10 ο Μάθημα Δυναμική Περιστροφικής κίνησης. Δυναμική περιστροφής γύρω από ακλόνητο άξονα Περιστροφή γύρω από κινούμενο άξονα
|
|
- Γερασιμος Μιχαηλίδης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 10 ο Μάθημα Δυναμική Περιστροφικής κίνησης Δυναμική περιστροφής γύρω από ακλόνητο άξονα Περιστροφή γύρω από κινούμενο άξονα
2 1 ος τρόπος: Δυναμική περιστροφικής κίνησης τ = Iα γ Αβαρές μη εκτατό σκοινί τυλίγεται γύρω από κύλινδρο μάζας 50kgr και διαμέτρου 1cm που μπορεί να περιστρέφεται χωρίς τριβές γύρω από ακλόνητο άξονα. Αν τραβήξουμε το σκοινί με σταθερή δύναμη 9Ν για m χωρίς αυτό να ολισθαίνει στον κύλινδρο βρείτε την τελική γωνιακή ταχύτητα του κυλίνδρου αν αυτός αρχικά ηρεμούσε και την ταχύτητα του σκοινιού (0,06 ) 0,09 I = MR I = kgr m I = kgr m o = R F = RF sin(90 ) = 0, 06m9N = 0,54Nm τ τ τ τ τ 0,54Nm α γ = α 6 rad / s I γ = α 0,09kgr m γ = ϑ = s m R = 0,06m = 33,3rad o ω = ω + αϑ ω= αϑ ω= 0 rad / s υ = ωr = (0 rad / s)0, 06m = 1, m / s γ γ
3 ος τρόπος: Περιστροφική κίνηση Θεώρημα έργου ενέργειας 1 Fs K = WF Iω 0 = Fs ω = Αλλά I 1 1 I = MR I = 50 kgr (0,06 m ) I = 0,09 kgr m Fs 9 N m ω = = = 0 rad / s I 0,09kgr m Αβαρές μη εκτατό σκοινί τυλίγεται γύρω από κύλινδρο μάζας 50kgr και διαμέτρου 1cm που μπορεί να περιστρέφεται χωρίς τριβές γύρω από ακλόνητο άξονα. Αν τραβήξουμε το σκοινί με σταθερή δύναμη 9Ν για m χωρίς αυτό να ολισθαίνει στον κύλινδρο βρείτε την τελική γωνιακή ταχύτητα του κυλίνδρου αν αυτός αρχικά ηρεμούσε και την ταχύτητα του σκοινιού. υ = ωr = (0 rad / s)0, 06m = 1, m / s
4 Αφήνουμε το διπλανό σύστημα από ισορροπία. Το σκοινί δε γλιστρά και δεν υπάρχουν τριβές κατά την περιστροφή της τροχαλίας. Αν m 1 >m βρείτε ποια η σχέση των δύο τάσεων του νήματος. τ mg T > T 1 1 > mg συν = Iαγ οπότε τ1 > τ TR 1 > TR T1 > T
5 Τροχαλία Δύναμη F T =15N ασκείται σε σκοινί τυλιγμένο σε τροχαλία μάζας 4kgr και ακτίνας 33cm. Η τροχαλία επιταχύνεται με σταθερή επιτάχυνση από ηρεμία σε 30rad/s σε 3s. Αν η ροπή των τριβών στον άξονα περιστροφής είναι 1,1Nm βρείτε τη ροπή αδράνειας της τροχαλίας. Συνισταμένη ροπή όλων των δυνάμεων: τσυν = F R τ = 15N0,33m 1,1Nm = 3,85Nm T fr τ συν = Iα ω ωo 30 rad / s 0 ω = ωo + α γ t α γ = α 10 rad / s t γ = α 3s γ = τσυν 3,85Nm I = I = I = 0,385kgr m α 10 rad / s γ γ
6 Δυναμική περιστροφικής κίνησης Γνωρίζουμε τις μάζες m 1 και m καθώς και την μάζα M της τροχαλίας και την ακτίνα της R. Βρείτε την επιτάχυνση της m 1 καθώς και τις τάσεις Τ 1 και Τ. T = ma Αλλά a1 = a T = ma mg T= ma 1 mg T = ma
7 Δυναμική περιστροφικής κίνησης Γνωρίζουμε τις μάζες m 1 και m καθώς και την μάζα M της τροχαλίας και την ακτίνα της R. Βρείτε την επιτάχυνση της m 1 καθώς και τις τάσεις Τ 1 και Τ. 1 = αγ 1 = αγ 1 = αγ T R T R I T R T R MR T T MR Αλλά a1 = a = α γ R οπότε T T1 = Ma1 T = ma mg T = ma 1 T T1 = Ma1 Προσθέτοντας κατά μέλη
8 Δυναμική περιστροφικής κίνησης Γνωρίζουμε τις μάζες m 1 και m καθώς και την μάζα M της τροχαλίας και την ακτίνα της R. Βρείτε την επιτάχυνση της m 1 καθώς και τις τάσεις Τ 1 και Τ. Αν Μ=0 και m 1 >>>m a 1 = mg m 1 T1 = T = mg
9 Υπολογισμός ροπής αδράνειας Για συνεχή κατανομή μάζας έχουμε: I = r dm
10 Περιστροφή γύρω από κινούμενο άξονα Μεταφορά + περιστροφή σώματος γύρω από άξονα συμμετρίας που διέρχεται από το κέντρο μάζας του. Πρακτικά έχουμε συνδυασμό δύο κινήσεων: Μεταφορά κέντρου μάζας (ξέρουμε να περιγράφουμε κίνηση υλικού σημείου) Περιστροφή σώματος γύρω από άξονα (ξέρουμε να περιγράφουμε περιστροφική κίνηση γύρω από ακλόνητο άξονα περιστροφής)
11 Περιστροφή γύρω από κινούμενο άξονα Μεταφορά + περιστροφή σώματος γύρω από άξονα συμμετρίας που διέρχεται από το κέντρο μάζας του. Μεταφορική κίνηση: Περιστροφική κίνηση: F συν = τ συν ma cm = Iα γ
12 Κύλιση χωρίς ολίσθηση κινητική ενέργεια Έστω κύλινδρος που κυλά χωρίς να ολισθαίνει.
13 Κύλιση χωρίς ολίσθηση κινητική ενέργεια Έστω κύλινδρος που κυλά χωρίς να ολισθαίνει. 1 K = I(1) ω K = I + MR K = I + M I = I + MR (1) cm cmω ω cmω υcm
14 Γιο γιο (Υο Υο) ένα αρχαίο παιχνίδι 500π.χ.
15 Περιστροφική κίνηση Για το γιο γιο του σχήματος βρείτε την ταχύτητα του κέντρου μάζας του στη θέση. (θεωρήστε το κυλινδρικό). Λόγω διατήρησης της μηχανικής ενέργειας: U1+ K1 = U + K U1 = Mgh U = 0 K 1 = υ 3 K = Mυ + I ω = Mυ + MR = Mυ R 4 Άρα: cm cm cm cm ( )( ) cm 3 4 Mgh = Mυcm υcm = gh 4 3
16 Περιστροφική κίνηση Αφού το νήμα ξετυλίγεται χωρίς ολίσθηση: Παραγωγίζοντας: Mg T = Ma cm 1 TR = MRα cm Πλήρης ανάλυση κίνησης για το γιο γιο του σχήματος με τη βοήθεια δυνάμεων (θεωρήστε το κυλινδρικό). Βρείτε την τάση του νήματος και την επιτάχυνση του κέντρου μάζας. F Ma Mg T Ma συν = cm = cm 1 συν = I γ TR = MR γ τ α α υ = ωr cm dυcm d( ωr) = acm = dt dt acm = g 3 1 T = Mg 3 Rα γ
17 Περιστροφική κίνηση Πλήρης ανάλυση κίνησης για το γιο γιο του σχήματος με τη βοήθεια δυνάμεων (θεωρήστε το κυλινδρικό). acm = g 3 T 1 = Mg 3 Όταν κατέβει απόσταση h ποια θα είναι η ταχύτητα του κέντρου μάζας; 4 cm = cm _ o + cm cm = υ υ a h υ gh 3 Ποια θα είναι η γωνιακή ταχύτητα περιστροφής του; 4 gh υcm 3 ω = ω = R R
18 Ανταγωνισμός κυλιόμενων σωμάτων β Αν τα σώματα δεν περιστρέφονταν αλλά απλά γλιστρούσαν και η τριβή ήταν αμελητέα; Με ποια ταχύτητα θα έφταναν στο κάτω μέρος; υ = gh Ποια θα ήταν η επιτάχυνσή τους; Σε πόσο χρόνο θα έφταναν; a = g sin β υ t = g sin β β η γωνία του κεκλιμένου επιπέδου
19 Ανταγωνισμός κυλιόμενων σωμάτων I cm = fmr
20 Ανταγωνισμός κυλιόμενων σωμάτων U1 U1+ K1 = U + K = Mgh K = U = υ 1 K = Mυ + I ω = Mυ + fmr = + f Mυ R cm cm cm cm ( ) (1 ) cm υ = cm gh 1+ f
21 Ανταγωνισμός κυλιόμενων σωμάτων f=1 f=0.5 υ = cm gh 1+ f Δεν εξαρτάται ούτε από μάζα ούτε από ακτίνα σώματος!!!!!!!!!!!!!!! f=0.4 f=0.7
22 Περιστροφική κίνηση Αφού η μπάλα κυλά χωρίς ολίσθηση: Παραγωγίζοντας: Μπάλα μποουλινγκ μάζας Μ κατεβαίνει χωρίς να ολισθαίνει ράμπα κλίσης β. Ποια η επιτάχυνσή της και ποια η δύναμη τριβής; F = Ma Mg sin( β ) f = Ma συν _ x cm _ x cm _ x τ α α 5 συν = Icm γ fr = MR γ a υ cm _ x cm = = ωr Rα γ Mg f Ma sin( β ) = cm _ x fr = MRα cm _ x 5 5 acm _ x = g sin( β ) 7 f = Mg sin( β ) 7 Η μπάλα έχει τα 5/7 της επιτάχυνσης που θα είχε αν κινιόταν ολισθαίνοντας πάνω στην επιφάνεια.
Υπολογισμός ροπής αδράνειας. Για συνεχή κατανομή μάζας έχουμε:
Υπολογισμός ροπής αδράνειας Για συνεχή κατανομή μάζας έχουμε: I = r dm Υπολογισμός ροπής αδράνειας Θεώρημα παράλληλων αξόνων Icm I p Ροπή αδράνειας ως προς άξονα που περνά από το κέντρο μάζας Ροπή αδράνειας
Κεφάλαιο 9. Περιστροφική κίνηση. Ροπή Αδράνειας-Ροπή-Στροφορμή
Κεφάλαιο 9 Περιστροφική κίνηση Ροπή Αδράνειας-Ροπή-Στροφορμή 1rad = 360o 2π Γωνιακή ταχύτητα (μέτρο). ω μεση = θ 1 θ 2 = θ t 2 t 1 t θ ω = lim t 0 t = dθ dt Μονάδες: περιστροφές/λεπτό (rev/min)=(rpm)=
ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ
Ονοµατεπώνυµο: Διάρκεια: (3 45)+5=50 min Τµήµα: ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ Ζήτηµα ο Ένα στερεό µπορεί να στρέφεται γύρω από σταθερό άξονα και αρχικά ηρεµεί. Σε µια στιγµή δέχεται (ολική) ροπή
Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2
ΦΥΣ 131 - Διαλ.22 1 Ροπή αδράνειας q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: m (α) m (β) m r r 2r 2 2 I =! m i r i = 2mr 2 1 I = m(2r) 2 = 4mr 2 Ø Είναι δυσκολότερο να προκαλέσεις περιστροφή
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΑΥΕΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/04 ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα
mu R mu = = =. R Γενική περίπτωση ανακύκλωσης
Γενική περίπτωση ανακύκλωσης Με τον όρο ανακύκλωση εννοούμε την κίνηση ενός σώματος σε κατακόρυφο επίπεδο σε κυκλική τροχιά. Χαρακτηριστικό παράδειγμα τέτοιας κίνησης είναι η κίνηση στο roller coaster,
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή
Όταν υπάρχει ΑΚΙΝΗΤΟ σηµείο
Όταν υπάρχει ΑΚΙΝΗΤΟ σηµείο ) Οµογενής κύλινδρος µάζας m, ακτίνας R φέρει λεπτή εγκοπή βάθους είναι τυλιγµένο νήµα αµελητέου πάχους. R r=, στην οποία Το άλλο άκρο του νήµατος έχει δεθεί σε οροφή όπως στο
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Κινητική ενέργεια λόγω περιστροφής. Έργο και ισχύς σταθερής ροπής)
ΕΚΦΩΝΗΣΕΣ ΑΣΚΗΣΕΩΝ Άσκηση 1 (Κινητική ενέργεια λόγω περιστροφής Έργο και ισχύς σταθερής ροπής) Ένας κύβος και ένας δίσκος έχουν ίδια μάζα και αφήνονται από το ίδιο ύψος να κινηθούν κατά μήκος δύο κεκλιμένων
Κινητική ενέργεια κύλισης
ΦΥΣ 111 - Διαλ.34 1 Κινητική ενέργεια κύλισης H ολική κινητική ενέργεια ενός σώµατος που κυλίεται χωρίς ολίσθηση είναι το άθροισµα της κινητικής ενέργειας του κέντρου µάζας του λόγω µεταφοράς και της κινητικής
Κύληση. ΦΥΣ Διαλ.33 1
Κύληση ΦΥΣ 111 - Διαλ.33 1 Κύλιση χωρίς ολίσθηση ΦΥΣ 111 - Διαλ.33 H συνθήκη για να έχουµε κύλιση χωρίς ολίσθηση είναι: s = Rθ = d ή a εφ. = αr V = d d ( Rθ ) = R dθ d = Rω για σταθερό R To σηµείο επαφής
Συνταγολόγιο Φυσικής Μηχανική Στερεού Σώµατος. Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός.
Συνταγολόγιο Φυσικής Μηχανική Στερεού Σώµατος Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός http://perifysikhs.wordpress.com 1 Κίνηση Ράβδου σε κατακόρυφο επίπεδο Εστω µια οµογενής ϱάβδος ΟΑ µάζας Μ
( ) Παράδειγµα. Τροχαλία. + ΔE δυν. = E κιν. + E δυν
ΦΥΣ 111 - Διαλ.33 1 Παράδειγµα Θεωρήστε δυο σώµατα τα οποία συνδέονται µέσω µιας αβαρούς τροχαλίας όπως στο σχήµα. Από διατήρηση ενέργειας υπολογίστε την ταχύτητα των δυο σωµάτων όταν η µάζα m 2 έχει κατέβει
[1kgm 2, 5m/s, 3,2cm, 8rad/s][1kgm 2, 5m/s, 3,2cm, 8rad/s]
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 5: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΕΡΓΟ ΔΥΝΑΜΗΣ ΣΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ 34. Μία κατακόρυφη ράβδος μάζας μήκους, μπορεί να περιστρέφεται στο κατακόρυφο επίπεδο γύρω από
Ομογενής δίσκος ροπής αδράνειας, με μάζα και ακτίνας θα χρησιμοποιηθεί σε 3 διαφορετικά πειράματα.
Δίσκος Σύνθετη Τρίτη 01 Μαϊου 2012 ΑΣΚΗΣΗ 5 Ομογενής δίσκος ροπής αδράνειας, με μάζα και ακτίνας θα χρησιμοποιηθεί σε 3 διαφορετικά πειράματα. ΠΕΙΡΑΜΑ Α Θα εκτοξευθεί με ταχύτητα από τη βάση του κεκλιμένου
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος ΙΙ Ενδεικτικές Λύσεις Κυριακή 28 Φλεβάρη 2016 Θέµα Α Α.1. Ενα στερεό σώµα περιστρέφεται γύρω από ακλόνητο άξονα. Εάν διπλασιαστεί η στροφορµή
Μια κινούμενη τροχαλία.
Μια κινούμενη τροχαλία. Γύρω από μια τροχαλία μάζας Μ=0,8kg έχουμε τυλίξει ένα αβαρές νήμα, στο άκρο του ο- ποίου έχουμε δέσει ένα σώμα Σ μάζας m=0,kg. Συγκρατούμε τα δυο σώματα με τα χέρια μας, ώστε το
Κεφάλαιο 6β. Περιστροφή στερεού σώματος γύρω από σταθερό άξονα
Κεφάλαιο 6β Περιστροφή στερεού σώματος γύρω από σταθερό άξονα Ροπή Ροπή ( ) είναι η τάση που έχει μια δύναμη να περιστρέψει ένα σώμα γύρω από κάποιον άξονα. d είναι η κάθετη απόσταση του άξονα περιστροφής
ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ, 8 Μαρτίου 2019 Διδάσκοντες: Βαρσάμης Χρήστος, Φωτόπουλος Παναγιώτης
ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 218-219 ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ, 8 Μαρτίου 219 Διδάσκοντες: Βαρσάμης Χρήστος, Φωτόπουλος Παναγιώτης ΘΕΜΑ 1 Διάρκεια εξέτασης 2 ώρες Υλικό σημείο κινείται ευθύγραμμα πάνω στον άξονα
ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Διδάσκοντες: Βαρσάμης Χρήστος, Φωτόπουλος Παναγιώτης
ΕΞΕΤΑΣΕΙΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 218-219 ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ Διδάσκοντες: Βαρσάμης Χρήστος, Φωτόπουλος Παναγιώτης ΘΕΜΑ 1 Διάρκεια εξέτασης 2 ώρες Υλικό σημείο κινείται ευθύγραμμα πάνω στον άξονα x με ταχύτητα,
το άκρο Β έχει γραμμική ταχύτητα μέτρου.
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 1: ΚΙΝΗΣΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ 1. Μια ράβδος ΑΒ περιστρέφεται με σταθερή γωνιακή ταχύτητα γύρω από έναν σταθερό οριζόντιο άξονα που περνάει από ένα σημείο πάνω
Διαγώνισμα Μηχανική Στερεού Σώματος
Διαγώνισμα Μηχανική Στερεού Σώματος Θέμα Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία τη συμπληρώνει σωστά
Μια διπλή τροχαλία. «χωμένη» στο έδαφος και στο τέλος ολισθαίνει.
Μια διπλή τροχαλία. «χωμένη» στο έδαφος και στο τέλος ολισθαίνει. Η διπλή τροχαλία του σχήματος αποτελείται από δύο ομόκεντρους ομογενείς δίσκους με ακτίνες και αντίστοιχα, όπου = 0,5 m και έχει συνολική
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού Σώµατος Ενδεικτικές Λύσεις Θέµα Α Α.1. Ενας δίσκος στρέφεται γύρω από άξονα που διέρχεται από το κέντρο του και είναι κάθετος στο επίπεδό του. Η τιµή
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ
ΚΕΦΑΛΑΙΟ 4 ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 3: ΡΟΠΗ ΑΔΡΑΝΕΙΑΣ - ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ ΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 12. Ένας οριζόντιος ομογενής δίσκος ακτίνας μπορεί να περιστρέφεται χωρίς τριβές, γύρω από κατακόρυφο
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης)
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) Ένας ομογενής οριζόντιος δίσκος, μάζας Μ και ακτίνας R, περιστρέφεται γύρω από κατακόρυφο ακλόνητο άξονα z, ο οποίος διέρχεται
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014
ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί
ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΠΛΗΡΕΙΣ ΑΠΑΝΤΗΣΕΙΣ. Άρα, για τις αντίστοιχες αλγεβρικές τιμές των ταχυτήτων των δύο σωμάτων πριν από την κρούση τους προκύπτει ότι:
ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΤΕΤΑΡΤΗ 6 ΣΕΠΤΕΜΒΡΙΟΥ 017 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΔΕΚΑ (10) ΘΕΜΑ Α ΠΡΟΤΕΙΝΟΜΕΝΕΣ
Ασκήσεις. Φυσική Γ Λυκείου - Μηχανική στερεού σώματος
- Μηχανική στερεού σώματος Ασκήσεις 1. Στερεό στρέφεται γύρω Ένας δίσκος μπορεί να περιστρέφεται γύρω από σταθερό άξονα ο οποίος διέρχεται από το κέντρο και είναι κάθετος στο επίπεδο του. Ο δίσκος είναι
ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
3 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 01: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το
ΧΡΗΣΙΜΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΟ ΣΤΕΡΕΟ ΣΩΜΑ
ο ΓΕΛ ΓΑΛΑΤΣΙΟΥ ΧΡΗΣΙΜΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΟ ΣΤΕΡΕΟ ΣΩΜΑ Παρατηρήσεις : I a. Όσο μεγαλύτερη είναι η ροπή αδράνειας ενός σώματος τόσο πιο δύσκολα αλλάζει η περιστροφική κατάσταση του σώματος.. Εάν η συνισταμένη
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ
ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. (Θέμα Δ) Άσκηση 2. (Κύλιση χωρίς ολίσθηση, σχέση υ cm και ω, σχέση α cm και a γων )
ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. (Γωνιακή ταχύτητα, γωνιακή επιτάχυνση, σύνθετη κίνηση, κέντρο μάζας) Δύο δίσκοι οριζόντιοι Δ 1 και Δ εκτελούν περιστροφική κίνηση γύρω από κατακόρυφο άξονα που περνά από το
ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 4 Ο
A1- β A - α A3- β A4 - β A5- α A6 -γ A7 -δ A8 β A9 - β ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 4 Ο A10- Διαν-Nm, Διαν - Kgm /s, Διαν - rad/s, Μον - Kg m A11 α -Λ, β -Λ, γ -Σ, δ - Σ, ε -Λ, στ -Σ, ζ Λ, η -
% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου
1. Ομογενής και ισοπαχής ράβδος μήκους L= 4 m και μάζας M= 2 kg ισορροπεί οριζόντια. Το άκρο Α της ράβδου συνδέεται με άρθρωση σε κατακόρυφο τοίχο. Σε σημείο Κ της ράβδου έχει προσδεθεί το ένα άκρο κατακόρυφου
1. Για το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και. = (x σε μέτρα).
Θέμα ο. ια το σύστηµα που παριστάνεται στο σχήµα θεωρώντας ότι τα νήµατα είναι αβαρή και µη εκτατά, τις τροχαλίες αµελητέας µάζας και M= M = M, υπολογίστε την επιτάχυνση της µάζας. ίνεται το g. (0) Λύση.
ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5
ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 4 (ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ) ΚΥΡΙΑΚΗ 15 ΜΑΡΤΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ 5 ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ
ΠΡΟΒΛΗΜΑ 1 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ Η λεπτή, ομογενής ράβδος ΟΑ του σχήματος έχει μήκος, μάζα και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο ακλόνητο άξονα (άρθρωση) που διέρχεται
Ενέργεια στην περιστροφική κίνηση
ΦΥΣ 111 - Διαλ.31 1 Ενέργεια στην περιστροφική κίνηση q Ένα περιστρεφόµενο στερεό αποτελεί µια µάζα σε κίνηση. Εποµένως υπάρχει κινητική ενέργεια. v i θ i r i m i Θεωρείστε ένα στερεό σώµα περιστρεφόµενο
Διαγώνισμα: Μηχανική Στερεού Σώματος
Διαγώνισμα: Μηχανική Στερεού Σώματος Θέμα Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία τη συμπληρώνει σωστά
ΕΝΟΤΗΤΑ 5: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΕΡΓΟ ΔΥΝΑΜΗΣ ΣΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β
ΚΕΦΑΛΑΙΟ 4 Ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΝΟΤΗΤΑ 5: ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ ΚΑΙ ΕΡΓΟ ΔΥΝΑΜΗΣ ΣΤΗ ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ ΛΥΜΕΝΑ ΘΕΜΑΤΑ Ερώτηση. ΘΕΜΑ Β Ένα ομογενές σώμα με κανονικό γεωμετρικό σχήμα κυλίεται, χωρίς να
w w w.k z a c h a r i a d i s.g r
Πως εφαρμόζουμε την αρχή διατήρησης της μηχανικής ενέργειας στα στερεά σώματα Πριν δούμε την μεθοδολογία, ας θυμηθούμε ότι : Για να εφαρμόσουμε την αρχή διατήρησης της μηχανικής ενέργειας (Α.Δ.Μ.Ε.) για
Μηχανική Στερεού Ασκήσεις Εμπέδωσης
Μηχανική Στερεού Ασκήσεις Εμπέδωσης Όπου χρειάζεται, θεωρείστε δεδομένο ότι g = 10m/s 2. 1. Μία ράβδος ΟΑ, μήκους L = 0,5m, περιστρέφεται γύρω από σταθερό άξονα που περνάει από το ένα άκρο της Ο, με σταθερή
3ωρη ΔΟΚΙΜΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
ωρη ΔΟΚΙΜΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Θέμα Α ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: Κεφάλαιο 4, Μηχανικό στερεό (5Χ5 μονάδες) Για να απαντήσετε στις παρακάτω ερωτήσεις πολλαπλής επιλογής -4 αρκεί να γράψετε στο φύλλο
Προσομοίωση βαρύτητας
Προσομοίωση βαρύτητας Στοδιαστημικόλεωφορείοπουβρίσκεταισετροχιάγύρωαπότηγηοι αστροναύτες βρίσκονται συνεχώς σε κατάσταση ελεύθερης πτώσης. Βρίσκονται σε κατάσταση έλλειψης βαρύτητας Προσομοίωση βαρύτητας
ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ
1. Ο κύλινδρος και ο δίσκος του σχήματος, έχουν την ίδια μάζα και περιστρέφονται με την ίδια γωνιακή ταχύτητα ω. Ποιό σώμα θα σταματήσει πιο δύσκολα; α) Το Α. β) Το Β. γ) Και τα δύο το ίδιο. 2. Ένας ομογενής
Μηχανική Στερεού Σώματος Εξέταση - Σελίδα από 9 9//06. (0 Βαθμοί) Ενας συμπαγής κύλινδρος Δ βάρους βάρους w και ακτίνας βρίσκεται μεταξύ ενός κατακόρυ
Μηχανική Στερεού Σώματος Σχολική Περίοδος 05-06 Εξέταση 9//06 Χρόνος: 80 Λεπτά Ονοματεπώνυμο: Υπεύθυνος Καθηγητής: Αυτή η εξέταση περιέχει 9 σελίδες (συμπεριλαμβανόμενης της παρούσης) και 5 προβλήματα.
ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΣΤΗ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ. Η στροφορμή ενός στερεού σώματος είναι μηδενική, όταν το σώμα δεν περιστρέφεται.
ο ΓΕΛ ΓΑΛΑΤΣΙΟΥ ΠΑΡΑΤΗΡΗΣΕΙΣ ΣΤΗ ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΣΤΗ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΣΤΡΟΦΟΡΜΗΣ Διερεύνηση της σχέσης L=ω Η στροφορμή ενός στερεού σώματος είναι μηδενική, όταν το σώμα δεν περιστρέφεται. Η ροπή αδράνειας Ι
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΘΕΜΑ 1 Ο : ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΦΕΒΡΟΥΑΡΙΟΣ 017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό
3.6. Σύνθετα θέματα στερεού. Ομάδα Δ.
3.5.61. Μια κινούμενη τροχαλία. 3.6. Σύνθετα θέματα στερεού. Ομάδα Δ. Γύρω από μια τροχαλία μάζας Μ=0,8kg έχουμε τυλίξει ένα αβαρές νήμα, στο άκρο του οποίου έχουμε δέσει ένα σώμα Σ μάζας m=0,1kg. Συγκρατούμε
ΟΡΟΣΗΜΟ >Ι 3. δ. Ι Οι τροχοί (1) και (2) του σχήματος είναι ίδιοι. Τότε: και Ι 2
ΚΕΦΑΛΑΙΟ 4 Ροπή αδράνειας - Θεμελιώδης νόμος της στροφικής κίνησης 4.1 Η ροπή αδράνειας ενός σώματος εξαρτάται: α. μόνο από τη μάζα του σώματος β. μόνο τη θέση του άξονα γύρω από τον οποίο μπορεί να περιστρέφεται
3.3. Δυναμική στερεού.
3.3.. 3.3.1. Ροπή και γωνιακή επιτάχυνση Μια οριζόντια τετράγωνη πλάκα ΑΒΓΔ, πλευράς 1m και μάζας 20kg μπορεί να στρέφεται γύρω από σταθερό άξονα z που περνά από το κέντρο της. Η πλάκα αποκτά γωνιακή ταχύτητα
1 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 21-Νοεµβρίου-2009
1 η ΟΜΑΔΑ Σειρά Θέση ΦΥΣ. 131 η Πρόοδος: 1-Νοεµβρίου-009 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός ταυτότητας Απενεργοποιήστε τα κινητά σας.
12 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Αρχή διατήρησης στροφορμής
1 η Εβδομάδα Δυναμική Περιστροφικής κίνησης Αρχή διατήρησης στροφορμής Βασικές εξισώσεις Στροφορμή υλικού σημείου μάζας m ως προς σημείο Ο. L = r p = m( r υ) Στροφορμή στερεού σώματος που περιστρέφεται
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α
ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Μηχανική Στερεού - µέρος Ι Ενδεικτικές Λύσεις Θέµα Α Α.1. Η γωνιακή επιτάχυνση ενός οµογενούς δίσκου που στρέφεται γύρω από σταθερό άξονα, που διέρχεται από το κέντρο
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 2016-2017 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον
2 η ΟΜΑΔΑ. ΦΥΣ η Πρόοδος: 21-Νοεµβρίου-2009
η ΟΜΑΔΑ Σειρά Θέση ΦΥΣ. 131 η Πρόοδος: 1-Νοεµβρίου-009 Πριν αρχίσετε συµπληρώστε τα στοιχεία σας (ονοµατεπώνυµο και αριθµό ταυτότητας). Ονοµατεπώνυµο Αριθµός ταυτότητας Απενεργοποιήστε τα κινητά σας. Σας
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος. και Α 2
ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών Τζιόλας Χρήστος 1. Ένα σύστημα ελατηρίου σταθεράς = 0 π N/ και μάζας = 0, g τίθεται σε εξαναγκασμένη ταλάντωση. Αν είναι Α 1 και Α τα πλάτη της ταλάντωσης
Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Μηχανική Στερεού Σώματος. Τετάρτη 12 Απριλίου Θέμα 1ο
Διαγώνισμα Μηχανική Στερεού Σώματος Τετάρτη 12 Απριλίου 2017 Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να επιλέξτε την σωστή απάντηση (4 5 = 20 μονάδες ) 1.1. Η γωνιακή επιτάχυνση ενός ομογενούς δίσκου που
Γ ΤΑΞΗ ΤΜΗΜΑ ΟΝΟΜΑ. ΘΕΜΑ 1ο. 7 mr 5. 1 mr. Μονάδες 5. α. 50 W β. 100 W γ. 200 W δ. 400 W
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΟΝΟΜΑ ΤΜΗΜΑ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΤΕΤΑΡΤΗ 8 ΜΑΡΤΙΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΣΤΡΟΦΙΚΗ ΚΙΝΗΣΗ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε
Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Μηχανική Στερεού Σώματος. Σάββατο 24 Φεβρουαρίου Θέμα 1ο
Διαγώνισμα Μηχανική Στερεού Σώματος Σάββατο 24 Φεβρουαρίου 2018 Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να επιλέξτε την σωστή απάντηση (4 5 = 20 μονάδες ) 1.1. Ένας δίσκος στρέφεται γύρω από άξονα που
Θ.Μ.Κ.Ε. ΚΑΙ ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ
Ερώτημα 1 ο : ΘΜΚΕ ΚΑΙ ΣΥΝΘΕΤΗ ΚΙΝΗΣΗ Όταν μιλάμε για έργο, τι διαφορά έχει το έργο μιας δύναμης και το έργο μιας ροπής;στην πραγματικότητα έργο παράγει μια δύναμη, όταν μετατοπίζει το σημείο εφαρμογής
ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014
ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ
Απάντηση: α) 16,0 Ν, β) 10,2 Ν
Σώμα με μάζα m 1 τοποθετείται πάνω σε κεκλιμένο επίπεδο με γωνία κλίσεως α και είναι δεμένο με σχοινί με δεύτερο σώμα μάζας m 2 το οποίο κρέμεται, το σχοινί περνά, από μικρή άτριβη τροχαλία. Ο συντελεστής
ΡΟΠΗ ΔΥΝΑΜΗΣ ΙΣΟΡΡΟΠΙΑ ΣΤΕΡΕΟΥ ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ
ΡΟΠΗ ΔΥΝΑΜΗΣ ΙΣΟΡΡΟΠΙΑ ΣΤΕΡΕΟΥ ΘΕΜΕΛΙΩΔΗΣ ΝΟΜΟΣ 1. Ένας ελαιοχρωματιστής βάρους w 1 =700 N βρίσκεται σε μια οριζόντια σανίδα AB, μήκους l =5m και βάρους w=300 N. Η σανίδα κρέμεται από δυο κατακόρυφα σχοινιά
ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β
ΚΕΦΑΛΑΙΟ 4 Ο : ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑ Β Ερώτηση 1 (Η ερώτηση δόθηκε από τον εθελοντή κ Αντώνιο Παλόγο) Σε ένα ρολόι θέλουμε το άκρο του ωροδείκτη και το άκρο του λεπτοδείκτη
ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ
ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ Αντικείμενο: Κεφάλαιο 4 Θέμα 1ο Α. Να επιλέξετε τη σωστή απάντηση που ακολουθεί κάθε μια από τις πιο κάτω προτάσεις α. Ένα σώμα ηρεμεί εκτός πεδίου βαρύτητας. Ασκούμε
Για τις παραπάνω ροπές αδράνειας ισχύει: α. β. γ. δ. Μονάδες 5
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΘΕΡΙΝΑ Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 01-03-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ M-ΑΓΙΑΝΝΙΩΤΑΚΗ ΑΝ.-ΠΟΥΛΗ Κ. ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας
Μηχανικό Στερεό. Μια εργασία για την Επανάληψη
Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής
ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Aσκηση 2 :
ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Συμπαγής κύλινδρος μάζας Μ συνδεδεμένος σε ελατήριο σταθεράς k = 3. N / και αμελητέας μάζας, κυλίεται, χωρίς να
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 1 Η ράβδος ΟΑ του σχήματος μπορεί να στρέφεται γύρω από τον άξονα z z χωρίς τριβές Tη στιγμή t=0 δέχεται την εφαπτομενική δύναμη F σταθερού μέτρου 0 Ν, με φορά όπως φαίνεται στο σχήμα
1 η ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΗ
1 η ΑΣΚΗΣΗ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΗ Αβαρές και μη εκτατό νήμα είναι δεμένο στο ένα άκρο κατακόρυφου ιδανικού ελατηρίου σταθεράς k = 100 N/m, το άλλο άκρο του οποίου είναι στερεωμένο στο έδαφος. Το ελεύθερο άκρο
Ερωτήσεις. 2. Η ροπή αδράνειας μιας σφαίρας μάζας Μ και ακτίνας R ως προς άξονα που διέρχεται
- Μηχανική στερεού σώματος Ερωτήσεις 1. Στερεό στρέφεται γύρω από σταθερό άξονα. Η γωνιακή ταχύτητα του στερεού μεταβάλλεται με το χρόνο όπως στο διπλανό διάγραμμα ω -. Να χαρακτηρίσετε τις παρακάτω προτάσεις
ΣΙΤΣΑΝΛΗΣ ΗΛΙΑΣ ΣΕΛΙΔΑ 1
1. Ένα βλήμα μάζας 0,1 kg που κινείται οριζόντια με ταχύτητα 100 m/s σφηνώνεται σε ακίνητο ξύλο μάζας 1,9 kg. Να βρεθεί η απώλεια ενέργειας που οφείλεται στην κρούση, όταν το ξύλο είναι: α. πακτωμένο στο
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΘΕΜΑ B B1. Σωστή απάντηση είναι η
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ. ΘΕΜΑ Α (μοναδες 25)
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΕΡΕΟ ΘΕΜΑ Α (μοναδες 25) Α1. Σε στερεό που περιστρέφεται γύρω από σταθερό κατακόρυφο άξονα ενεργεί σταθερή ροπή. Τότε αυξάνεται με σταθερό ρυθμό: α. η ροπή αδράνειας του β. η
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ
ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3/2/2016 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m 0.25 Kg κινείται στο επίπεδο xy, με τις εξισώσεις κίνησης
γ) το μέτρο της γωνιακής ταχύτητας του δίσκου τη στιγμή κατά την οποία έχει ξετυλιχθεί όλο το σχοινί.
1. Ο ομογενής και ισοπαχής δίσκος του σχήματος έχει ακτίνα και μάζα, είναι οριζόντιος και μπορεί να περιστρέφεται, χωρίς τριβές, γύρω από κατακόρυφο ακλόνητο άξονα που διέρχεται από το κέντρο του. Ο δίσκος
11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης. Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Αρχή διατήρησης στροφορμής
11 η Εβδομάδα Δυναμική Περιστροφικής κίνησης Έργο Ισχύς στην περιστροφική κίνηση Στροφορμή Αρχή διατήρησης στροφορμής Έργο και ισχύς στην περιστροφική κίνηση Εφαπτομενική δύναμη που περιστρέφει τον τροχό
ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ
ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία
ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.
ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.
2) Ομογενής δίσκος μάζας m και ακτίνας R κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο
- 1 - Επώνυμο.. Όνομα.. Αγρίνιο 22/3/2015 Ζήτημα 1 0 Να επιλεγεί η σωστή πρόταση 1) Ομογενής δίσκος μάζας m και ακτίνας R κυλίεται χωρίς να ολισθαίνει πάνω σε οριζόντιο επίπεδο. Ο δίσκος στρέφεται γύρω
ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ ΜΗΧΑΝΙΚΟΥ ΣΤΕΡΕΟΥ 1. ΘΕΜΑ Α Στις παρακάτω ερωτήσεις Α1-Α.5 να σημειώσετε την σωστή απάντηση
ΦΥΛΛΟ ΑΞΙΟΛΟΓΗΣΗΣ ΜΗΧΑΝΙΚΟΥ ΣΤΕΡΕΟΥ 1 ΘΕΜΑ Α Στις παρακάτω ερωτήσεις Α1-Α.5 να σημειώσετε την σωστή απάντηση Α.1 Το στερεό του σχήματος δέχεται αντίρροπες δυνάμεις F 1 kαι F 2 που έχουν ίσα μέτρα. Το μέτρο
ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ.
ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ
ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/03/2017 (ΑΠΑΝΤΗΣΕΙΣ) ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ
ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 206-207 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΛΥΚΕΙΟΥ (ΠΡΟΕΤΟΙΜΑΣΙΑ) ΗΜΕΡΟΜΗΝΙΑ: 9/03/207 (ΑΠΑΝΤΗΣΕΙΣ) ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό
Παίζοντας με ένα γιο γιο
Παίζοντας με ένα γιο γιο Ένα γιο γιο είναι κατασκευασμένο από ένα λεπτό σωλήνα μάζας m Σ και ακτίνας =π/4 και δύο ομογενείς δίσκους με μάζα m και ακτίνα 0 = ο καθένας. Τα κέντρα των τριών σωμάτων είναι
ΦΥΣΙΚΗ (ΜΗΧΑΝΙΚΗ-ΚΥΜΑΤΙΚΗ)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ- ΗΛΕΚΤΡΟΝΙΚΩΝ ΦΥΣΙΚΗ (ΜΗΧΑΝΙΚΗ-ΚΥΜΑΤΙΚΗ) ΤΜΗΜΑ Α.2 ΚΑΘΗΓ. ΖΑΧΑΡΙΑΔΟΥ ΚΑΤΕΡΙΝΑ ΓΡΑΦΕΙΟ ΖΒ114 (ΡΑΓΚΟΥΣΗ-ΖΑΧΑΡΙΑΔΟΥ) E-mail: zacharia@uniwa.gr
Θέμα Α Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.
Μάθημα/Τάξη: Φυσική Γ Λυκείου Κεφάλαιο: Ταλάντωση Doppler Ρευστά -Στερεό Ονοματεπώνυμο Μαθητή: Ημερομηνία: 04-03-2019 Επιδιωκόμενος Στόχος: 80/100 Θέμα Α Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της
Δύο δίσκοι, μια ράβδος, και ένα ελατήριο
Δύο δίσκοι, μια ράβδος, και ένα ελατήριο Στην διάταξη στου σχήματος εικονίζονται μια ράβδος μάζας Μ, δύο δίσκοι ακτίνας R και μάζας m και ένα ιδανικό ελατήριο σταθεράς k. Αρχικά το σύστημα βρίσκεται σε
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 2013
ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ 03 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. c Α. d Α3. c Α4. c Α5. Σ, Λ, Σ, Σ, Λ ΘΕΜΑ Β Β. Σωστή απάντηση είναι η (γ). Γνωρίζουμε (σχολικό βιβλίο, σελ. 3) ότι ένα
ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση (Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση 1 : Συμπαγής κύλινδρος μάζας Μ συνδεδεμένος σε ελατήριο
ΦΥΕ 4 5 η ΕΡΓΑΣΙΑ Παράδοση 9-5-8 (Οι ασκήσεις είναι βαθμολογικά ισοδύναμες) Άσκηση : Συμπαγής κύλινδρος μάζας Μ συνδεδεμένος σε ελατήριο σταθεράς k = 3. N / και αμελητέας μάζας, κυλίεται, χωρίς να σύρεται,
Δυναμική στερεού. Ομάδα Δ
Δυναμική στερεού. Ομάδα Δ 3.3.41. Ανεμιστήρες. Κατασκευαστής ανεμιστήρων έδωσε 4 σχεδιαστές την εντολή να σχεδιάσουν ανεμιστήρες με βάση έναν κύλινδρο μάζας Μ ακτίνας R και ροπής αδράνειας ως προς το κέντρο
ΟΡΟΣΗΜΟ. Ισχύει: α. L 1. και Κ 1 β. 2L 1 =2L 2 =L 2. και 2Κ 1 γ. L 1
61 Η κινητική ενέργεια ενός δίσκου μάζας m και ακτίνας R που εκτελεί στροφική κίνηση, εξαρτάται: α Μόνο από την γωνιακή του ταχύτητα β Μόνο από την μάζα και την ακτίνα του γ Μόνο από την γωνιακή του ταχύτητα,
Ενδεικτική λύση 3 ου θέματος
Ενδεικτική λύση ου θέματος ΘΕΜΑ ο Η διάταξη του παρακάτω σχήματος αποτελείται από μία κεκλιμένη επιφάνεια (περιοχή Α), μία οριζόντια επιφάνεια (περιοχή Β) και ένα τεταρτοκύκλιο (περιοχή Γ). Ομογενής και
Β. Συµπληρώστε τα κενά των παρακάτω προτάσεων
ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΣΤΕΡΕΟ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΘΕΜΑ Α Α. Στις ερωτήσεις 1 έως 3 επιλέξτε τη σωστή απάντηση 1. Δυο δακτύλιοι µε διαφορετικές ακτίνες αλλά ίδια µάζα κυλάνε χωρίς ολίσθηση σε οριζόντιο έδαφος µε την
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΦΥΣΙΚΗ
ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΦΥΣΙΚΗ Ον/μο:.. Ύλη:Στερεό Είμαστε τυχεροί που είμαστε δάσκαλοι Γ Λυκείου Θετ-Τεχν Κατ. 09-0-14 Θέμα 1 ο : 1) Σε ένα μολύβι που ισορροπεί σε οριζόντια επιφάνεια ασκούμε τις δυνάμεις F 1
ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Θέμα Α. 1. β 2. α 3. γ 4. β 5. Λ,Λ,Λ,Λ,Λ.
ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ- 07 Θέμα Α.. β. α 3. γ 4. β 5. Λ,Λ,Λ,Λ,Λ. Β Στην επιφάνεια ελαστικού μέσου υπάρχουν δύο πανομοιότυπες πηγές κυμάτων που ξεκινούν ταυτόχρονα την ταλάντωση τους. Σε
ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R 2
ΚΕΦΑΛΑΙΟ 4 Γενικές ερωτήσεις Γενικές ασκήσεις Κριτήρια αξιολόγησης ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 Η ράβδος ΟΑ του σχήματος μπορεί να στρέφεται γύρω από τον άξονα z z χωρίς τριβές Tη στιγμή t=0 δέχεται την εφαπτομενική
Αγώνες αυτοκινήτου σε πίστα
Αγώνες αυτοκινήτου σε πίστα Αυτοκίνητο τρέχει στην πίστα που φαίνεται και έχει κυκλικά τόξα ένα ακτίνας 80m και ένα 40m. Αν οδηγός τρέχει ένα πλήρη κύκλο με σταθερή ταχύτητα 50m/s (80km/h) συγκρίνετε την