CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS"

Transcript

1 CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of is: Thus, x y x 4 and y 3. Use matrices to solve: p + 5q p q +.06 p + 5q p q.06 Hence, 5 p q.06 The inverse of is: Thus, p q p 1. and q

2 3. Use matrices to solve: x + y + 3z 5 x 3y z 3 3x + 4y + 5z 3 Since x + y + 3z 5 x 3y z 3 3x + 4y + 5z 3, 1 3 x y z 3 Matrix of cofactors is: and the transpose of cofactors is: ( 11) (7) + 3( 1) 8 The inverse of is: Thus, x y z x 1, y 1 and z 4. Use matrices to solve: 3a + 4b 3c a + b + c 15 7a 5b + 4c 6 Since 3a + 4b 3c a + b + c 15 7a 5b + 4c 6, a b c 6 817

3 Matrix of cofactors is: and the transpose of cofactors is: (18) 4( ) + 3( 4) 154 The inverse of is: Thus, a b c a.5, b 3.5 and c Use matrices to solve: p + q + 3r p + 5q r 1.4 5p q + 7r 3.5 Since p + q + 3r 7.8 p + 5q r 1.4 5p q + 7r p q r 3.5 Matrix of cofactors is: and the transpose of cofactors is: (34) (19) + 3( 7) 85 The inverse of is:

4 Thus, p q r p 4.1, q 1.9 and r.7 6. In two closed loops of an electrical circuit, the currents flowing are given by the simultaneous equations I 1 + I + 4 5I 1 + 3I 1 Use matrices to solve for I 1 and I I 1 + I 4 5I 1 + 3I 1 Hence, 1 I I 1 The inverse of is: Thus, I I I 1 and I 3 7. The relationship between the displacement s, velocity v and acceleration a of a piston is given by the equations s + v + a 4 3s v + 4a 5 3s + v a 4 Use matrices to determine the values of s, v and a. Since s + v + a 4 3s v + 4a 5 819

5 3s + v a 4 1 s v a 4 Matrix of cofactors is: and the transpose of cofactors is: ( 7) ( 15) + (9) 41 The inverse of is: Thus, s v a s, v 3 and a 4 8. In a mechanical system, acceleration x, velocity x and distance x are related by the simultaneous equations: 3.4 x+ 7.0 x 13.x x+ 4.0 x+ 3.5x x+ 6.0 x+ 7.1x Use matrices to find the values of x, x and x. Since 3.4 x+ 7.0 x 13.x x+ 4.0 x+ 3.5x x+ 6.0 x+ 7.1x 15.91, x x x

6 Matrix of cofactors is: and the transpose of cofactors is: (7.4) 7.0 ( 5.05) + ( 13.)( 46.8) The inverse of is: Thus, x x x x.5, x.77 and x

7 EXERCISE 0 Page Use determinants to solve the simultaneous equations: 3x 5y y x Since 3x 5y x x + 7y x y x y and y Use determinants to solve the simultaneous equations:.3m 4.4n n 6.7m 1.3 Since.3m 4.4n m + 8.5n 1.3 m n m m n and n Use determinants to solve the simultaneous equations: 3x + 4y + z 10 x 3y + 5z + 9 x + y z 6 Since 3x + 4y + z 10 x 3y + 5z + 9 x + y z 6 8

8 x y z x y z 1 4( 1) 1(0) 10( 7) 3( 1) 1( 1) 10( 7) 3(0) 4( 1) 10(7) 3( 7) 4( 7) + 1(7) x y z Hence, x , y 14 and z Use determinants to solve the simultaneous equations: 1.p.3q 3.1r p + 3.8q 5.3r p 8.3q + 7.4r Since 1.p.3q 3.1r p + 3.8q 5.3r p 8.3q + 7.4r p q r p q.3(10.17) + 3.1( 71.67) ( 15.87) 1.(10.17) + 3.1(11.6) (54.39) r 1 1.( 71.67) +.3(11.6) ( 53.07) 1.( 15.87) +.3(54.39) 3.1( 53.07) p q r Hence, p , q and r

9 5. Use determinants to solve the simultaneous equations: x y z x y z x + y z Since x y z (1) x y z () x + y z (3) Multiplying each term in (1) by 60 gives: 30x 0y + 4z + 3 Multiplying each term in () by 10 gives: 30x + 80y 60z 57 Multiplying each term in (3) by 60 gives: 60x + 60y 60z 59 x y z x y 0(10) 4( 1300) + 3( 100) 30(10) 4(1650) + 3(1800) z 1 30( 1300) + 0(1650) + 3( 3000) 30( 100) + 0(1800) + 4( 3000) x y z Hence, x , y and z In a system of forces, the relationship between two forces F 1 and F is given by 5F 1 + 3F + 6 3F 1 + 5F + 18 Use determinants to solve for F 1 and F 84

10 Since 5F 1 + 3F + 6 3F 1 + 5F + 18 F1 F F1 F F and F Applying mesh-current analysis to an a.c. circuit results in the following equations: (5 j4) I 1 ( j4) I (4 + j3 j4) I ( j4) I 1 Solve the equations for I 1 and I (5 j4) I 1 ( j4) I ( j4) I 1 + (4 + j3 j4) I + 0 (5 j4) I 1 + j4 I 100 j4 I 1 + (4 j) I + 0 Hence, I1 I 1 j4 100 (5 j4) 100 (5 j4) j4 (4 j) 0 j4 0 j4 (4 j) I1 I 1 100(4 j) j400 (5 j4)(4 j) j4 ( ) Thus, I 1 I1 I j100 j400 3 j1 400 j j A and I j j A 85

11 8. Kirchhoff s laws are used to determine the current equations in an electrical network and show that i 1 + 8i + 3i i 1 i + i 3 5 i 1 3i + i 3 6 Use determinants to solve for i 1, i and i 3 Since i 1 + 8i + 3i i 1 i + i i 1 3i + i 3 6 i i i i1 i i3 1 8( 16) 3(7) + 31( 1) 1( 16) 3( 8) + 31(4) 1(7) 8( 8) + 31( 5) 1( 1) 8(4) + 3( 5) i i i Hence, i , i and i The forces in three members of a framework are F 1, F and F 3. They are related by the simultaneous equations shown below. 1.4 F F +.8 F F F F F F 1.4 F Find the values of F 1, F and F 3 using determinants. 1.4 F F +.8 F F F F F F 1.4 F

12 Hence, F1 F F F1 F.8( 17.64).8(90.16) 5.6( 13.7) 1.4( 17.64).8(170.5) 5.6( 9.4) F (90.16).8(170.5) 5.6(17.64) 1.4( 13.7).8( 9.4) +.8(17.64) F1 F F Thus, F F and F Mesh-current analysis produces the following three equations: 0 0 (5 + 3 j4) I (3 j4) I (3 j4 + ) I (3 j4) I I (1 + ) I I 3 Solve the equations for the loop currents I 1, I and I 3 Rearranging gives: (8 j4) I 1 (3 j4) I + 0 I 3 0 Hence, (3 j4) I 1 + (5 j4) I I 3 j10 0 I 1 I + 14 I 3 + (15 + j10) I1 I I3 (3 j4) 0 0 (8 j4) 0 0 (8 j4) (3 j4) 0 (5 j4) j10 (3 j4) j10 (3 j4) (5 j4) j10 14 (15 + j10) 0 14 (15 + j10) 0 (15 + j10) 1 (8 j4) (3 j4) 0 (3 j4) (5 j4) 0 14 I1 I (3 j4) (15 + j10) + j (5 j4) 4 (8 j4) (15 + j10) + j (3 j4) [ ] [ ] [ ] [ ] 87

13 I3 (8 j4) (5 j4)(15 + j10) j0) + (3 j4) (3 j4)(15 + j10) 0 (3 j4) [ ] [ ] [ ] 1 (8 j4) 14(5 j4) 4 + (3 j4) 14(3 j4) [ ] [ ] I1 I (3 j4) 30 + j j56 (8 j4) 30 + j j56) [ ] [ ] [ ] [ ] I3 (8 j4) 115 j30 + (3 j4) 85 + j30 40(3 j4) [ ] [ ] 1 (8 j4) 66 j56 + (3 j4) 4 + j56 [ ] [ ] I1 I ( 90 + j360 + j ) j j960 + j j110 Hence, I 1 I3 90 j40 j j j j448 j j168 + j I1 I I3 1 ( j640) (1080 j40) (545 j110) (40 j376) ( j640) (40 j376) A I I 3 (1080 j40) (40 j376) A (545 j110) (40 j376) A 88

14 EXERCISE 03 Page Repeat Problems 3, 4, 5, 7 and 8 of Exercise 01 on page 545, using Cramer s rule.. Repeat Problems 3, 4, 8 and 9 of Exercise 0 on page 548, using Cramer s rule. Just a sample of these questions are detailed below. The remainder are left to the reader. 1. Q(3), Exercise 01 Use Cramers rule to solve: x + y + 3z 5 x 3y z 3 3x + 4y + 5z 3 x ( 11) (18) + 3(1) ( 11) (7) + 3( 1) y z (18) 5(7) + 3(15) ( 1) (15) + 5( 1) Q(7), Exercise 01 Use Cramer s rule to solve: s + v + a 4 3s v + 4a 5 3s + v a 4 89

15 s ( 7) ( 9) + (46) 8 1 1( 7) ( 15) + (9) v a ( 9) 4( 15) + ( 87) ( 46) ( 87) + 4(9) Q(8), Exercise 0 Use Cramer s rule to solve: i1+ 8i + 3i3 31 3i1 i + i3 5 i 3i + i i ( 1) 8( 16) + 3(7) ( 1) 8(4) + 3( 5) i i ( 16) + 31(4) + 3(8) ( 7) 8(8) 31( 5)

16 EXERCISE 04 Page In a mass-spring-damper system, the acceleration x m/s, velocity x m/s and displacement x m are related by the following simultaneous equations: 6. x+ 7.9 x x x+ 4.8 x x x+ 3.5 x 13.0 x 17.4 By using Gaussian elimination, determine the acceleration, velocity and displacement for the system, correct to decimal places. 6. x+ 7.9 x+ 1.6x x+ 4.8 x+ 4.8x 6.39 (1) () 13.0 x+ 3.5 x 13.0x 17.4 () (1) gives: x x ( ) (3) (1) gives: x x (3 ) (3 ) ( ) gives: x x From (3 ), x (1.) (3) x (1.) and x (1.) From (1), 6. x+ 7.9(0.60) + 1.6(1.) 18.0 and x 6. x

17 . The tensions, T1, T and T 3 in a simple framework are given by the equations: 5T + 5T + 5T T + T + 4T T + T Determine T 1, T and T 3 using Gaussian elimination. 5T + 5T + 5T 7.0 (1) 1 3 T + T + 4T.4 () 1 3 4T + T + 0T 4.0 (3) 1 3 () 1 5 (1) gives: 0 + T + 3T3 1.0 ( ) (3) 4 5 (1) gives: 0 T 4T3 1.6 (3 ) (3 ) 1 ( ) gives: T 3.4 T 3. In (3 ) T 4(0.) 1.6 and T.4 In (1) 5T 1 + 5(0.4) + 5(0.) 7.0 T T and T Repeat Problems 3, 4, 5, 7 and 8 of Exercise 01 on page 545, using the Gaussian elimination method. These problems are left to the reader using the same method as in the above examples. 4. Repeat Problems 3, 4, 8 and 9 of Exercise 0 on page 548, using the Gaussian elimination method. These problems are left to the reader using the same method as in the above examples. 83

18 EXERCISE 05 Page Determine the (a) eigenvalues (b) eigenvectors for the matrix: (a) The eigenvalue is determined by solving the characteristic equation A λi λ λ λ λ λ (Given a square matrix, we can get used to going straight to this characteristic equation) Hence, ( λ)( 1 λ) ( 4)( 1) λ + λ + λ 4 and λ λ 6 (λ 3)(λ + ) λ 3 λ 3 or λ + λ (Instead of factorizing, the quadratic formula could be used; even electronic calculators can solve quadratic equations) Hence, the eigenvalues of the matrix are 3 and (b) From (a) the eigenvalues of are λ 1 3 and λ Using the equation (A λi)x for λ x x x1 1 4 x 0 833

19 x 4x 1 x1 4x Hence, whatever value x is, the value of x 1 will be 4 times greater. Hence the simplest 4 eigenvector is: x1 1 Using the equation (A λi)x for λ and 4 x x x1 1 1 x 0 4x 4x 1 x + 1 x 0 From either of these two equations, x1 x or x x1 Hence, whatever value x 1 is, the value of x will be the same. Hence the simplest eigenvector 1 is: x 1 4 Summarizing, x1 1 is an eigenvector corresponding to λ and x 1 is an eigenvector corresponding to λ. Determine the (a) eigenvalues (b) eigenvectors for the matrix: (a) The eigenvalue is determined by solving the characteristic equation A λi 3 λ λ Hence, (3 λ)(4 λ) (6)(1) 834

20 1 3λ 4λ + λ 6 and λ 7λ + 6 (λ 1)(λ 6) λ 1 λ 1 or λ 6 λ 6 Hence, the eigenvalues of the matrix are 1 and 6 (b) From (a) the eigenvalues of are λ 1 1 and λ 6 Using the equation (A λi)x for λ x x 0 6 x1 1 3 x 0 x + 6x 1 and x1+ 3x x1 3x Hence, whatever value x is, the value of x 1 will be 3 times greater. Hence the simplest 3 eigenvector is: x1 1 Using the equation (A λi)x for λ 6 and x x x1 1 x 0 3x + 6x 1 x x 1 835

21 From either of these two equations, x1 x Hence, whatever value x is, the value of x 1 will be two times greater. Hence the simplest eigenvector is: x 1 3 Summarizing, x1 1 and x 1 is an eigenvector corresponding to λ 1 1 is an eigenvector corresponding to λ 6 3. Determine the (a) eigenvalues (b) eigenvectors for the matrix: (a) The eigenvalue is determined by solving the characteristic equation A λi 3 λ 1 0 λ Hence, (3 λ)( λ) (1)( ) 3λ + λ + and λ 3λ + (λ 1)(λ ) λ 1 λ 1 or λ λ Hence, the eigenvalues of the matrix are 1 and (b) From (a) the eigenvalues of are λ 1 1 and λ Using the equation (A λi)x for λ x1 0 1 x 0 836

22 1 x1 1 x 0 x + x 1 and x1 x x x1 Hence, whatever value x 1 is, the value of x will be times greater. Hence the simplest 1 eigenvector is: x1 Using the equation (A λi)x for λ and 3 1 x1 0 x x1 x 0 x + 1 x 0 x x 1 From either of these two equations, x1 x or x x1 Hence, whatever value x 1 is, the value of x will be 1 times greater. Hence the simplest 1 eigenvector is: x 1 1 Summarizing, x1 1 and x 1 is an eigenvector corresponding to λ 1 1 is an eigenvector corresponding to λ 4. Determine the (a) eigenvalues (b) eigenvectors for the matrix:

23 (a) The eigenvalue is determined by solving the characteristic equation A λi 1 λ λ λ Hence, using the top row: ( 1 λ)[ ( λ)(5 λ) (4)(1) ] 1[ 4(5 λ) (4)( 1) ] + 1[ ( 4)(1) ( 1)( λ) ( 1 λ)[ 10 λ 5λ + λ 4 ] + 1[ 0 + 4λ + 4] + 1[ 4 + λ ] ( 1 λ)[ λ 7λ + 6 ] λ λ and λ + 7λ 6 λ λ 6λ λ λ λ λ Using the factor theorem or an electronic calculator, λ, λ 6 or λ + 4λ 4 Hence, the eigenvalues of the matrix are, 6 and (b) From (a), the eigenvalues of Using the equation (A λi)x for λ 1 From the second equation, x1 4 4 x x x x x 3x1 x + x3 4x1+ 4x3 x + x + 3x 1 3 x x 1 3 are λ 1, λ 6 and λ 3 838

24 Substituting in the first equation, 3x x + x x x Hence,when x 1, x and x Hence the simplest eigenvector corresponding to λ 1 is: x1 1 Using the equation (A λi)x for λ x x x x x x 7x1 x + x3 4x1 4x + 4x3 x1+ x x3 From the third equation, x1 x x3 Substituting in the first equation, 7( x x ) x + x 8x + 8x x x Hence, x1 x x3 Hence, if x 1, x3 1 and x Hence the simplest eigenvector corresponding to λ 6 is: x 1 1 Using the equation (A λi)x for λ x1 4 4 x x x x x 839

25 From the second equation, Substituting in the first equation, x1 x + x3 4x1+ 4x + 4x3 x + x + 7x 1 3 x1 x + x3 ( x + x ) x + x x and x x Hence, if x1 1, x 1 and x3 1 Hence the simplest eigenvector corresponding to λ is: x Determine the (a) eigenvalues (b) eigenvectors for the matrix: (a) The eigenvalue is determined by solving the characteristic equation A λi 1 λ λ λ Hence, using the top row: (1 λ)[ ( λ)(1 λ) ( 1)( 1) ] 1[ 1(1 λ) ( 1)(0) ] + 0 (1 λ)[ λ λ + λ 1 ] + 1[ 1 + λ ] (1 λ)[ λ 3λ + 1 ] 1 + λ and λ 3λ + 1 λ λ λ 1 + λ λ λ 3λ λ 3 4 λ + 3λ λ( λ 4λ + 3) and λ(λ 1)(λ 3) Hence, λ, λ 1 or λ 3 840

26 Hence, the eigenvalues of the matrix are 0, 1 and (b) From (a), the eigenvalues of Using the equation (A λi)x for λ 1 From the first equation, From the third equation, x x x x1 1 1 x x x1 x x1+ x x3 x + x 3 0 x x x 1 x 3 are λ 1, λ 1 and λ 3 3 Hence,when x1 1, x 1 and x3 1 1 Hence the simplest eigenvector corresponding to λ 1 is: x1 1 1 Using the equation (A λi)x for λ x x x x x x x x + x x

27 From the second equation, x x x since x 1 3 Hence, if x1 1, x3 1 and x 1 Hence the simplest eigenvector corresponding to λ 1 is: x 1 Using the equation (A λi)x for λ 3 From the first equation, x x x 1 0 x x 0 1 x x1 x x1 x x3 x x 3 Substituting in the second equation, x x 1 x ( x ) x x x Hence, if x1 1, x and x3 1 1 Hence the simplest eigenvector corresponding to λ 3 3 is: x Determine the (a) eigenvalues (b) eigenvectors for the matrix: (a) The eigenvalue is determined by solving the characteristic equation A λi λ 1 3 λ 1 1 λ 84

28 Hence, using the top row: ( λ)[ (3 λ)( λ) (1)() ] [ 1( λ) (1)(1) ] + [ (1)() 1(3 λ) ] ( λ)[ 6 3λ λ + λ ] [ λ 1 ] [ 3 + λ] ( λ)[ λ 5λ + 4 ] + λ + λ and λ 10λ + 8 λ λ 4λ λ λ 14λ + 8 λ 3 7 λ + 14λ 8 Hence, by calculator, λ 1, λ or λ 4 Hence, the eigenvalues of the matrix are 1, and 4 (b) From (a), the eigenvalues of Using the equation (A λi)x for λ x x 1 1 x 1 x1 1 1 x 1 1 x x1+ x x3 x + x + x 1 3 Subtracting one equation from the other gives: and from the first equation, x 3 x x 1 are λ 1 1, λ and λ 3 4 Hence,when x 1, x and x 1 3 Hence the simplest eigenvector corresponding to λ 1 1 is: x

29 Using the equation (A λi)x for λ From the first equation, x x 1 x 0 x x 1 0 x x x3 x1+ x + x3 x + x 1 x x 3 From the third equation, x x ie.. x x Hence, if x 1, x3 1 and x1 Hence the simplest eigenvector corresponding to λ is: x 1 1 Using the equation (A λi)x for λ 4 4 x x 1 4 x x x 1 x x1+ x x3 x1 x + x3 x + x x 1 3 Subtracting the third equation from the first equation gives: From the second equation, x 1 x x since x

30 Hence, if x 1, x3 1 and x1 0 Hence the simplest eigenvector corresponding to λ 3 4 is: x Determine the (a) eigenvalues (b) eigenvectors for the matrix: (a) The eigenvalue is determined by solving the characteristic equation A λi 1 λ 1 0 λ λ Hence, using the top row: (1 λ)[ ( λ)(3 λ) (1)() ] 1[ 0 ( 1)() ] + [ 0 ( 1)( λ) (1 λ)[ 6 λ 3λ + λ ] + [ λ ] (1 λ)[ λ 5λ + 4 ] + 4 λ and λ 5λ + 4 λ λ 4λ + λ λ λ 11λ + 6 λ 3 6 λ + 11λ 6 Hence, using a calculator, λ 1, λ or λ 3 Hence, the eigenvalues of the matrix are 1, and (b) From (a), the eigenvalues of Using the equation (A λi)x for λ 1 1 are λ 1 1, λ and λ x1 0 1 x x 845

31 From the first equation, From the third equation, 0 1 x1 0 1 x 1 1 x x + x3 x + x + x 1 3 x x 3 x + ( x ) + x x Hence,when x 1, x and x Hence the simplest eigenvector corresponding to λ 1 1 is: x1 1 Using the equation (A λi)x for λ 1 1 x1 0 x x 1 1 x1 0 0 x x x1+ x + x3 x 3 x1+ x + x3 From the second equation, x 3 From the first equation, x x 1 Hence, if x1 1, x 1 and x3 1 Hence the simplest eigenvector corresponding to λ is: x 1 0 Using the equation (A λi)x for λ

32 From the third equation, From the second equation, x1 0 3 x x 1 x1 0 1 x x x1+ x + x3 x + x3 x + x x x 1 0 x 1 x 3 Hence, if x1 1, x 1 and x3.5 or if x1, x and x3 1 Hence the simplest eigenvector corresponding to λ 3 3 is: x

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Jordan Form of a Square Matrix

Jordan Form of a Square Matrix Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

The Jordan Form of Complex Tridiagonal Matrices

The Jordan Form of Complex Tridiagonal Matrices The Jordan Form of Complex Tridiagonal Matrices Ilse Ipsen North Carolina State University ILAS p.1 Goal Complex tridiagonal matrix α 1 β 1. γ T = 1 α 2........ β n 1 γ n 1 α n Jordan decomposition T =

Διαβάστε περισσότερα

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Experiental Copetition: 14 July 011 Proble Page 1 of. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Ένα μικρό σωματίδιο μάζας (μπάλα) βρίσκεται σε σταθερή απόσταση z από το πάνω μέρος ενός

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix Testing for Indeterminacy: An Application to U.S. Monetary Policy Technical Appendix Thomas A. Lubik Department of Economics Johns Hopkins University Frank Schorfheide Department of Economics University

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw Macromechanics of a Laminate Tetboo: Mechanics of Composite Materials Author: Autar Kaw Figure 4.1 Fiber Direction θ z CHAPTER OJECTIVES Understand the code for laminate stacing sequence Develop relationships

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

EE101: Resonance in RLC circuits

EE101: Resonance in RLC circuits EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

MATRICES

MATRICES MARICES 1. Matrix: he arrangement of numbers or letters in the horizontal and vertical lines so that each horizontal line contains same number of elements and each vertical row contains the same numbers

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram? HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? The point on the horizontal axis such that of the area under the histogram lies to the left of that point (and to the right) What

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Lecture 6 Mohr s Circle for Plane Stress

Lecture 6 Mohr s Circle for Plane Stress P4 Stress and Strain Dr. A.B. Zavatsk HT08 Lecture 6 Mohr s Circle for Plane Stress Transformation equations for plane stress. Procedure for constructing Mohr s circle. Stresses on an inclined element.

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα IPHO_42_2011_EXP1.DO Experimental ompetition: 14 July 2011 Problem 1 Page 1 of 5 1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα Για ένα πυκνωτή χωρητικότητας ο οποίος είναι μέρος

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

MATRIX INVERSE EIGENVALUE PROBLEM

MATRIX INVERSE EIGENVALUE PROBLEM English NUMERICAL MATHEMATICS Vol.14, No.2 Series A Journal of Chinese Universities May 2005 A STABILITY ANALYSIS OF THE (k) JACOBI MATRIX INVERSE EIGENVALUE PROBLEM Hou Wenyuan ( ΛΠ) Jiang Erxiong( Ξ)

Διαβάστε περισσότερα

DETERMINATION OF FRICTION COEFFICIENT

DETERMINATION OF FRICTION COEFFICIENT EXPERIMENT 5 DETERMINATION OF FRICTION COEFFICIENT Purpose: Determine μ k, the kinetic coefficient of friction and μ s, the static friction coefficient by sliding block down that acts as an inclined plane.

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 Chapter 7: Exercises 1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1 35+n:30 n a 35+n:20 n 0 0.068727 11.395336 10 0.097101 7.351745 25

Διαβάστε περισσότερα

Correction Table for an Alcoholometer Calibrated at 20 o C

Correction Table for an Alcoholometer Calibrated at 20 o C An alcoholometer is a device that measures the concentration of ethanol in a water-ethanol mixture (often in units of %abv percent alcohol by volume). The depth to which an alcoholometer sinks in a water-ethanol

Διαβάστε περισσότερα

Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Matrices Review. Here is an example of matrices multiplication for a 3x3 matrix

Matrices Review. Here is an example of matrices multiplication for a 3x3 matrix Matrices Review Matri Multiplication : When the number of columns of the first matri is the same as the number of rows in the second matri then matri multiplication can be performed. Here is an eample

Διαβάστε περισσότερα

Calculating the propagation delay of coaxial cable

Calculating the propagation delay of coaxial cable Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

X = [ 1 2 4 6 12 15 25 45 68 67 65 98 ] X X double[] X = { 1, 2, 4, 6, 12, 15, 25, 45, 68, 67, 65, 98 }; double X.Length double double[] x1 = { 0, 8, 12, 20 }; double[] x2 = { 8, 9, 11, 12 }; double mean1

Διαβάστε περισσότερα

ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ ΣΕ Φ/Β ΠΑΡΚΟ 80KWp

ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ ΣΕ Φ/Β ΠΑΡΚΟ 80KWp ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ

Διαβάστε περισσότερα

is like multiplying by the conversion factor of. Dividing by 2π gives you the

is like multiplying by the conversion factor of. Dividing by 2π gives you the Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

Risk! " #$%&'() *!'+,'''## -. / # $

Risk!  #$%&'() *!'+,'''## -. / # $ Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Άσκηση αυτοαξιολόγησης 4 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών CS-593 Game Theory 1. For the game depicted below, find the mixed strategy

Διαβάστε περισσότερα

x j (t) = e λ jt v j, 1 j n

x j (t) = e λ jt v j, 1 j n 9.5: Fundamental Sets of Eigenvector Solutions Homogenous system: x 8 5 10 = Ax, A : n n Ex.: A = Characteristic Polynomial: (degree n) p(λ) = det(a λi) Def.: The multiplicity of a root λ i of p(λ) is

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ Πτυχιακή εργασία ΕΝΕΡΓΟ ΦΙΛΤΡΟ ΔΙΑΚΟΠΤΙΚΟΥ ΠΗΝΙΟΥ ( Switched Inductor Variable Filter ) Ευτυχία Ιωσήφ Λεμεσός, Μάιος 2016 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

Ιστορία νεότερων Μαθηματικών

Ιστορία νεότερων Μαθηματικών Ιστορία νεότερων Μαθηματικών Ενότητα 3: Παπασταυρίδης Σταύρος Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών Περιγραφή Ενότητας Ιταλοί Αβακιστές. Αλγεβρικός Συμβολισμός. Άλγεβρα στην Γαλλία, Γερμανία, Αγγλία.

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

ECON 381 SC ASSIGNMENT 2

ECON 381 SC ASSIGNMENT 2 ECON 8 SC ASSIGNMENT 2 JOHN HILLAS UNIVERSITY OF AUCKLAND Problem Consider a consmer with wealth w who consmes two goods which we shall call goods and 2 Let the amont of good l that the consmer consmes

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

14 Lesson 2: The Omega Verb - Present Tense

14 Lesson 2: The Omega Verb - Present Tense Lesson 2: The Omega Verb - Present Tense Day one I. Word Study and Grammar 1. Most Greek verbs end in in the first person singular. 2. The present tense is formed by adding endings to the present stem.

Διαβάστε περισσότερα

The Spiral of Theodorus, Numerical Analysis, and Special Functions

The Spiral of Theodorus, Numerical Analysis, and Special Functions Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6

Διαβάστε περισσότερα

Code Breaker. TEACHER s NOTES

Code Breaker. TEACHER s NOTES TEACHER s NOTES Time: 50 minutes Learning Outcomes: To relate the genetic code to the assembly of proteins To summarize factors that lead to different types of mutations To distinguish among positive,

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3. Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16

Διαβάστε περισσότερα

Derivation of Quadratic Response Time Dependent Hartree-Fock (TDHF) Equations

Derivation of Quadratic Response Time Dependent Hartree-Fock (TDHF) Equations Derivation of Quadratic Response Time Dependent Hartree-Fock (TDHF) Equations Joshua Goings, Feizhi Ding, Xiaosong Li Department of Chemistry, University of Washington Nember 21, 2014 1 Derivation of Equations

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Διπλωματική Εργασία του φοιτητή του τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Ηλεκτρονικών

Διαβάστε περισσότερα

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΚΑ ΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕ ΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ :ΤΥΠΟΙ ΑΕΡΟΣΥΜΠΙΕΣΤΩΝ ΚΑΙ ΤΡΟΠΟΙ ΛΕΙΤΟΥΡΓΙΑΣ ΣΠΟΥ ΑΣΤΡΙΑ: ΕΥΘΥΜΙΑ ΟΥ ΣΩΣΑΝΝΑ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ : ΓΟΥΛΟΠΟΥΛΟΣ ΑΘΑΝΑΣΙΟΣ 1 ΑΚΑ

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

1) Formulation of the Problem as a Linear Programming Model

1) Formulation of the Problem as a Linear Programming Model 1) Formulation of the Problem as a Linear Programming Model Let xi = the amount of money invested in each of the potential investments in, where (i=1,2, ) x1 = the amount of money invested in Savings Account

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

CYLINDRICAL & SPHERICAL COORDINATES

CYLINDRICAL & SPHERICAL COORDINATES CYLINDRICAL & SPHERICAL COORDINATES Here we eamine two of the more popular alternative -dimensional coordinate sstems to the rectangular coordinate sstem. First recall the basis of the Rectangular Coordinate

Διαβάστε περισσότερα