ΥΝΑΜΙΚΗ ΤΗΣ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 18/11/2011 ΚΕΦ. 10

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΥΝΑΜΙΚΗ ΤΗΣ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 18/11/2011 ΚΕΦ. 10"

Transcript

1 ΚΕΦΑΛΑΙΟ 10 ΥΝΑΜΙΚΗ ΤΗΣ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 1

2 ΕΞΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ (ΕΠΑΝΑΛΗΨΗ) Μέτρο εξωτερικού γινομένου 2 C A B C ABsin διανυσμάτων A και B Ιδιότητες εξωτερικού γινομένου A B B A εν είναι αντιμεταθετικό. A// B AB0 Παράλληλα διανύσματα έχουν A BC AB AC Επιμεριστικό. d db da Παραγώγιση A B A B dt dt dt 2

3 ΕΞΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ (ΕΠΑΝΑΛΗΨΗ) Για δεξιόστροφο σύστημα: Για αριστερόστροφο σύστημα : iˆ ˆj kˆ iˆ ˆj kˆ ˆj kˆ iˆ ˆj kˆ iˆ k ˆiˆ ˆj k ˆiˆˆj 3

4 ΡΟΠΗ Εφαρμογή δύναμης σε σώμα του δίνει επιτάχυνση. Τι προκαλεί την γωνιακή επιτάχυνση σε σώμα; ύναμη πάλι προκαλεί την γωνιακή επιτάχυνση. Η ροπή της δύναμης είναι το αίτιο της γωνιακής επιτάχυνσης και συνεπώς της περιστροφικής κίνησης. Πότε Μια δύναμη προκαλεί και ροπή; Αυτό το σώμα είναι στερεωμένο έτσι ώστε να μπορεί να περιστραφεί περί άξονα O, στο επίπεδο. Ενεργούν 3 δυνάμεις. Η δυνατότητα καθεμιάς να προκαλέσει περιστροφή εξαρτάται από το μέτρο της και από την απόσταση (μοχλοβραχίονας) του φορέα της από το σημείο O. 4

5 ΡΟΠΗ Η Ροπή είναι διανυσματική ποσότητα. Το μέτρο της ροπής που προκαλείται από μια δύναμη ορίζεται από: Fl rf sin F tan r Όπου r = απόσταση μεταξύ του σημείου στερέωσης και του σημείου εφαρμογής της δύναμης. l = r sin() = μοχλοβραχίονας = απόσταση του σημείου στερέωσης από τον φορέα της δύναμης. F = μέτρο της δύναμης. = η γωνία μεταξύ της του r και της δύναμης. F tan = F sin() = εφαπτομενική συνιστώσα της δύναμης. 5

6 ΡΟΠΗ Γενικότερος ορισμός της ροπής απαιτεί τη χρήση του εξωτερικού γινομένου διανυσμάτων. Όταν μια δύναμη εφαρμόζεται σε ένα σημείο με διάνυσμα θέσης r ως προς σημείο O, η ροπή που επάγει η δύναμη αυτή ως προς αυτό το σημείο ορίζεται από: Ιδιότητες της ροπής r F Μονάδες της ροπής N m. Ίδια με την μονάδα ενέργειας Joule όμως πάντοτε εκφράζεται ως N m. Μπορεί κάποιος να χρησιμοποιεί τη σύμβαση ώστε να θεωρεί ως θετικές τις ροπές που επιφέρουν στροφή αντίθετη προς του δείκτες (δεξιόστροφο) του ρολογιού ενώ αρνητικές εκείνες που επιφέρουν στροφή κατά τους δείκτες ρολογιού. Η ροπή δύναμης πάντοτε ορίζεται ως προς σημείο. 6

7 ΡΟΠΗ ΚΑΙ ΓΩΝΙΑΚΗ ΕΠΙΤΑΧΥΝΣΗ ΣΕ ΣΤΕΡΕΟ ΣΩΜΑ Θεωρούμε στερεό σώμα περιστρεφόμενο ως προς άξονα. Το στερεό είναι μια συλλογή από επιμέρους σωματίδια σε σταθερές αποστάσεις μεταξύ τους και που όλα φυσικά υπακούουν τον 2 ο νόμο του Νεύτωνα. Άξονας περιστροφής είναι ο Z-άξονας. ά m 1 είναι η μάζα του σωματιδίου και r 1 η απόσταση του από τον άξονα περιστροφής. Η συνολική δύναμη που ενεργεί στο σωματίδιο μπορεί να αναλυθεί σε 3 συνιστώσες τις: F 1,rad ακτινική, F 1tan 1,tan εφαπτομενική και την F 1 κατά αάτον άξονα περιστροφής. Οι F 1,rad και F 1 δεν έχουν ροπή ως προς τον άξονα. Ο 2 ος Νόμος για το σωματίδιο είναι: F 1,tan ma 1 1,tan και επειδή a 1,tan r 1 r F1,tan mr 1 1 όπου η γωνιακή επιτάχυνση 7

8 ΡΟΠΗ ΚΑΙ ΓΩΝΙΑΚΗ ΕΠΙΤΑΧΥΝΣΗ ΣΕ ΣΤΕΡΕΟ ΣΩΜΑ Η ροπή της F 1,tan είναι και η ροπή της συνολικής δύναμης που ασκείται στο σωματίδιο 1: F r mr I 2 1 1,tan Αθροίζοντας για όλα τα σωματίδια που απαρτίζουν το σώμα: 2 i mr i i I i i i i I 2 ος Ν Νεύτωνα για περιστροφική κίνηση στερεού Ισχύει για στερεά σώματα! Τα σωματίδια σε μη στερεά δεν έχουν την ίδια γωνιακή επιτάχυνση π.χ. ρευστό. μετράται σε rad/s 2 Η συνολική ροπή σε κάθε σωματίδιο οφείλεται στην συνολκή δύναμη που ασκείται σε αυτό, το οποίο είναι το διανυσματικό άθροισμα των εξωτερικών και εσωτερικών δυνάμεων. 8

9 ΡΟΠΗ ΚΑΙ ΓΩΝΙΑΚΗ ΕΠΙΤΑΧΥΝΣΗ ΣΕ ΣΤΕΡΕΟ ΣΩΜΑ Από τον 3 ο Νόμο του Νεύτωνα, οι εσωτερικές δυνάμεις μεταξύ των σωματιδίων του στερεού είναι ίσες και αντίθετες. Ενεργούν δε κατά μήκος της γραμμής που ενώνει τα σωματίδια, άρα έχουν τον ίδιο φορέα, οι αποστάσεις από τον άξονα περιστροφής είναι ίδιες, οπότε οι ροπές κάθε τέτοιου ζεύγους είναι ίσες και αντίθετες. ΜΟΝΟ εξωτερικές ροπές (ροπές εξωτερικών δυνάμεων καθορίζουν την περιστροφή στερεού! 9

10 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΓΥΡΩ ΑΠΟ ΚΙΝΟΥΜΕΝΟ ΑΞΟΝΑ Επέκταση σε συνδυασμένη κίνηση μεταφορική και περιστροφική. Ο άξονας περιστροφής κινείται. Κάθε δυνατή κίνηση στερεού μπορεί να παρασταθεί ως συνδυασμός μεταφορικής κίνησης του CM και περιστροφικής κίνησης ως προς άξονα που περνά από το CM. Αυτό εφαρμόζεται ακόμα και όταν το CM επιταχύνεται. Μπορούμε να αντιμετωπίζουμε τη μεταφορική κίνηση του CM και την περιστροφή γύρω από άξονα ξεχωριστά αλλά στο τέλος αυτές οι κινήσεις πρέπει να σχετιστούν. 10

11 ΥΝΑΜΙΚΗ ΤΗΣ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ Η Κινητική ενέργεια σώματος που κυλίεται χωρίς ολίσθηση δίνεται από το άθροισμα της περιστροφικής κινητικής ενέργειας γύρω από το CM συν την μεταφορική κινητική ενέργεια του CM: 1 1 K M I cm cm Κινητική ενέργεια στερεού σώματος με μεταφορική και περιστροφική κίνηση ΑΠΟ ΕΙΞΗ ΑΥΤΉΣ Για σωματίδιο του σώματος η θέση σε αδρανειακό σύστημα θα δίνεται από: r r r R i c i i c i i c Ki mi i mic mr i k Mcm Icm Αν μεταβάλλεται το ύψος του σώματος καθώς κινείται, πρέπει να προστεθεί και το έργο του βάρους δηλ. η βαρυτική δυναμική ενέργεια. Αυτή είναι: U Mgy cm 11

12 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΓΥΡΩ ΑΠΟ ΚΙΝΟΥΜΕΝΟ ΑΞΟΝΑ Έστω σώμα κυκλικής διατομής ακτίνας R περιστρέφεται χωρίς ολίσθηση τότε το διάστημα που διανύει κατά μήκος της επιφάνειας είναι το ίδιο με το μήκος του τόξου πάνω στο αντικείμενο που ήρθε σε επαφή με την επιφάνεια (π.χ. χ s = R). Το ίδιο διάστημα διανύει και το CM. ds d s R cm R R dt dt cm R Συνθήκη κύλισης χωρίς ολίσθηση 12

13 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΓΥΡΩ ΑΠΟ ΚΙΝΟΥΜΕΝΟ ΑΞΟΝΑ Εξετάζουμε την κίνηση σε σύστημα αναφοράς αδρανειακό που επιφάνεια κύλισης είναι σε ηρεμία. Κίνηση χωρίς ολίσθηση σημείο επαφής είναι στιγμιαία ακίνητο. Άρα η ταχύτητα του σημείου επαφής ως προς το CM πρέπει να έχει το ίδιο μέτρο αλλά αντίθετη φορά ωε προς την ταχύτητα του CM. Αυτό ικανοποιείται όταν v cm =R. Η ταχύτητα ενός σημείου του τροχού είναι το διανυσματικό άθροισμα της ταχύτητας του CM και της ταχύτητας του σημείου αυτού ως προς το CM. Σημείο επαφής: στιγμιαία σε ηρεμία. Σημείο 3 στην κορυφή κινείται προς τα εμπρός με διπλάσια ταχύτητα από εκείνη του CM. Σημεία 2 και 4 έχουν ταχύτητες που διευθύνονται στις 45 ο ως προς την οριζόντια γραμμή. 13

14 ΥΝΑΜΙΚΗ ΤΟΥ ΣΥΝ ΥΑΣΜΟΥ ΜΕΤΑΦΟΡΙΚΗΣ- ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ Στην περίπτωση αυτή η κίνηση του σώματος θα διέπεται ταυτόχρονα και από τις δυο μορφές του 2 ου Νόμου του Νεύτωνα: Fext Ma Μεταφορική cm I cm Περιστροφική Για να ισχύουν αυτές οι εξισώσεις πρέπει να ικανοποιούνται οι εξής δυο συνθήκες: 1. Ο άξονας περιστροφής μέσω του CM πρέπει να είναι άξονας συμμετρίας 2. Ο άξονας περιστροφής δεν πρέπει να αλλάζει διεύθυνση 14

15 ΥΝΑΜΙΚΗ ΤΟΥ ΣΥΝ ΥΑΣΜΟΥ ΜΕΤΑΦΟΡΙΚΗΣ- ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ ΠΑΡΑ ΕΙΓΜΑ: Επιτάχυνση κυλιομένης σφαίρας: F ext Ma Μεταφορική I cm cm Περιστροφική F Mgsin f Ma (1) x fr I CM (2) ICM acm Επειδή: acm R,(2) f 2 R ICM acm g sin (1) Mg sin Ma 2 CM acm R ICM 1 Στην περίπτωση σφαίρας: 2 MR CM 5 2 a CM gsin ενώ f Mg sin

16 ΤΡΙΒΗ ΚΥΛΙΣΗΣ Στο προηγούμενο παράδειγμα είχαμε την περίπτωση (α) και ο τροχός και η επιφάνεια θεωρήθηκαν απολύτως στερεά: 1 ον ) Η δύναμη της τριβής δεν παράγει έργο (σημείο επαφής έχει ταχύτητα μηδέν). 2 ον ) η κάθετη δύναμη περνά από το κέντρο συνεπώς δεν δημιουργεί ροπή. Στα πραγματικά στερεά έχουμε παραμορφώσεις. Περίπτωση (β): 1 ον ) η κάθετη δύναμη δημιουργεί ροπή, τριβή κύλισης, που αντιτίθεται στη περιστροφή και 2 ον ) Η δύναμη της τριβής παράγει έργο. 16

17 ΕΡΓΟ ΚΑΙ ΙΣΧΥΣ ΣΤΗΝ ΠΕΡΙΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ Έστω μια εφαπτομενική δύναμη F tan που ασκείται σε σημείο της περιφέρειας περιστρεφόμενου δίσκου. Το έργο που παράγεται κατά την μετατόπιση κατά ds είναι: dw F ds, όμως ds Rd dw F Rd αλλά tan F R, συνεπώς: dw d tan Το έργο που παράγεται από την ροπή σε αντικείμενο που υφίσταται μια γωνιακή μετατόπιση από 1 στο 2 δίνεται από: Σημ.: Παρατηρείστε την ομοιομορφία των εκφράσεων έργου δύναμης (W=FS) και ροπής. W 2 d 1 Έργο ροπής Εάν η ροπή είναι σταθερή τότε το έργο δίνεται από: tan W ( ) ( 2 1 Έργο σταθερής ροπής 17

18 ΕΡΓΟ ΚΑΙ ΙΣΧΥΣ ΣΤΗΝ ΠΕΡΙΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ Θεώρημα Έργου Ενέργειας για την περιστροφική κίνηση: W tot 2 1 I d 1 I I1 2 Η μεταβολή της κινητικής ενέργειας στερεού ισούται με το έργο που παράγουν οι εφαρμοζόμενες εξωτερικές δυνάμεις στο σώμα. Ο ρυθμός παραγωγής ή κατανάλωσης έργου είναι η ισχύς P 18

19 ΣΤΡΟΦΟΡΜΗ ΣΩΜΑΤΙΔΙΟΥ Ορισμός: Στροφορμή L σωματιδίου ως προς σημείο O είναι το εξωτερικό γινόμενο του διανύσματος θέσης r ως προς το σημείο O και της γραμμικής ορμής του σωματιδίου. L r p r m Στροφορμή Σωματιδίου Η στροφορμή εξαρτάται από την εκλογή του O, αφού εμπεριέχει το διάνυσμα θέσης ως προς την αρχή. Μονάδα στροφορμής: kg m 2 /s 19

20 ΣΤΡΟΦΟΡΜΗ ΣΥΣΤΥΜΑΤΟΣ ΣΩΜΑΤΙΔΙΩΝ Η στροφορμή ενός σώματος ή συστήματος σωματιδίων ως προ άξονα θα είναι το διανυσματικό άθροισμα των στροφορμών όλων των σωματιδίων που το απαρτίζουν. Το i σωματίδιο κινείται σε κυκλική τροχιά κάθετη προς τον άξονα περιστροφής. Li ri pi rim i L L r p i i i i Πως εκφράζεται η στροφορμή ενός συστήματος σωματιδίων και κατ επέκταση ενός σώματος; Όπως στην περίπτωση της ορμής ας αρχίσουμε από το σύστημα CM και από το απλούστερο σύστημα 2 υλικών σημείων 20 i

21 ΣΤΡΟΦΟΡΜΗ ΣΥΣΤΥΜΑΤΟΣ ΣΩΜΑΤΙΔΙΩΝ Μελετούμε σύστημα 2 υλικών r σημείων. Έκφραση της συνολικής CM 2 m 2 r στροφορμής τους ως προς 1 αδρανειακό παρατηρητή Ο, συναρτήσει της στροφορμής ως r r προς το CM. r c 2 c 1 Πρώτα σημειώνουμε τις Ο y σχέσεις των διανυσμάτων θέσης και ταχύτητας μεταξύ των 2 συστημάτων αναφοράς. m 1 r x r 1 r1 rc, r2 r2 rc 1 1 c, 2 2 c m 11m 1 1m 1c, m 22m 2 2m 2c p pm, p p m c c 21

22 ΣΤΡΟΦΟΡΜΗ ΣΥΣΤΥΜΑΤΟΣ ΣΩΜΑΤΙΔΙΩΝ r CM 2 m r 2 1 m 1 r r 2 r c 2 c 1 x 1 Ο y L L1L2 r1 p1r2 p2 r ( pm ) r ( p m ) c Λαμβάνοντας υπ όψιν ότι: L ( r p ) ( r p ) c Spin ή εσωτερική στροφορμή Εκτελούμε τις πράξεις και έχουμε: L r 1 p1mr 1 1c r2 p2 m2r2 c ( r 1rc) p 1mr 1 1c ( r 2 rc) p 2 m2r2c ( r 1 p 1) ( rc p 1) ( r 2 p 2) ( rc p 2 ) mr 1 1c m2r2 c ( r p) ( r p) r ( p p) ( mr mr ) c c c 22

23 x CM Ο ΣΤΡΟΦΟΡΜΗ ΣΥΣΤΥΜΑΤΟΣ ΣΩΜΑΤΙΔΙΩΝ Μ=m 1 +m 2 c r c P M Στροφορμή συστήματος ως προς c y c Παρατηρούμε ότι: r ( p p) 0 c 1 2 Οπότε η τελευταία εξίσωση γίνεται: L L r M c c c L L r P c c c σημείο ισούται με την στροφορμή του συστήματος ως προς το CM συν τη στροφορμή ενός σώματος ως προς το σημείο που βρίσκεται στο CM με μάζα αυτή του συστήματος και με ταχύτητα την ταχύτητα του CM. 23

24 ΣΧΕΣΗ ΣΤΡΟΦΟΡΜΗΣ ΡΟΠΗΣ ΣΩΜΑΤΙΔΙΟΥ Για σωματίδιο που υπό την επίδραση συνολικής δύναμης F dl d ( r p ) dr dp p r ( p) ( r p) dt dt dt dt όμως ο όρος p m 0. Συνεπώς: dl dt rma rf dl dt εύτερος νόμος του Νεύτωνα για την περιστροφική κίνηση Ρυθμός μεταβολής της στροφορμής L ενός σωματιδίου ισούται με την ροπή της συνολικής δύναμης που δρα επάνω του 24

25 ΣΤΡΟΦΟΡΜΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ Στερεό σώμα περιστρέφεται γύρω από τον Z-άξονα με γωνιακή ταχύτητα Θεωρούμε λεπτό επίπεδο φύλλο που βρίσκεται στο XY επίπεδο. Κάθε σωματίδιο του φύλου κινείται σε κύκλο με κέντρο το στην αρχή O, και η ταχύτητα του v i είναι κάθε στιγμή στο διάνυσμα θέσης r i r Οπότε, =90, και η ταχύτητα του σωματιδίου είναι i Το διάνυσμα της στροφορμής L i υπολογίζεται από το τριπλό εξωτερικό γινόμενο: L r m mr ( r) i i i i i i i i 25

26 Υπολογισμός L i ΣΤΡΟΦΟΡΜΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ Θεωρούμε το σύστημα αναφορά του σχήματος. L r m mr ( r ), r ( x, y,0), (0,0, 0 ) i i i i i i i i i i iˆ ˆj kˆ ( r ) 0 0 iy jx i i i xi yi 0 iˆ ˆ j kˆ mr( r) m x y 0 m( x y ) kˆm r kˆ i i i i i i i i i i i y i x i 0 Η ολική στροφορμή του φύλλου είναι το άθροισμα των L i των σωματιδίων: 2 i i i L L mr I 26

27 ΣΤΡΟΦΟΡΜΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ Προεκτείνουμε τη συζήτηση και για σημεία εκτός του επιπέδου XY, τα διανύσματα θέσης έχουν και Z συνιστώσα. L r m mr ( r), r ( x, y, ), (0,0, ) i i i i i i i i i i i iˆ ˆj kˆ ( r) 0 0 iy jx i i i x y i i i iˆ ˆj kˆ mr i i ( ri) mi xi yi i y x m ( ix ˆ ˆjy ) m ( x y ) k ˆ i i i i i i i Για σώμα που ο Z-άξονας είναι άξονας συμμετρίας τότε ο πρώτος όρος έχει και τον αντίθετο του και αθροίζετε στο μηδέν οπότε: i i L I Στροφορμή στερεού για περιστροφή γύρω από άξονα συμμετρίας 2 2 ˆ 2 2 L ( m ( ix ˆ ˆjy ) m ( x y ) k) m ( x y ) k ˆ ) I i i i i i i i i i i i 27

28 ΣΤΡΟΦΟΡΜΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ 28

29 ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΡΟΠΗ Για κάθε σύστημα σωματιδίων (στερεού ή μη), ο ρυθμός μεταβολής της συνολικής στροφορμής ισούται με το άθροισμα των ροπών όλων των δυνάμεων που ενεργούν σε όλα τα σωματίδια. Οι ροπές των εσωτερικών δυνάμεων αλληλοαναιρούνται λ εάν αυτές οι δυνάμεις δρουν πάνω στις γραμμές που ενώνουν ανά δυο τα σωματίδια, συνεπώς το άθροισμα περιλαμβάνει μόνο τις ροπές των εξωτερικών δυνάμεων: dl dt Για κάθε σύστημα σωματιδίων Εάν το σύστημα των σωματιδίων είναι στερεό σώμα περιστρεφόμενο γύρω από άξονα συμμετρίας (άξονας-z), τότε L =I και το I είναι σταθερό. Εάν ο άξονας είναι σταθερός στο χώρο, τότε τα διανύσματα L και αλλάζουν μόνο κατά μέτρο, όχι κατά διεύθυνση. dl dt Id dt I Εάν το σώμα δεν είναι στερεό, η ροπή αδράνειας I μπορεί να αλλάζει, οπότε το L αλλάζει ακόμη και αν το είναι σταθερό. 29

30 ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΡΟΠΗ Εάν ο άξονας περιστροφής δεν είναι άξονας συμμετρίας του σώματος η στροφορμή L, δεν έχει γενικά την διεύθυνση του άξονα περιστροφής. Ακόμη και αν το είναι σταθερό, η διεύθυνση της L αλλάζει και για αυτό απαιτείται ροπή για να διατηρηθεί η περιστροφή. Εάν ο τροχός αυτοκινήτου δεν είναι ζυγοσταθμισμένος, αυτή η ροπή παρέχεται από την τριβή στο ρουλεμάν, η οποία προκαλεί την σταδιακή φθορά τους. Ζυγοστάθμιση τροχού σημαίνει κατανομή της μάζας ώστε ο άξονας περιστροφής να συμπέσει με άξονα συμμετρίας, τότε η L κατευθύνεται κατά μήκος του άξονα περιστροφής, και δεν απαιτείται ροπή για διατηρεί την περιστροφή του τροχού. 30

31 ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ Όταν η συνολική εξωτερική ροπή που ενεργεί σε σύστημα είναι μηδέν τότε: Η ΣΥΝΟΛΙΚΗ ΣΤΡΟΦΟΡΜΗ ΕΊΝΑΙ ΣΤΑΘΕΡΗ ( ΙΑΤΗΡΕΙΤΑΙ) dl 0, L. dt Αρχή ιατήρησης Στροφορµής Αυτή η αρχή είναι ένας ΠΑΓΚΟΣΜΙΟΣ ΝΟΜΟΣ διατήρησης, ΙΣΧΥΕΙ για ΟΛΕΣ ΤΙΣ ΚΛΙΜΑΚΕΣ από την πυρηνική την ατομική ως την γαλαξιακή κλίμακα: Υποθέστε ότι κάποιος περιστρέφεται ως προς κατακόρυφο άξονα συμμετρίας που περνά από το CM του ενώ έχει σε έκταση τα χέρια του με γωνιακή ταχύτητα ω 1. Η ροπή αδράνειας του σε αυτή την στάση είναι I 1 κάποια στιγμή συμπτύσσει τα χέρια οπότε μικραίνει η ροπή αδράνειας σε I 2. Εξωτερική δύναμη μόνο το βάρος που δεν παράγει ροπή: I1 2 L I 11 I 2 2 I

32 ΠΡΟΤΕΙΝΟΜΕΝΑ ΠΡΟΒΛΗΜΑΤΑ Βιβλίο Πανεπιστημιακή Φυσική Young et. al , 10.80, 10.82, 10.83, 10.87, 10.94,

Κεφάλαιο M11. Στροφορµή

Κεφάλαιο M11. Στροφορµή Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την

Διαβάστε περισσότερα

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 10 Περιστροφική Κίνηση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 10 Περιστροφική Κίνηση Περιεχόµενα Κεφαλαίου 10 Γωνιακές Ποσότητες Διανυσµατικός Χαρακτήρας των Γωνιακών Ποσοτήτων Σταθερή γωνιακή Επιτάχυνση Ροπή Δυναµική της Περιστροφικής Κίνησης, Ροπή και

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/2011 ΚΕΦ. 9

ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/2011 ΚΕΦ. 9 ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/011 ΚΕΦ. 9 1 ΓΩΝΙΑΚΗ ΚΙΝΗΣΗ: ΟΡΙΣΜΟΙ Περιστροφική κινηματική: περιγράφει την περιστροφική κίνηση. Στερεό Σώμα: Ιδανικό μοντέλο σώματος που έχει τελείως ορισμένα

Διαβάστε περισσότερα

Α. Ροπή δύναµης ως προς άξονα περιστροφής

Α. Ροπή δύναµης ως προς άξονα περιστροφής Μηχανική στερεού σώµατος, Ροπή ΡΟΠΗ ΔΥΝΑΜΗΣ Α. Ροπή δύναµης ως προς άξονα περιστροφής Έστω ένα στερεό που δέχεται στο άκρο F Α δύναµη F όπως στο σχήµα. Στο Ο διέρχεται άξονας περιστροφής κάθετος στο στερεό

Διαβάστε περισσότερα

Κεφάλαιο 6α. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα

Κεφάλαιο 6α. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Κεφάλαιο 6α Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Στερεό (ή άκαμπτο) σώμα Τα μοντέλα ανάλυσης που παρουσιάσαμε μέχρι τώρα δεν μπορούν να χρησιμοποιηθούν για την ανάλυση όλων των κινήσεων. Μπορούμε

Διαβάστε περισσότερα

12 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Αρχή διατήρησης στροφορμής

12 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Αρχή διατήρησης στροφορμής 1 η Εβδομάδα Δυναμική Περιστροφικής κίνησης Αρχή διατήρησης στροφορμής Βασικές εξισώσεις Στροφορμή υλικού σημείου μάζας m ως προς σημείο Ο. L = r p = m( r υ) Στροφορμή στερεού σώματος που περιστρέφεται

Διαβάστε περισσότερα

ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ

ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ Σε όλες τις κινήσεις που μελετούσαμε μέχρι τώρα, προκειμένου να απλοποιηθεί η μελέτη τους, θεωρούσαμε τα σώματα ως υλικά σημεία. Το υλικό σημείο ορίζεται ως σώμα που έχει

Διαβάστε περισσότερα

Κεφάλαιο 11 Στροφορµή

Κεφάλαιο 11 Στροφορµή Κεφάλαιο 11 Στροφορµή Περιεχόµενα Κεφαλαίου 11 Στροφορµή Περιστροφή Αντικειµένων πέριξ σταθερού άξονα Το Εξωτερικό γινόµενο-η ροπή ως διάνυσµα Στροφορµή Σωµατιδίου Στροφορµή και Ροπή για Σύστηµα Σωµατιδίων

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 04 Εφαρμογές Νόμων του Νεύτωνα ΦΥΣ102 1 Ισορροπία υλικού σημείου και Δεύτερος νομός

Διαβάστε περισσότερα

Κέντρο Μάζας - Παράδειγμα

Κέντρο Μάζας - Παράδειγμα Κέντρο Μάζας - Παράδειγμα ΦΥΣ 131 - Διαλ.1 1 Ο Ρωμαίο (m R =77kg) διασκεδάζει την Ιουλιέτα (m I =55kg) παίζοντας την κιθάρα του καθισμένος στην πρύμνη της βάρκας τους (μήκους.7 m) που είναι ακίνητη στα

Διαβάστε περισσότερα

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 :

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 : ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Συµπαγής κύλινδρος µάζας Μ συνδεδεµένος σε ελατήριο σταθεράς k = 3. N / και αµελητέας µάζας, κυλίεται, χωρίς να

Διαβάστε περισσότερα

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,

Διαβάστε περισσότερα

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής.

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. Ο πύραυλος καίει τα καύσιμα που αρχικά βρίσκονται μέσα του και εκτοξεύει τα καυσαέρια προς τα πίσω. Τα καυσαέρια δέχονται

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΣΗΜΕΙΩΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ. Είδη κινήσεων, γωνιακή ταχύτητα, γωνιακή επιτάχυνση, σύνθετη κίνηση, κέντρο μάζας

ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΣΗΜΕΙΩΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ. Είδη κινήσεων, γωνιακή ταχύτητα, γωνιακή επιτάχυνση, σύνθετη κίνηση, κέντρο μάζας ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΣΗΜΕΙΩΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ Είδη κινήσεων, γωνιακή ταχύτητα, γωνιακή επιτάχυνση, σύνθετη κίνηση, κέντρο μάζας Στο κεφάλαιο αυτό θα ασχοληθούμε

Διαβάστε περισσότερα

Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως

Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Τίτλος Κεφαλαίου: Στερεό σώµα ιδακτική Ενότητα: Κινηµατική του Στερεού Σώµατος Ερωτήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Θέµα 1ο: ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Στις ηµιτελείς παρακάτω προτάσεις να γράψετε

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 01: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το

Διαβάστε περισσότερα

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2 ΦΥΣ 131 - Διαλ.22 1 Ροπή αδράνειας q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: m (α) m (β) m r r 2r 2 2 I =! m i r i = 2mr 2 1 I = m(2r) 2 = 4mr 2 Ø Είναι δυσκολότερο να προκαλέσεις περιστροφή

Διαβάστε περισσότερα

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 23/2/2014 ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚΕΦΑΛΑΙΑ 3-4

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 23/2/2014 ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚΕΦΑΛΑΙΑ 3-4 ΚΕΝΤΡΟ Αγίας Σοφίας 39 3 ΝΤΕΠΩ Β Όλγας 3 38 ΕΥΟΣΜΟΣ ΜΑλεξάνδρου 5 37736 ΘΕΜΑΤΑ : ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3// ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚΕΦΑΛΑΙΑ 3- ΘΕΜΑ A Στις ερωτήσεις - να γράψετε

Διαβάστε περισσότερα

Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του;

Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του; Άσκηση Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του; Απάντηση Έστω R n η ακτίνα του κύκλου. Αφού η κίνηση είναι

Διαβάστε περισσότερα

Κεφάλαιο Μ10. Περιστροφή άκαµπτου σώµατος γύρω από σταθερό άξονα

Κεφάλαιο Μ10. Περιστροφή άκαµπτου σώµατος γύρω από σταθερό άξονα Κεφάλαιο Μ10 Περιστροφή άκαµπτου σώµατος γύρω από σταθερό άξονα Άκαµπτο σώµα Τα µοντέλα ανάλυσης που παρουσιάσαµε µέχρι τώρα δεν µπορούν να χρησιµοποιηθούν για την ανάλυση όλων των κινήσεων. Μπορούµε να

Διαβάστε περισσότερα

ΣΥΝΟΨΗ 2 ου Μαθήματος

ΣΥΝΟΨΗ 2 ου Μαθήματος Ενημέρωση Η διδασκαλία του μαθήματος, πολλά από τα σχήματα και όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή Φυσική» του Hugh Young των Εκδόσεων Παπαζήση, οι οποίες μας επέτρεψαν τη χρήση

Διαβάστε περισσότερα

w w w.k z a c h a r i a d i s.g r

w w w.k z a c h a r i a d i s.g r ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 4 Γραµµική ταχύτητα : ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ds. Γωνιακή ταχύτητα : dθ ω ωr Οµαλή κκλική κίνηση : σταθερό

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 1 Η ράβδος ΟΑ του σχήματος μπορεί να στρέφεται γύρω από τον άξονα z z χωρίς τριβές Tη στιγμή t=0 δέχεται την εφαπτομενική δύναμη F σταθερού μέτρου 0 Ν, με φορά όπως φαίνεται στο σχήμα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Ενότητα 7: ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΦΥΣΙΚΗ. Ενότητα 7: ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΦΥΣΙΚΗ Ενότητα 7: ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Ενημέρωση. Η διδασκαλία του μαθήματος, όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή

Ενημέρωση. Η διδασκαλία του μαθήματος, όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή Ενημέρωση Η διδασκαλία του μαθήματος, πολλά από τα σχήματα και όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή Φυσική» του Hugh Young των Εκδόσεων Παπαζήση, οι οποίες μας επέτρεψαν τη χρήση

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης)

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) Ένας ομογενής οριζόντιος δίσκος, μάζας Μ και ακτίνας R, περιστρέφεται γύρω από κατακόρυφο ακλόνητο άξονα z, ο οποίος διέρχεται

Διαβάστε περισσότερα

Αντιμετώπιση προβλημάτων που αλλάζουν την στροφική τους κατάσταση, εξαιτίας εξωτερικών ροπών

Αντιμετώπιση προβλημάτων που αλλάζουν την στροφική τους κατάσταση, εξαιτίας εξωτερικών ροπών Αντιμετώπιση προβλημάτων που αλλάζουν την τους κατάσταση, εξαιτίας εξωτερικών ροπών Σ' ένα πρόβλημα, παρατηρώ αλλαγή στη κατάσταση ενός στερεού (ή συστήματος στερεών), καθώς αυτό δέχεται εξωτερικές ροπές.

Διαβάστε περισσότερα

φυσική κατεύθυνσης γ λυκείου ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΕΠΙΛΟΓΗΣ (κεφ.4) Γκότσης Θανάσης - Τερζής Πέτρος

φυσική κατεύθυνσης γ λυκείου ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΕΠΙΛΟΓΗΣ (κεφ.4) Γκότσης Θανάσης - Τερζής Πέτρος 1 Ένα στερεό εκτελεί μεταφορική κίνηση όταν: α) η τροχιά κάθε σημείου είναι ευθεία γραμμή β) όλα τα σημεία του έχουν ταχύτητα που μεταβάλλεται με το χρόνο γ) μόνο το κέντρο μάζας του διαγράφει ευθύγραμμη

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ. ΘΕΜΑ Α (μοναδες 25)

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ. ΘΕΜΑ Α (μοναδες 25) ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ ΘΕΜΑ Α (μοναδες 25) Α1. Σε στερεό που περιστρέφεται γύρω από σταθερό κατακόρυφο άξονα ενεργεί σταθερή ροπή. Τότε αυξάνεται με σταθερό ρυθμό: α. η ροπή αδράνειας του β. η

Διαβάστε περισσότερα

Φυσική Ι 1ο εξάμηνο. Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής. Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης.

Φυσική Ι 1ο εξάμηνο. Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής. Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης. Φυσική Ι 1ο εξάμηνο Γεώργιος Γκαϊντατζής Επίκουρος Καθηγητής Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης 9 ο μάθημα Κεφάλαιο 1 Κινηματική του Στερεού Σώματος Κίνηση στερεού σώματος

Διαβάστε περισσότερα

Κυκλική κίνηση. Βασικές έννοιες. x=rcosθ, y=rsinθ, z=0. x 2 +y 2 =R 2. Γωνιακή μετατόπιση. Γωνιακή ταχύτητα. Θέση

Κυκλική κίνηση. Βασικές έννοιες. x=rcosθ, y=rsinθ, z=0. x 2 +y 2 =R 2. Γωνιακή μετατόπιση. Γωνιακή ταχύτητα. Θέση Κυκλική κίνηση Στη Φυσική, κυκλική κίνηση ονομάζεται η κίνηση στην οποία η τροχιά ενός κινητού ταυτίζεται με την περιφέρεια ενός κύκλου. Η πιο απλή από τις κυκλικές κινήσεις είναι η ομαλή, κατά την οποία

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση.

ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση. ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση. Η δύναμη είναι ένα διανυσματικό μέγεθος. Όταν κατά την κίνηση ενός σώματος η δύναμη είναι μηδενική

Διαβάστε περισσότερα

% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου

% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου 1. Ομογενής και ισοπαχής ράβδος μήκους L= 4 m και μάζας M= 2 kg ισορροπεί οριζόντια. Το άκρο Α της ράβδου συνδέεται με άρθρωση σε κατακόρυφο τοίχο. Σε σημείο Κ της ράβδου έχει προσδεθεί το ένα άκρο κατακόρυφου

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα ΦΥΣ102 1 Δύναμη είναι: Η αιτία που προκαλεί μεταβολή

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ

Γ ΛΥΚΕΙΟΥ ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ Όποτε χρησιμοποιείτε το σταυρό ή το κλειδί της εργαλειοθήκης σας για να ξεσφίξετε τα μπουλόνια ενώ αντικαθιστάτε ένα σκασμένο λάστιχο αυτοκινήτου, ολόκληρος ο τροχός αρχίζει να στρέφεται και θα πρέπει

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 05/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αμπελόκηποι Αθήνα Τηλ.: , ,

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αμπελόκηποι Αθήνα Τηλ.: , , ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Αμπελόκηποι Αθήνα Τηλ.: 0 69 97 985, 77 98 044, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 0 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr ΣΜΑΡΑΓΔΑ ΣΑΡΑΝΤΟΠΟΥΛΟΥ, MSC,

Διαβάστε περισσότερα

Διαγώνισμα: Μηχανική Στερεού Σώματος

Διαγώνισμα: Μηχανική Στερεού Σώματος Διαγώνισμα: Μηχανική Στερεού Σώματος Θέμα Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία τη συμπληρώνει σωστά

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/10/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/10/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 15/1/1 ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗΣ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σε σώμα μάζας m = 1Kg ασκείται η δύναμη F

Διαβάστε περισσότερα

Μηχανική του στερεού σώματος

Μηχανική του στερεού σώματος Κεφάλαιο 1 Μηχανική του στερεού σώματος 1.1 Εισαγωγή 1. Το θεώρημα του Chales Η γενική κίνηση του στερεού σώματος μπορεί να μελετηθεί με τη βοήθεια του παρακάτω θεωρήματος το οποίο δίνουμε χωρίς απόδειξη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ [Υποκεφάλαιο 4.2 Οι κινήσεις των στερεών σωμάτων του σχολικού βιβλίου]

ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ [Υποκεφάλαιο 4.2 Οι κινήσεις των στερεών σωμάτων του σχολικού βιβλίου] ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

ΣΤΡΕΦΟΜΕΝΟΙ ΙΣΚΟΙ & ΠΕΡΙ ΣΤΡΟΦΟΡΜΗΣ

ΣΤΡΕΦΟΜΕΝΟΙ ΙΣΚΟΙ & ΠΕΡΙ ΣΤΡΟΦΟΡΜΗΣ ΣΤΡΕΦΜΕΝΙ ΙΣΚΙ & ΠΕΡΙ ΣΤΡΦΡΜΗΣ Ένας οµογενής και συµπαγής δίσκος µάζας m και ακτίνας =,2m στρέφεται γύρω από σταθερό οριζόντιο άξονα που διέρχεται από το κέντρο του µε γωνιακή ταχύτητα µέτρου ω =1 ra/sec.

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ

ΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ - ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ Ερωτήσεις 1. Στην ομαλή κυκλική κίνηση, α. Το μέτρο της ταχύτητας διατηρείται σταθερό. β. Η ταχύτητα διατηρείται σταθερή. γ. Το διάνυσμα της ταχύτητας υ έχει την

Διαβάστε περισσότερα

Στροφορµή. ΦΥΣ 131 - Διαλ.25 1

Στροφορµή. ΦΥΣ 131 - Διαλ.25 1 Στροφορµή ΦΥΣ 131 - Διαλ.25 1 ΦΥΣ 131 - Διαλ.25 2 Στροφορµή q Ένα από τα βασικά µεγέθη που σχετίζονται µε την περιστροφική κίνηση είναι η στροφορµή q Θυµηθείτε ότι για µάζα m που κινείται µε ταχύτητα v

Διαβάστε περισσότερα

EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003

EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003 1 EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003 1. Από την ίδια γραµµή αφετηρίας(από το ίδιο ύψος) ενός κεκλιµένου επιπέδου αφήστε να κυλήσουν, ταυτόχρονα προς τα κάτω, δύο κυλίνδροι της

Διαβάστε περισσότερα

Επαναληπτική άσκηση: Περιστροφή Κρούση - Κύλιση με ολίσθηση

Επαναληπτική άσκηση: Περιστροφή Κρούση - Κύλιση με ολίσθηση Επαναληπτική άσκηση: Περιστροφή Κρούση - Κύλιση με ολίσθηση Η ομογενής και ισοπαχής ράβδος ΑΓ του διπλανού σχήματος έχει μήκος L=1,m και μάζα M=4kg και μπορεί να περιστρέφεται χωρίς τριβές σε κατακόρυφο

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014 minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 ΘΕΜΑ Α.1 Α1. Να χαρακτηρίσετε με (Σ) τις σωστές και με (Λ) τις λανθασμένες προτάσεις Στην ευθύγραμμα ομαλά επιβραδυνόμενη κίνηση: Α. Η ταχύτητα

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ. 12 της στροφορμής της ράβδ ου ως προς παράλληλο άξονα, που περνά από το ένα άκρο της, με ίδια ω, είναι: ω 3

ΟΡΟΣΗΜΟ. 12 της στροφορμής της ράβδ ου ως προς παράλληλο άξονα, που περνά από το ένα άκρο της, με ίδια ω, είναι: ω 3 5.1 Oι σφαίρες του σχήματος έχουν ίσες μάζες και ακτίνες. Η σφαίρα (1) είναι συμπαγής και η σφαίρα () κοίλη. Οι ροπές αδράνειάς τους είναι Ι 1 και Ι αντίστοιχα. Και οι δύο σφαίρες περιστρέφονται με γωνιακές

Διαβάστε περισσότερα

ΦΥΕ14-5 η Εργασία Παράδοση

ΦΥΕ14-5 η Εργασία Παράδοση ΦΥΕ4-5 η Εργασία Παράδοση.5.9 Πρόβληµα. Συµπαγής οµογενής κύλινδρος µάζας τυλιγµένος µε λεπτό νήµα αφήνεται να κυλίσει από την κορυφή κεκλιµένου επιπέδου µήκους l και γωνίας φ (ϐλέπε σχήµα). Το ένα άκρο

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ. Ισχύει: α. L 1. και Κ 1 β. 2L 1 =2L 2 =L 2. και 2Κ 1 γ. L 1

ΟΡΟΣΗΜΟ. Ισχύει: α. L 1. και Κ 1 β. 2L 1 =2L 2 =L 2. και 2Κ 1 γ. L 1 61 Η κινητική ενέργεια ενός δίσκου μάζας m και ακτίνας R που εκτελεί στροφική κίνηση, εξαρτάται: α Μόνο από την γωνιακή του ταχύτητα β Μόνο από την μάζα και την ακτίνα του γ Μόνο από την γωνιακή του ταχύτητα,

Διαβάστε περισσότερα

ΠΕΡΙΛΗΨΗ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 1. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Χαρακτηριστικά μεγέθη περιοδικών φαινομένων

ΠΕΡΙΛΗΨΗ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 1. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Χαρακτηριστικά μεγέθη περιοδικών φαινομένων ΠΕΡΙΛΗΨΗ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Χαρακτηριστικά μεγέθη περιοδικών φαινομένων Περίοδος Τ (s) Τ = N t Συχνότητα f (Hz) f = t N Σχέση περιόδου και συχνότητας Τ = f T Γωνιακή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 5: ΣΥΣΤΗΜΑΤΑ ΠΟΛΛΩΝ ΣΩΜΑΤΩΝ Στο κεφάλαιο αυτό θα ασχοληθούµε αρχικά µε ένα µεµονωµένο σύστηµα δύο σωµάτων στα οποία ασκούνται µόνο οι µεταξύ τους κεντρικές δυνάµεις, επιτρέποντας ωστόσο και την

Διαβάστε περισσότερα

Κεφάλαιο 4. Νόμοι κίνησης του Νεύτωνα

Κεφάλαιο 4. Νόμοι κίνησης του Νεύτωνα Κεφάλαιο 4 Νόμοι κίνησης του Νεύτωνα Στόχοι 4 ου Κεφαλαίου Δύναμη και αλληλεπιδράσεις. Η δύναμη σαν διάνυσμα και ο συνδυασμός δυνάμεων- Επαλληλία δυνάμεων. Πρώτος νόμος του Νεύτωνα- η έννοια της αδράνειας.

Διαβάστε περισσότερα

ΤΕΙ ΠΕΙΡΑΙΑ ΗΜ: 1/7/14 ΣΤΕΦ - ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Α ΕΞΕΤΑΣΤΙΚΗ -ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΦΥΣΙΚΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ.

ΤΕΙ ΠΕΙΡΑΙΑ ΗΜ: 1/7/14 ΣΤΕΦ - ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Α ΕΞΕΤΑΣΤΙΚΗ -ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΦΥΣΙΚΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ. ΤΕΙ ΠΕΙΡΑΙΑ ΗΜ: 1/7/14 ΣΤΕΦ - ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Α ΕΞΕΤΑΣΤΙΚΗ -ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ:Μ.ΠΗΛΑΚΟΥΤΑ ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ B ΟΝΟΜΑΤΕΠΩΝΥΜΟ. 1. (2.5) Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο

Διαβάστε περισσότερα

Κεφάλαιο 3 Κίνηση σε 2 και 3 Διαστάσεις

Κεφάλαιο 3 Κίνηση σε 2 και 3 Διαστάσεις Κεφάλαιο 3 Κίνηση σε και 3 Διαστάσεις Κίνηση υλικού σημείου στο επίπεδο ( -D) και στο χώρο (3 -D). Ορισμός διανυσμάτων για την μελέτη της -D 3-D κίνησης: Θέση, Μετατόπιση Μέση και στιγμιαία ταχύτητα Μέση

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α Α.1. Η γωνιακή επιτάχυνση ενός οµογενούς δίσκου που στρέφεται γύρω από σταθερό άξονα, που διέρχεται από το κέντρο

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ B ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ Επώνυμο: Όνομα: Τμήμα: Αγρίνιο 10-11-013 ΘΕΜΑ 1 ο Α) Να επιλέξετε τη σωστή απάντηση σε καθεμία από τις επόμενες

Διαβάστε περισσότερα

Αγώνες αυτοκινήτου σε πίστα

Αγώνες αυτοκινήτου σε πίστα Αγώνες αυτοκινήτου σε πίστα Αυτοκίνητο τρέχει στην πίστα που φαίνεται και έχει κυκλικά τόξα ένα ακτίνας 80m και ένα 40m. Αν οδηγός τρέχει ένα πλήρη κύκλο με σταθερή ταχύτητα 50m/s (80km/h) συγκρίνετε την

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 05 Έργο και Κινητική Ενέργεια ΦΥΣ102 1 Όταν μια δύναμη δρα σε ένα σώμα που κινείται,

Διαβάστε περισσότερα

ΕΜΒΙΟΜΗΧΑΝΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ. Σοφία Α. Ξεργιά PT, MSc, PhD

ΕΜΒΙΟΜΗΧΑΝΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ. Σοφία Α. Ξεργιά PT, MSc, PhD ΕΜΒΙΟΜΗΧΑΝΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ Σοφία Α. Ξεργιά PT, MSc, PhD Ανάλυση της Ανθρώπινης Κίνησης Εμβιομηχανική Κινησιολογία Κινηματική Κινητική Λειτουργική Ανατομική Γραμμική Γωνιακή Γραμμική Γωνιακή Θέση Ταχύτητα

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ 1. ΓΕΝΙΚΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ HN5120 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 1 ο ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ ΦΥΣΙΚΗ ΑΥΤΟΤΕΛΕΙΣ

Διαβάστε περισσότερα

Στροφορμή. Μερικές όψεις

Στροφορμή. Μερικές όψεις Στροφορμή. Μερικές όψεις Ένα φυλλάδιο θεωρίας και μερικών εφαρμογών. Με βάση το σχολικό μας βιβλίο, ορίζουμε τη στροφορμή ενός υλικού σημείου το οποίο εκτελεί κυκλική κίνηση κέντρου Ο, το διάνυσμα το οποίο

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5 ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

ΦΥΣ 131 - Διαλ.12 1. Μη αδρανειακά συστήµατα Φαινοµενικό βάρος

ΦΥΣ 131 - Διαλ.12 1. Μη αδρανειακά συστήµατα Φαινοµενικό βάρος ΦΥΣ 3 - Διαλ.2 Μη αδρανειακά συστήµατα Φαινοµενικό βάρος ΦΥΣ 3 - Διαλ.2 2 Μη αδρανειακά συστήµατα x Έστω ότι το S αποκτά επιτάχυνση α 0 S z 0 Α x z S y, y Ο παρατηρητής S µετρά µια επιτάχυνση: A = A +

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

1. Δύναμη. Η ιδέα της Δύναμης δίνει μία ποσοτική περιγραφή της αλληλεπίδρασης α) μεταξύ δύο σωμάτων β) μεταξύ ενός σώματος και του περιβάλλοντος του.

1. Δύναμη. Η ιδέα της Δύναμης δίνει μία ποσοτική περιγραφή της αλληλεπίδρασης α) μεταξύ δύο σωμάτων β) μεταξύ ενός σώματος και του περιβάλλοντος του. . Δύναμη Η ιδέα της Δύναμης δίνει μία ποσοτική περιγραφή της αλληλεπίδρασης α) μεταξύ δύο σωμάτων β) μεταξύ ενός σώματος και του περιβάλλοντος του. Υπάρχουν δυνάμεις οι οποίες ασκούνται ακόμη και όταν

Διαβάστε περισσότερα

ταχύτητα μέτρου. Με την άσκηση κατάλληλης σταθερής ροπής, επιτυγχάνεται

ταχύτητα μέτρου. Με την άσκηση κατάλληλης σταθερής ροπής, επιτυγχάνεται ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 4: ΣΤΡΟΦΟΡΜΗ 26. Δύο σημειακές σφαίρες που η καθεμιά έχει μάζα συνδέονται μεταξύ τους με οριζόντια αβαρή ράβδο. Το σύστημα περιστρέφεται γύρω από κατακόρυφο

Διαβάστε περισσότερα

ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ.

ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ. ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Φυσική Γ Λυκείου. Επαναληπτικά θέματα στο ΣΤΕΡΕΟ. Θετικής - Τεχνολογικής κατεύθυνσης. Πηγή: study4exams.gr

Φυσική Γ Λυκείου. Επαναληπτικά θέματα στο ΣΤΕΡΕΟ. Θετικής - Τεχνολογικής κατεύθυνσης. Πηγή: study4exams.gr Φυσική Γ Λυκείου Θετικής - Τεχνολογικής κατεύθυνσης Επαναληπτικά θέματα στο ΣΤΕΡΕΟ Πηγή: tudy4exam.gr Επιμέλεια: Μαρούσης Βαγγέλης - Φυσικός Φυσικής ζητήματα 1 Επαναληπτικά Θέματα στη Μηχανική του Στερεού

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α Α.1. Ενα στερεό σώµα περιστρέφεται γύρω από ακλόνητο άξονα. Εάν διπλασιαστεί η στροφορµή

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016

ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ 2016 Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr 1 Περιεχόμενα ενότητας Α Βασικές έννοιες Στατική υλικού σημείου Αξιωματικές αρχές Νόμοι Νεύτωνα Εξισώσεις

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την

Διαβάστε περισσότερα

Μ Η Χ Α Ν Ι Κ Η Σ Τ Ε Ρ Ε Ο Υ

Μ Η Χ Α Ν Ι Κ Η Σ Τ Ε Ρ Ε Ο Υ Στερεό σώμα - 07-4 Μ Η Χ Α Ν Ι Κ Η Σ Τ Ε Ρ Ε Ο Υ 4.1. Εισαγωγικές έννοιες. ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΣΗΜΕΙΑΚΟΥ ΑΝΤΙΚΕΙΜΕΝΟΥ Θεωρούμε ένα σημειακό αντικείμενο το οποίο κινείται σε κυκλική τροχιά κέντρου Ο και ακτίνας

Διαβάστε περισσότερα

2) Ομογενής δίσκος μάζας m και ακτίνας R κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο

2) Ομογενής δίσκος μάζας m και ακτίνας R κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο - 1 - Επώνυμο.. Όνομα.. Αγρίνιο 22/3/2015 Ζήτημα 1 0 Να επιλεγεί η σωστή πρόταση 1) Ομογενής δίσκος μάζας m και ακτίνας R κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο επίπεδο. Ο δίσκος στρέφεται γύρω

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Η κινητική ενέργεια του κυλίνδρου λόγω της μεταφορικής του κίνησης δίνεται από την σχέση: Κ μετ = 1 m u 2 cm

ΑΠΑΝΤΗΣΕΙΣ. Η κινητική ενέργεια του κυλίνδρου λόγω της μεταφορικής του κίνησης δίνεται από την σχέση: Κ μετ = 1 m u 2 cm ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΟΥ ΛΥΕΙΟΥ Μ.ΤΕΤΑΡΤΗ 0 ΑΠΡΙΛΙΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΗ ΘΕΤΙΗΣ - ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ Θέμα 1 ο 1. γ. γ 3. α 4. δ 5. α) Λ β) Σ γ)

Διαβάστε περισσότερα

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις

Κεφάλαιο M4. Κίνηση σε δύο διαστάσεις Κεφάλαιο M4 Κίνηση σε δύο διαστάσεις Κινηµατική σε δύο διαστάσεις Θα περιγράψουµε τη διανυσµατική φύση της θέσης, της ταχύτητας, και της επιτάχυνσης µε περισσότερες λεπτοµέρειες. Θα µελετήσουµε την κίνηση

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΗΣ ΘΕΤΙΗΣ-ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΕΙΟΥ Θέμα ο. ύλινδρος περιστρέφεται γύρω από άξονα που διέρχεται από το κέντρο μάζας του με γωνιακή ταχύτητα ω. Αν ο συγκεκριμένος κύλινδρος περιστρεφόταν

Διαβάστε περισσότερα

β. Υπολογίστε την γραμμική ταχύτητα περιστροφής της πέτρας γ. Υπολογίστε την γωνιακή ταχύτητα περιστροφής της πέτρας.

β. Υπολογίστε την γραμμική ταχύτητα περιστροφής της πέτρας γ. Υπολογίστε την γωνιακή ταχύτητα περιστροφής της πέτρας. Μεγέθη Κίνησης 1. Μια ομαλή κυκλική κίνηση γίνεται έτσι ώστε το αντικείμενο να περιστρέφεται σε κυκλική τροχιά ακτίνας R = 20cm με ταχύτητα μέτρου υ = 0,5m/s. α. Πόση είναι η περιφέρεια της τροχιάς του

Διαβάστε περισσότερα

ΣΥΝΟΨΗ 3 ου Μαθήματος

ΣΥΝΟΨΗ 3 ου Μαθήματος Ενημέρωση Η διδασκαλία του μαθήματος, πολλά από τα σχήματα και όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή Φυσική» του Hugh Young των Εκδόσεων Παπαζήση, οι οποίες μας επέτρεψαν τη χρήση

Διαβάστε περισσότερα

Στροφορµή. Αν έχουµε ένα υλικό σηµείο που κινείται µε ταχύτητα υ, τότε έχει στροφορµή

Στροφορµή. Αν έχουµε ένα υλικό σηµείο που κινείται µε ταχύτητα υ, τότε έχει στροφορµή Στροφορµή Στροφορµή υλικού σηµείου Αν έχουµε ένα υλικό σηµείο που κινείται µε ταχύτητα υ, τότε έχει στροφορµή ως προς σηµείο ή ως προς άξονα, που το µέτρο της υπολογίζεται από την εξίσωση L = mυr Όπου

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜ 1 ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Σε

Διαβάστε περισσότερα

Φυσική Γ Λυκείου - Μηχανική στερεού σώματος

Φυσική Γ Λυκείου - Μηχανική στερεού σώματος - Μηχανική στερεού σώματος Φρήσιμες πληροφορίες στην κινηματική στερεού σώματος Όταν το μέτρο της γωνιακής ταχύτητας ενός στερεού σώματος αυξάνεται το διάνυσμα της γωνιακής επιτάχυνσης έχει την ίδια κατεύθυνση

Διαβάστε περισσότερα

1. Εισαγωγή στην Κινητική

1. Εισαγωγή στην Κινητική 1. Εισαγωγή στην Κινητική Σύνοψη Στο κεφάλαιο γίνεται εισαγωγή στις βασικές αρχές της Κινητικής θεωρίας. Αρχικά εισάγονται οι έννοιες των διανυσματικών και βαθμωτών μεγεθών στη Φυσική. Έπειτα εισάγονται

Διαβάστε περισσότερα

Έργο Ενέργεια. ΦΥΣ 131 - Διαλ.15 1

Έργο Ενέργεια. ΦΥΣ 131 - Διαλ.15 1 Έργο Ενέργεια ΦΥΣ 131 - Διαλ.15 1 ΦΥΣ 131 - Διαλ.15 2 Έργο, Κινητική Ενέργεια και Δυναμική Ενέργεια q Βέλος εκτοξεύεται από ένα τόξο: Ø Η δύναμη μεταβάλλεται καθώς το τόξο επανέρχεται στην αρχική του θέση

Διαβάστε περισσότερα

F r. www.ylikonet.gr 1

F r. www.ylikonet.gr 1 3.5. Έργο Ενέργεια. 3.5.1. Έργο δύναµης- ροπής και Κινητική Ενέργεια. Το οµοαξονικό σύστηµα των δύο κυλίνδρων µε ακτίνες R 1 =0,1m και R =0,5m ηρεµεί σε οριζόντιο επίπεδο. Τυλίγουµε γύρω από τον κύλινδρο

Διαβάστε περισσότερα

4 η Εργασία F 2. 90 o 60 o F 1. 2) ύο δυνάµεις F1

4 η Εργασία F 2. 90 o 60 o F 1. 2) ύο δυνάµεις F1 4 η Εργασία 1) ύο δυνάµεις F 1 και F 2 ασκούνται σε σώµα µάζας 5kg. Εάν F 1 =20N και F 2 =15N βρείτε την επιτάχυνση του σώµατος στα σχήµατα (α) και (β). [ 2 µονάδες] F 2 F 2 90 o 60 o (α) F 1 (β) F 1 2)

Διαβάστε περισσότερα

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα

Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Επαναληπτικό διαγώνισµα Ταλαντώσεις Στερεό σώµα Θέµα ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ένα σηµειακό

Διαβάστε περισσότερα

Φ Υ ΣΙΚ Η ΚΑ ΤΕ ΥΘ ΥΝ ΣΗ Σ

Φ Υ ΣΙΚ Η ΚΑ ΤΕ ΥΘ ΥΝ ΣΗ Σ ΔΙΩΝΙΣΜ: Μ Θ Η Μ : www.paideia-agrinio.gr ΤΞΗΣ ΛΥΕΙΟΥ Φ Υ ΣΙ Η ΤΕ ΥΘ ΥΝ ΣΗ Σ Ε Π Ω Ν Τ Μ Ο :..... Ο Ν Ο Μ :...... Σ Μ Η Μ :..... Η Μ Ε Ρ Ο Μ Η Ν Ι : 23 / 0 3 / 2 0 1 4 Ε Π Ι Μ Ε Λ ΕΙ Θ ΕΜ Σ Ω Ν : ΥΡΜΗ

Διαβάστε περισσότερα

α. 2 β. 4 γ. δ. 4 2 Μονάδες 5

α. 2 β. 4 γ. δ. 4 2 Μονάδες 5 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΟΠ Β Λ (ΠΡΟΕΤΟΙΜΑΣΙΑ) - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 04/01/017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Προτεινόμενες Λύσεις Άσκηση ( 5 μονάδες) Δύο σύγχρονες πηγές, Π και Π, που απέχουν μεταξύ τους

Διαβάστε περισσότερα

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ÍÅÏ ÖÑÏÍÔÉÓÔÇÑÉÏ ΕΚΦΩΝΗΣΕΙΣ

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ÍÅÏ ÖÑÏÍÔÉÓÔÇÑÉÏ ΕΚΦΩΝΗΣΕΙΣ 1 Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΘΕΜΑ 1 o ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Η ορµή ενός σώµατος

Διαβάστε περισσότερα

3ωρη ΔΟΚΙΜΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

3ωρη ΔΟΚΙΜΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ωρη ΔΟΚΙΜΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Θέμα Α ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: Κεφάλαιο 4, Μηχανικό στερεό (5Χ5 μονάδες) Για να απαντήσετε στις παρακάτω ερωτήσεις πολλαπλής επιλογής -4 αρκεί να γράψετε στο φύλλο

Διαβάστε περισσότερα

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 1 Ονοματεπώνυμο.. Υπεύθυνος Καθηγητής: Γκαραγκουνούλης Ιωάννης Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ > Κυριακή 20-3-2011 2 ΘΕΜΑ 1ο Να γράψετε στο

Διαβάστε περισσότερα

Ονοματεπώνυμο Τμήμα. Εισαγωγή στις Φυσικές Επιστήμες ( ) Τ 1y 5m Τ 1x. Τ 2x 5m Τ 2y Τ +Τ = = 0.8kg 3m 2.4s. Απάντηση

Ονοματεπώνυμο Τμήμα. Εισαγωγή στις Φυσικές Επιστήμες ( ) Τ 1y 5m Τ 1x. Τ 2x 5m Τ 2y Τ +Τ = = 0.8kg 3m 2.4s. Απάντηση Εισαγωγή στις Φυσικές Επιστήμες (3-7-5) Ονοματεπώνυμο Τμήμα Θέμα 1 1 ο Ερώτημα Ένα σώμα μάζας.8 kg περιστρέφεται γύρω από μία κάθετη ράβδο με τη βοήθεια δύο νημάτων όπως φαίνεται στο σχήμα. Τα νήματα συνδέονται

Διαβάστε περισσότερα

Βαρύτητα Βαρύτητα Κεφ. 12

Βαρύτητα Βαρύτητα Κεφ. 12 Κεφάλαιο 1 Βαρύτητα 6-1-011 Βαρύτητα Κεφ. 1 1 Νόμος βαρύτητας του Νεύτωνα υο ή περισσότερες μάζες έλκονται Βαρυτική δύναμη F G m1m ˆ Βαρυτική σταθερά G =667*10 6.67 11 N*m Nm /kg παγκόσμια σταθερά 6-1-011

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. = 2r, τότε:

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. = 2r, τότε: ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. (Διατήρηση της στροφορμής) Η Γη στρέφεται σε ελλειπτική τροχιά γύρω από τον Ήλιο. Το κοντινότερο σημείο στον Ήλιο ονομάζεται Περιήλιο (π) και το πιο απομακρυσμένο Αφήλιο (α).

Διαβάστε περισσότερα