμός μιας Β : Βήματα Σχεσιακό Μοντέλο 1 Εισαγωγή Ανάλυση Απαιτήσεων Σχεδιασμός μιας Β : Βήματα Τι δεδομένα θα αποθηκευτούν, ποιες εφαρμογές θα κτιστούν πάνω στα δεδομένα, ποιες λειτουργίες είναι συχνές Εννοιολογικός Σχεδιασμός

Διαβάστε περισσότερα

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των

βαθμού 1 με A 2. Υπολογίστε τα χαρακτηριστικά και ελάχιστα πολυώνυμα των Ασκήσεις 6 Ασκήσεις Ελάχιστο Πολυώνυμο Βασικά σημεία Ορισμός ελαχίστου πολυωνύμου πίνακα και ιδιότητές του Ορισμός ελαχίστου πολυωνύμου γραμμικής απεικόνισης και ιδιότητές του Κριτήριο διαγωνισιμότητας

Διαβάστε περισσότερα

Θεωρία Κανονικοποίησης

Θεωρία Κανονικοποίησης Θεωρία Κανονικοποίησης Πρώτη Κανονική Μορφή (1NF) Αποσύνθεση Συναρτησιακές Εξαρτήσεις Δεύτερη (2NF) και Τρίτη Κανονική Μορφή (3NF) Boyce Codd Κανονική Μορφή (BCNF) Καθολική Διαδικασία Σχεδίασης ΒΔ Βασική

Διαβάστε περισσότερα

Το Σχεσιακό Μοντέλο. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Το Σχεσιακό Μοντέλο. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Το Σχεσιακό Μοντέλο Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Μοντελοποίηση Σχήμα (database schema): η περιγραφή της δομής της πληροφορίας που είναι αποθηκευμένη στη βδ με τη χρήση ενός μοντέλου δεδομένων

Διαβάστε περισσότερα

Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών. Σχεσιακός Λογισμός

Πανεπιστήμιο Κρήτης Τμήμα Επιστήμης Υπολογιστών. Σχεσιακός Λογισμός Σχεσιακός Λογισμός Γλώσσα βασισμένη στον Κατηγορηματικό Λογισμό 1 ης Τάξης (First Order Predicate Calculus) Οι περισσότερες γλώσσες επερώτησης σχεσιακών βάσεων δεδομένων βασίζονται στον Σχεσιακό Λογισμό

Διαβάστε περισσότερα

Κανονικές Μορφές. Αποσύνθεση (decomposition)

Κανονικές Μορφές. Αποσύνθεση (decomposition) Σχεδιασµός Σχεσιακών Σχηµάτων Κανονικές Μορφές Γενικές Οδηγίες Η Μέθοδος της Αποσύνθεσης Επιθυµητές Ιδιότητες της Αποσύνθεσης Συνένωση Άνευ Απωλειών ιατήρηση Εξαρτήσεων Αποφυγή Επανάληψης Πληροφορίας 1

Διαβάστε περισσότερα

BΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΕΞΕΤΑΣΗ ΦΕΒΡΟΥΑΡΙΟΥ 2013

BΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΕΞΕΤΑΣΗ ΦΕΒΡΟΥΑΡΙΟΥ 2013 1 2 3 ΟΝΟΜΑ ΣΥΝ Αρ. Μητρώου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ BΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΕΞΕΤΑΣΗ ΦΕΒΡΟΥΑΡΙΟΥ 2013 Ι. Βασιλείου Τ. Σελλής -----------------------------------------------------------------------------------------------------

Διαβάστε περισσότερα

Συναρτησιακές και Πλειότιµες Εξαρτήσεις

Συναρτησιακές και Πλειότιµες Εξαρτήσεις Συναρτησιακές και Πλειότιµες Εξαρτήσεις 1 Συναρτησιακές Εξαρτήσεις 2 Συναρτησιακές Εξαρτήσεις Έστω ένα σχήµα σχέσης R(Α 1, Α 2,, Α n ). Aς συµβολίσουµε µε R = {Α 1, Α 2,, Α n } το σύνολο των γνωρισµάτων

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 21: Κανονικοποίηση και Συναρτησιακές Εξαρτήσεις ΙI Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στις έννοιες: Συναρτησιακές Εξαρτήσεις Κανόνες Συμπερασμού για Συναρτησιακές

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΥΠ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι Β. Μεγαλοοικονόμου, Δ. Χριστοδουλάκης Συναρτησιακές Εξαρτήσεις (Functional Dependencies) Ακ.Έτος 2008-09 (μεβάσητιςσημειώσειςτωνsilberchatz, Korth και Sudarshan

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές

Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές Θεωρία Υπολογισμού και Πολυπλοκότητα Αναγωγές Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ανεπίλυτα Προβλήματα από τη Θεωρία Γλωσσών (5.1) To Πρόβλημα της Περάτωσης Το Πρόβλημα της Κενότητα

Διαβάστε περισσότερα

Σχεδιασμός μιας εφαρμογής ΒΔ: Βήματα. 1. Συλλογή και Ανάλυση Απαιτήσεων(requirement analysis)

Σχεδιασμός μιας εφαρμογής ΒΔ: Βήματα. 1. Συλλογή και Ανάλυση Απαιτήσεων(requirement analysis) Σχεσιακό Μοντέλο Βάσεις εδοµένων 2012-2013 Ευαγγελία Πιτουρά 1 Σχεδιασμός μιας εφαρμογής ΒΔ: Βήματα 1. Συλλογή και Ανάλυση Απαιτήσεων(requirement analysis) Εισαγωγή Τι δεδομένα θα αποθηκευτούν, ποιες εφαρμογές

Διαβάστε περισσότερα

Copyright 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley, ΕλληνικήΈκδοση, ίαυλος

Copyright 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley, ΕλληνικήΈκδοση, ίαυλος ιαφάνεια 10-1 Κεφάλαιο 10 Συναρτησιακές Εξαρτήσεις και Κανονικοποίηση για Σχεσιακές Βάσεις εδοµένων Copyright 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley, ΕλληνικήΈκδοση ίαυλος ΠεριεχόµεναΚεφαλαίου

Διαβάστε περισσότερα

Κανονικές Μορφές Σχεδιασµός Σχεσιακών Σχηµάτων

Κανονικές Μορφές Σχεδιασµός Σχεσιακών Σχηµάτων Κανονικές Μορφές 1 Σχεδιασµός Σχεσιακών Σχηµάτων Γενικές Οδηγίες Η Μέθοδος της Αποσύνθεσης Επιθυµητές Ιδιότητες της Αποσύνθεσης Συνένωση Άνευ Απωλειών ιατήρηση Εξαρτήσεων Αποφυγή Επανάληψης Πληροφορίας

Διαβάστε περισσότερα

2. Η πιθανότητα της αριθμήσιμης ένωσης ξένων μεταξύ τους ενδεχομένων είναι το άθροισμα των πιθανοτήτων των ενδεχομένων.

2. Η πιθανότητα της αριθμήσιμης ένωσης ξένων μεταξύ τους ενδεχομένων είναι το άθροισμα των πιθανοτήτων των ενδεχομένων. Ένα μέτρο πιθανότητας πάνω στο δειγματικός χώρο Ω, είναι μία συνάρτηση P ( ) που αντιστοιχεί σε υποσύνολα του Ω, έναν αριθμό στο [ 0, ], με τις εξής ιδιότητες: P ( Ω ) 2 Η πιθανότητα της αριθμήσιμης ένωσης

Διαβάστε περισσότερα

Κανονικές Μορφές. Τι συμβαίνει με το (πρωτεύον) κλειδί και τις συναρτησιακές εξαρτήσεις; Παράδειγμα 1. Παράδειγμα 2

Κανονικές Μορφές. Τι συμβαίνει με το (πρωτεύον) κλειδί και τις συναρτησιακές εξαρτήσεις; Παράδειγμα 1. Παράδειγμα 2 Κανονικές Μορφές: Εισαγωγή Κανονικές Μορφές Στόχος: οσμένου ενός σχήματος, αν είναι «καλό» ή χρειάζεται περαιτέρω διάσπαση. Πως; Κανονικές μορφές. Ξέρουμε ότι αν ένα σχήμα είναι σε κάποια Κανονική Μορφή

Διαβάστε περισσότερα

Εκπαιδευτικό Εργαλείο Κανονικοποίησης

Εκπαιδευτικό Εργαλείο Κανονικοποίησης Εκπαιδευτικό Εργαλείο Κανονικοποίησης Σύντομες οδηγίες χρήσης Εισαγωγή Το πρόγραμμα Εκπαιδευτικό Εργαλείο Κανονικοποίησης αυτοματοποιεί τη διαδικασία της κανονικοποίησης πινάκων σε BCNF μορφή. Ο χρήστης

Διαβάστε περισσότερα

Κανονικοποίηση Σχήµατος. Βάσεις εδοµένων Ευαγγελία Πιτουρά 1

Κανονικοποίηση Σχήµατος. Βάσεις εδοµένων Ευαγγελία Πιτουρά 1 Κανονικοποίηση Σχήµατος Ευαγγελία Πιτουρά 1 Λογικός Σχεδιασµός Σχεσιακών Σχηµάτων - Αποσύνθεση (διάσπαση) καθολικού σχήµατος Επιθυµητές ιδιότητες - διατήρηση εξαρτήσεων (F + = F + ) - όχι απώλειες στη

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 8η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 8η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτής της διάλεξης βασίζονται στο βιβλίο Artificial Intelligence A Modern Approach των S. Russel

Διαβάστε περισσότερα

Κανονικές Μορφές. Συνενώσεις Άνευ Απωλειών. Προσοχή με τις τιμές null στην αποσύνθεση

Κανονικές Μορφές. Συνενώσεις Άνευ Απωλειών. Προσοχή με τις τιμές null στην αποσύνθεση Κανονικές Μορφές Βάσεις Δεδομένων 2009-2010 Ευαγγελία Πιτουρά 1 Συνενώσεις Άνευ Απωλειών Προσοχή με τις τιμές null στην αποσύνθεση Αιωρούμενες πλειάδες (dangling tuples) Παράδειγμα: Εργαζόμενος - Τμήμα

Διαβάστε περισσότερα

Αρχεία και Βάσεις Δεδομένων

Αρχεία και Βάσεις Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αρχεία και Βάσεις Δεδομένων Διάλεξη 7η: Σχεσιακός Λογισμός Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Σχεσιακός Λογισμός Γλώσσα βασισμένη στον Κατηγορηματικό

Διαβάστε περισσότερα

Σχεσιακό Μοντέλο Περιορισμοί Μετατροπή ER σε Σχεσιακό Παράδειγμα.. Εργαστήριο Βάσεων Δεδομένων. Relational Model

Σχεσιακό Μοντέλο Περιορισμοί Μετατροπή ER σε Σχεσιακό Παράδειγμα.. Εργαστήριο Βάσεων Δεδομένων. Relational Model .. Εργαστήριο Βάσεων Δεδομένων Relational Model . Σχεσιακό Μοντέλο (Relational Model) Το σχεσιακό μοντέλο παρουσιάζει μια βάση ως συλλογή από σχέσεις Μια σχέση είναι ένας πίνακας με διακριτό όνομα Κάθε

Διαβάστε περισσότερα

4.2 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ

4.2 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ 4 ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΘΕΩΡΗΜΑ (ΤΑΥΤΟΤΗΤΑ ΤΗΣ ΔΙΑΙΡΕΣΗΣ) Για κάθε ζεύγος πολυωνύμων ( και ( με ( 0 υπάρχουν δυο μοναδικά πολυώνυμα ( και (, τέτοια ώστε : ( ( όπου το ( ή είναι το μηδενικό

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων: Κανόνες Συσχέτισης: Μέρος Β http://delab.csd.auth.gr/~gounaris/courses/dwdm/ gounaris/courses/dwdm/ Ευχαριστίες Οι διαφάνειες του μαθήματος σε γενικές γραμμές

Διαβάστε περισσότερα

Βάσεις Δεδομένων Ευαγγελία Πιτουρά 2. Εννοιολογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων)

Βάσεις Δεδομένων Ευαγγελία Πιτουρά 2. Εννοιολογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων) Σχεσιακή Άλγεβρα Βάσεις Δεδομένων 2009-2010 Ευαγγελία Πιτουρά 1 Εισαγωγή Στα προηγούμενα μαθήματα: Εννοιολογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων) Λογικός Σχεδιασμός

Διαβάστε περισσότερα

2 ο Σύνολο Ασκήσεων. Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1

2 ο Σύνολο Ασκήσεων. Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 2 ο Σύνολο Ασκήσεων Οι βαθμοί θα ανακοινωθούν αύριο μαζί με τους βαθμούς της προγραμματιστικής άσκησης Τα αστεράκια δείχνουν τον εκτιμώμενο βαθμό δυσκολίας (*) εύκολο (**) μέτριο (***) δύσκολο Βάσεις Δεδομένων

Διαβάστε περισσότερα

Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Παναγιώτης Ανδρέου Διάλεξη 20: Κανονικοποίηση και Συναρτησιακές Εξαρτήσεις Ι Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στις έννοιες: Εισαγωγή στην Κανονικοποιήση Άτυπες κατευθύνσεις για Σχεδιασμό

Διαβάστε περισσότερα

Το Σχεσιακό Μοντέλο. Βάσεις Δεδομένων 2014-2015. Ευαγγελία Πιτουρά 1

Το Σχεσιακό Μοντέλο. Βάσεις Δεδομένων 2014-2015. Ευαγγελία Πιτουρά 1 Το Σχεσιακό Μοντέλο Ευαγγελία Πιτουρά 1 Μοντελοποίηση Σχήμα (database schema): η περιγραφή της δομής της πληροφορίας που είναι αποθηκευμένη στη βδ με τη χρήση ενός μοντέλου δεδομένων Μοντέλο Δεδομένων:

Διαβάστε περισσότερα

Κανονικοποίηση. Άτυπες Οδηγίες. Παράδειγµα. Αξιολόγηση Σχεσιακών Σχηµάτων Β. Περιττές Τιµές και Ανωµαλίες Ενηµέρωσης

Κανονικοποίηση. Άτυπες Οδηγίες. Παράδειγµα. Αξιολόγηση Σχεσιακών Σχηµάτων Β. Περιττές Τιµές και Ανωµαλίες Ενηµέρωσης Αξιολόγηση Σχεσιακών Σχηµάτων Β Κανονικοποίηση Παύλος Εφραιµίδης Βάσεις εδοµένων Κανονικοποίηση 1 Πως µπορούµε να κρίνουµε εάν ένα Σχεσιακό Σχήµα είναι καλό ή αποδοτικό ή αν έχει λάθη; Σε γενικές γραµµές

Διαβάστε περισσότερα

Βάσεις δεδομένων. (6 ο μάθημα) Ηρακλής Βαρλάμης

Βάσεις δεδομένων. (6 ο μάθημα) Ηρακλής Βαρλάμης Βάσεις δεδομένων (6 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr (Συνέχεια) ΣΧΕΣΙΑΚΗ ΑΛΓΕΒΡΑ 3/4/2014 2 Περιεχόμενα Συνέχεια στη Σχεσιακή άλγεβρα Συνένωση Θήτα Ισότητας Φυσική Διαίρεση Σύνθετες λειτουργίες

Διαβάστε περισσότερα

Σχεσιακή Άλγεβρα. Βάσεις Δεδομένων : Σχεσιακή Άλγεβρα 1

Σχεσιακή Άλγεβρα. Βάσεις Δεδομένων : Σχεσιακή Άλγεβρα 1 Εισαγωγή Στα προηγούμενα μαθήματα: Εννοιολογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων) Λογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Σχεσιακού Μοντέλου) Αντιστοιχία

Διαβάστε περισσότερα

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2)

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2) Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (2) Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Κανονικές Εκφράσεις (1.3) Τυπικός Ορισμός Ισοδυναμία με κανονικές γλώσσες Μη Κανονικές

Διαβάστε περισσότερα

Θέματα ανακεφαλαίωσης

Θέματα ανακεφαλαίωσης Θέματα ανακεφαλαίωσης 13 Ιουνίου 2013 1. Ορίστε την έννοια σχήμα σχέσης και αναλύστε τα στοιχεία του ορισμού σας. Υποθέστε ότι θέλουμε να αποθηκεύσουμε πληροφορίες για τα μέλη ενός πεζοπορικού συλλόγου

Διαβάστε περισσότερα

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Εισαγωγή στην Επεξεργασία Ερωτήσεων 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα 2 Βήματα Επεξεργασίας Τα βασικά βήματα στην επεξεργασία

Διαβάστε περισσότερα

Ψευδοκώδικας. November 7, 2011

Ψευδοκώδικας. November 7, 2011 Ψευδοκώδικας November 7, 2011 Οι γλώσσες τύπου ψευδοκώδικα είναι ένας τρόπος περιγραφής αλγορίθμων. Δεν υπάρχει κανένας τυπικός ορισμός της έννοιας του ψευδοκώδικα όμως είναι κοινός τόπος ότι οποιαδήποτε

Διαβάστε περισσότερα

Κανονικοποίηση Σχήµατος

Κανονικοποίηση Σχήµατος Κανονικοποίηση Σχήµατος Ευαγγελία Πιτουρά 1 Λογικός Σχεδιασµός Σχεσιακών Σχηµάτων - Αποσύνθεση(διάσπαση) καθολικού σχήματος Επιθυμητές ιδιότητες -διατήρηση εξαρτήσεων (F + = F + ) - όχι απώλειες στη συνένωση(τομή

Διαβάστε περισσότερα

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων Ενότητα 12: Κανόνες Συσχέτισης Μέρος B Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης

Διαβάστε περισσότερα

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις

Ασκήσεις3 Διαγωνίσιμες Γραμμικές Απεικονίσεις Ασκήσεις 5 Βασικά σημεία Ιδιότητες ιδιόχωρων: Έστω,, Ισχύουν τα εξής Ασκήσεις Διαγωνίσιμες Γραμμικές Απεικονίσεις κάποιες διακεκριμένες ιδιοτιμές της γραμμικής απεικόνισης : V V, όπου o Αν v v 0, όπου

Διαβάστε περισσότερα

Βάσεις Δεδομένων. Ενότητα 5: ΚΑΝΟΝΙΚΟΠΟΙΗΣΗ ΒΑΣΗΣ ΔΕΔΟΜΕΝΩΝ. Πασχαλίδης Δημοσθένης Τμήμα Ιερατικών σπουδών

Βάσεις Δεδομένων. Ενότητα 5: ΚΑΝΟΝΙΚΟΠΟΙΗΣΗ ΒΑΣΗΣ ΔΕΔΟΜΕΝΩΝ. Πασχαλίδης Δημοσθένης Τμήμα Ιερατικών σπουδών Βάσεις Δεδομένων Ενότητα 5: ΚΑΝΟΝΙΚΟΠΟΙΗΣΗ ΒΑΣΗΣ ΔΕΔΟΜΕΝΩΝ Πασχαλίδης Δημοσθένης Τμήμα Ιερατικών σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

1 Arq thc Majhmatik c Epagwg c

1 Arq thc Majhmatik c Epagwg c Μαθηματικός Λογισμός Ι Φθινόπωρο 0 Σημειώσεις 7-0- Μ. Ζαζάνης Arq thc Majhati c Epagwg c Θα συμβολίζουμε το σύνολο των ϕυσικών αριθμών, {,,,...} με το σύμβολο N. Το σύνολο των ϕυσικών αριθμών, συμπεριλαμβανομένου

Διαβάστε περισσότερα

Σχεδιασµός µιας Β. Ένας απλός τρόπος αναπαράστασης δεδοµένων: ένας διδιάστατος πίνακας που λέγεται σχέση Γνωρίσµατα

Σχεδιασµός µιας Β. Ένας απλός τρόπος αναπαράστασης δεδοµένων: ένας διδιάστατος πίνακας που λέγεται σχέση Γνωρίσµατα Εισαγωγή Σχεσιακό Μοντέλο Σχεδιασµός µιας Β : Βήµατα Ανάλυση Απαιτήσεων Τι δεδοµένα θα αποθηκευτούν, ποιες εφαρµογές θα κτιστούν πάνω στα δεδοµένα, ποιες λειτουργίες είναι συχνές Εννοιολογικός Σχεδιασµός

Διαβάστε περισσότερα

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0.

b. Για κάθε θετικό ακέραιο m και για κάθε A. , υπάρχουν άπειρα το πλήθος πολυώνυμα ( x) [ x] m και ( A) 0. Ασκήσεις4 46 Ασκήσεις 4 Τριγωνίσιμες γραμμικές απεικονίσεις, Θεώρημα των Cayley-Hamilton Βασικά σημεία Ορισμός τριγωνίσιμου πίνακα, ορισμός τριγωνίσιμης γραμμικής απεικόνισης Κριτήριο τριγωνισιμότητας

Διαβάστε περισσότερα

Lecture 22: Functional Dependencies and Normalization

Lecture 22: Functional Dependencies and Normalization Department of Computer Science University of Cyprus EPL342 Databases Lecture 22: Functional Dependencies and Normalization Functional Dependencies (Chapter 10.2, Elmasri-Navathe 5ED) ιδάσκων: Παναγιώτης

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #7: Ελάχιστα Επικαλυπτικά Δένδρα, Αλγόριθμος Kruskal, Δομές Union-Find Άσκηση # 0 5 0 0 0

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Δημήτρης Πλεξουσάκης 3ο μέρος σημειώσεων: Μέθοδος της Επίλυσης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια

Διαβάστε περισσότερα

Βάσεις Δεδομένων 2010-2011 Ευαγγελία Πιτουρά 2. Εννοιολογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων)

Βάσεις Δεδομένων 2010-2011 Ευαγγελία Πιτουρά 2. Εννοιολογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων) Σχεσιακή Άλγεβρα Βάσεις Δεδομένων 2010-2011 Ευαγγελία Πιτουρά 1 Εισαγωγή Στα προηγούμενα μαθήματα: Εννοιολογικός Σχεδιασμός Βάσεων εδομένων (με χρήση του Μοντέλου Οντοτήτων/Συσχετίσεων) Λογικός Σχεδιασμός

Διαβάστε περισσότερα

Κανονικοποίηση βάσεων δεδομένων 1 η, 2 η και 3 η κανονική μορφή Αθανάσιος Σταυρακούδης http://stavrakoudis.econ.uoi.gr Άνοιξη 2014 Περιεχόμενα 1 Πρώτη κανονική μορφή 2 Συναρτησιακές εξαρτήσεις 3 Δεύτερη

Διαβάστε περισσότερα

antzoulatos@upatras.gr

antzoulatos@upatras.gr Κανονικοποίηση για Σχεσιακές Βάσεις Δεδομένων Αντζουλάτος Γεράσιμος antzoulatos@upatras.gr Τμήμα Εφαρμογών Πληροφορικής στην Διοίκηση και Οικονομία ΤΕΙ Πατρών - Παράρτημα Αμαλιάδας 10 Ιανουαρίου 2013 Περιεχομενα

Διαβάστε περισσότερα

Κεφάλαιο 8. ΣΧΕ ΙΑΣΜΟΣ ΒΑΣΕΩΝ Ε ΟΜΕΝΩΝ ΚΑΙ ΚΑΝΟΝΙΚΟΠΟΙΗΣΗ (Normalization) Ι.Β Σχεδιασµός Σχεσιακών Β και Κανονικοποίηση Σελίδα 4.1

Κεφάλαιο 8. ΣΧΕ ΙΑΣΜΟΣ ΒΑΣΕΩΝ Ε ΟΜΕΝΩΝ ΚΑΙ ΚΑΝΟΝΙΚΟΠΟΙΗΣΗ (Normalization) Ι.Β Σχεδιασµός Σχεσιακών Β και Κανονικοποίηση Σελίδα 4.1 Κεφάλαιο 8 ΣΧΕ ΙΑΣΜΟΣ ΒΑΣΕΩΝ Ε ΟΜΕΝΩΝ ΚΑΙ ΚΑΝΟΝΙΚΟΠΟΙΗΣΗ (Normalization) Ι.Β Σχεδιασµός Σχεσιακών Β και Κανονικοποίηση Σελίδα 4.1 Σύνοψη Λογικός Σχεδιασµός Σχεσιακών Βάσεων εδοµένων και Κανονικοποίηση

Διαβάστε περισσότερα

Λύση Για να είναι αντιστρέψιμος θα πρέπει η ορίζουσα του πίνακα να είναι διάφορη του μηδενός =

Λύση Για να είναι αντιστρέψιμος θα πρέπει η ορίζουσα του πίνακα να είναι διάφορη του μηδενός = 7. Άσκηση 1 2 1 Εστω ο πίνακας A = 1 3 2. Να δειχθεί ότι ο πίνακας είναι αντιστρέψιμοςκαιστησυνέχειαναυπολογιστείοαντίστροφος. 1 0 1 Για να είναι αντιστρέψιμος θα πρέπει η ορίζουσα του πίνακα να είναι

Διαβάστε περισσότερα