V. Finite Element Method. 5.1 Introduction to Finite Element Method
|
|
- Χριστός Βέργας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 V. Fnte Element Method 5. Introducton to Fnte Element Method
2 5. Introducton to FEM
3 Rtz method to dfferental equaton Problem defnton k Boundary value problem Prob. Eact : d d, 0 0 0, 0 ( ) ( ) 4 C C * 4 ( ) Varatonal prncple Prob. d Etremze F( ( ) d 0 d subject to (0) 0, () 0 0 0, 0 * F F * 4
4 Rtz method to dfferental equaton Etremzaton of a functon and ts related algebrac equaton y ( )( ) 0 Etremze y ( ) Etremzaton of a functonal and ts related dfferentaton equaton dt, 0, T (0) 0, T () 0 d dt ( ) ( ) 0 Etremze F T T d d T(0) 0, T() 0 ( Prob. A) ( Prob. B) Tral functon: n T ( ) C f ( ), T (0) 0, T () 0
5 Rtz method to dfferental equaton Appromaton ( ) C C Transformaton: Functon space Fnte dmensonal vector space 3 4 F( ) C C 3 C C d 0 d C 3 d C 0 0 Necessary condton for F( C, C ) to be etreme : d C C d C d C F( C, C ) F( ) C C C C C C Lnear equaton: Appromate soluton: Tral functon F C F 0, 0 C 0 5 C 3 C, C C ( ) d Etremze F( ( ) d 0 d subject to (0) 0, () 0 Eact soluton * 4 ( )
6 Weghted resdual approach to dfferental equaton d d 0 0, 0 0, 0 Prob. Prob. b a ( ) ( ) ( ) ( ) ( ) d (0) () 0 Assume (0) () 0 ( ) s arbtrary. b a u v uv uv b a d 0 d 0 0 ( ) d 0 cos tan 0 0, 0 Set of functons e 4 log sn Weak form [ ( ) ( ) ( )] d 0 0 (0) 0, () 0 where ( ) s s arbtrary ecept eptthat that (0) 0 and () 0 cos tan 0 0, 0 * e 4 log sn
7 Galerkn approach Lnear equatons Appro. soluton : ( ) C C ; C and C are unknown Tral functon ( ) W W ; W and W are arbtrary C ( ) C ( 3 ) W ( ) W ( 3 ) d W ( ) W ( ) d 0 3 W ( )( ) d C 0 ( )( 3 ) d C 0 ( ) d d 0 4 W ( 3 )( ) d C 0 ( 3 )( 3 ) d C 0 ( ) d 0 0 W W W are W are arbtrary Appromate weghtng functon 0 5 C 3 C, C C ( ) Basc functon ( ) ( ) ( ) ( ), d, etc , 0 Set of appromate weghtng functons 4 e log sn
8 Error.% * * 0, 7 0,, Error 0% Requrements on basc functon Lnearly ndependent * p H Accuracy of the appromate soluton Comparson between appromate and eact solutons ma , Characterstcs of soluton convergence or C ma p ( ) ( ) ( ) * 4 ( ) 3 Accuracy Accuracy n n ( C ( )) ( C ( )) Eact Appromate n * lm C ( ) ( ) n ma <Comparson of appromate and eact solutons>
9 Basc dea of Fnte Element Method (FEM) C Tral functon : C C for 0 ( ) for Appromate soluton : 7 7 ( ) 9 96 Superconvergence Eact FE soluton <Basc functon = Interpolaton functon> <Comparson of FE soluton wth eact soluton>
10 FE solutons wth dfferent FEA models FEM = Rtz or Galerkn method + FE dscretzaton and nterpolaton (appromaton) FE dscretzaton and nterpolaton functon: N ( ) Technque of makng basc functons N ( ) N ( ) N ( ) N ( ) 3 N ( ) 0 0 Node Element ( ) N ( ) N ( ) n Fnte Element Method 3 3 Fnte element solutons ( ) C ( ) C ( ) n Rtz or Galerkn method Eact FE solutons
11 Rtz method to a beam deflecton Defnton of a beam deflecton problem EIv( ) M ( ), v(0) 0, v( L) 0 b BVP based on beam theory: d d v(0) 0, v() 0, 0 V( ) Varatonal prncple: dv Etremze F( v) ( ) v( ) d 0 d subject to v() 0 Rtz method It should satsfy essental boundary condton, ()=0 [E..] [E..] EI, w, L 0 v( ) = C (-) v( ) = C (- ) C (-) v( ) = C (- ) C (- ) [E. -3] v V M ( ) b Soluton: 0 0 M ( ) b 4 * 5 v ( )
12 Rtz method to a beam deflecton [E..3] : v( ) C ( ) C ( ) 3 F( v) { 0 C ( 3 ) C( )} ( ){ C ( ) C( )} d 5 C 4 C C 6 C C C F( C, C ) C C v Eact: 4 * 5 v ( )
13 5. FEM of Partal Dfferental Equatons
14 Posson s equaton Posson s equaton D d, 0 d k k f (, y) 0 y 0 0, 0 T T on S T D = 3D d Etremze F( ( ) d 0 d subject to (0) 0, () 0 Etremze F( ) (, ) (, ) k k f y y ddy y subject to T T on S (, ) (, ) (, ) T y N y N y N?,? J J J N J J Nodal value
15 Mesh system Mesh Interpolaton functon N (, y) J J η - ξ -
16 Intellgent remeshng of quadrlaterals
17 Intellgent remeshng of tetrahedrals Accurate descrpton wth mnmum elements! As number of elements ncreases, that of remeshngs does so much, whch deterorates soluton accuracy.
18 D mesh systems wth hgher qualty Intal Fnal
19 KSTP Fall 06. 3D mesh systems wth hgher qualty
20 4.5 Fnte element formulaton Equaton of equlbrum q j, g j j j,,t Equaton of heat conducton T
21 Coordnate as Frst and second order Permutaton symbol ε jk j y e u = u or u σ j = σ j = σ σ σ 3 σ σ σ 3 = σ 3 σ 3 σ 33 σ σ y σ z σ y σ yy σ yz σ z σ zy σ zz ε jk 0 f f f = j or j = k or k =, j, k =,,3 or,3, = 3,,, j, k =,3, or,,3 = 3,, e 3 e k 3 z, y, z as,, 3 as Partal dfferentaton φ, = φ, φ,j = φ j, v,j = v, σ j,j = σ j j Eamples W = a b W = a b c = a b c = ε jk a j b k Mechancal quanttes u, u y u, u σ y or τ y σ Unt vector 3 j= Summaton σ j,j + f = 0 σ j,j + f = 0 Free nde: once n a term (cannot be change) Dummy nde: twce n a term grad φ φ, dv v curl v φ v. ε jk v k,j φ,, j, k e, e, e 3 Dvergence theorem Kronecker delta δ j δ j 0 f j f = j Q jk,m..m, dv = Q jk,m..m n ds V S n : Outwardly drected unt normal vector
22 S Fnte element analyss of 3D elastc problems of sotropc materals VV P Fnte element equatons u S Weak form dv t ds f dv 0 V j j S V t u u, 0 on S u j j yy yy zz zz y y yz yz z z, yy, zz, y, yz, z, D yy, j j 3N N U I I I D B U j jj J j j ( D B U )( B W ) j jj J I I W B D B U I ji j jj J T T W B D B U Galerkn appromaton Stffness matr NW I I Shape functon matr B U I I Nodal dsplacement zz 3, 3 y,, yz, 3 3, z 3,, 3 N N N I, I, 3 I, 3 WI BIWI N I, N I, N N K U F K IJ J I B D B dv IJ V I j jj Weghted resdual method N I, 3 3 I, N 3 I, I, 3 Force vector t T j (, j j, ) u, u yy, u zz 3, 3 u y, u, u yz, 3 u 3, u z 3, u, 3 I Stran-dsplacement matr Elastc matr E( ) D ( )( ) /( ), ( ) / ( ) W I BI Dj B jj dv U J t NI ds f NI dv 0 V St V F t N ds f N dv I S I V I N, 0 0 N, 0 0 N N, N, 0 0 N, 0 0 N N, N 0 0 N 0 0 N N, N, 0 N, N, 0 N N, N N, 0 0 N N 0 N N 0 N N N 0 N N 0 N N 0 N, 3, 3 N, 3, 3,, 3, N, 3 N,, 3,, 3, N, 3 N,
23 Rgd-plastc fnte element method Weak form Penalty method Penalty constant dv K dv t ds ds V j j V jj S S t t t c 0 Weak form Lagrange multpler method Lagrange multpler Med formulaton: knowns of velocty and pressure dv p dv f dv v qdv t ds ds j j, t t 0 V V V V S S t c j j ( DB U )( B W ) j jj J I I W B DB U I I j jj J T T W B D B U j j j 3 3 klkl 3 Non-lnear Numercal problem occurs n the elastc regon. Mnmum allowable effectve stran rate s needed. W I BI D jbjj dv U J N V V I, HM dv PM t S NIdS f NIdV t V Q N H dv U M J, M J 0 V Fnte element equatons K j CIQ U J FI CMJ 0 MQ P Q G M Over-constraned problem -Reduced ntegraton -MINI-element K IJ B V I D jbjj dv CIM NI, HM dv V
24 Fnte element equatons of heat conducton Weak form V T ( c kt Q ) dv q h ( T T ) ds h ( T T ) ds S e t 4 4 ( T T ) h ( ) 0 e e T Te ds,, f c c q w S S c q Q C g j j Fnte element equatons T N T N W I I I I T NI TI t TI TI TI TI TI t t t t t T T T t I I I [,, W cn T N kn N T QN dv q h N T T N ds I J J I J I J I f c J J c I V Sc 4 4 h N T T N ds ( N T ) T h N T T N ds 0 Sq q J J w I J J e e J J e I Sc C T ( K K K K K ) T Q Q Q Q IJ J IJ IJ IJ IJ IJ J I I I I 0,,, 3, 4, ( CIJ /( t) KIJ KIJ KIJ KIJ KIJ ) TJ Q Q Q Q C T /( t),, 3, 4, I I I I IJ J C cn N dv IJ V I J K k N N dv K 0 IJ V I, J, IJ S c I J c h N N ds K K ( N N ) N N dv 4 3 IJ S I J I J e K 3 IJ S e I J e IJ S q I J q h N N ds h N N ds Q I V Q N dv I Q ( T h T ) N ds 4 4 I Se e e e I Q ( q h T ) N ds ] I Sc f c c I Q h T N ds 3 I Sq q w I
25 - 5 - Coupled analyss Equaton of equlbrum q j, g j j j,,t Equaton of heat conducton T
Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion
Symplectcty of the Störmer-Verlet algorthm for couplng between the shallow water equatons and horzontal vehcle moton by H. Alem Ardakan & T. J. Brdges Department of Mathematcs, Unversty of Surrey, Guldford
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();
Classical Theory (3): Thermostatics of Continuous Systems with External Forces
Insttute of Flu- & Thermoynamcs Unersty of Segen Classcal Theory (3): Thermostatcs of Contnuous Systems wth External Forces 3/ Σ: Equlbrum State? Isolaton, Inhomogenety External Forces F ϕ Components:...
Phasor Diagram of an RC Circuit V R
ESE Lecture 3 Phasor Dagram of an rcut VtV m snt V t V o t urrent s a reference n seres crcut KVL: V m V + V V ϕ I m V V m ESE Lecture 3 Phasor Dagram of an L rcut VtV m snt V t V t L V o t KVL: V m V
Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).
Vol. 4 ( 214 ) No. 4 J. of Math. (PRC) 1,2, 1 (1., 472) (2., 714) :.,.,,,..,. : ; ; ; MR(21) : 9B2 : : A : 255-7797(214)4-759-7 1,,,,, [1 ].,, [4 6],, Frank-Wolfe, Frank-Wolfe [7],.,,.,,,., UE,, UE. O-D,,,,,
Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University
A Study on Predctve Control Usng a Short-Term Predcton Method Based on Chaos Theory (Predctve Control of Nonlnear Systems Usng Plural Predcted Dsturbance Values) Noryasu MASUMOTO, Waseda Unversty, 3-4-1
ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,
ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα Βασίλειος Σύρης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εαρινό εξάμηνο 2008 Economcs Contents The contet The basc model user utlty, rces and
Stochastic Finite Element Analysis for Composite Pressure Vessel
* ** ** Stochastc Fnte Element Analyss for Composte Pressure Vessel Tae Kyung Hwang Young Dae Doh and Soon Il Moon Key Words : Relablty Progressve Falure Pressure Vessel Webull Functon Abstract ABAQUS
One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF
One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ
Solutions for Mathematical Physics 1 (Dated: April 19, 2015)
Solutons for Mathematcal Physcs 1 Dated: Aprl 19, 215 3.2.3 Usng the vectors P ê x cos θ + ê y sn θ, Q ê x cos ϕ ê y sn ϕ, R ê x cos ϕ ê y sn ϕ, 1 prove the famlar trgonometrc denttes snθ + ϕ sn θ cos
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2
Aerodynamics & Aeroelasticity: Eigenvalue analysis
Εθνικό Μετσόβιο Πολυτεχνείο Natonal Techncal Unversty of Athens Aerodynamcs & Aeroelastcty: Egenvalue analyss Σπύρος Βουτσινάς / Spyros Voutsnas Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
A domain decomposition method for the Oseen-viscoelastic flow equations
A doman decomposton method for the Oseen-vscoelastc flow equatons Eleanor Jenkns Hyesuk Lee Abstract We study a non-overlappng doman decomposton method for the Oseen-vscoelastc flow problem. The data on
The unified equations to obtain the exact solutions of piezoelectric plane beam subjected to arbitrary loads
Journal of Mecancal Scence Tecnology (7 ( 8~8 wwwsprngerlnkcom/content/78-9 DOI 7/s--- Te unfed equatons to obtan te eact solutons of peoelectrc plane beam subjected to arbtrary loads Zang ang *, Gao Puyun,
1 Complete Set of Grassmann States
Physcs 610 Homework 8 Solutons 1 Complete Set of Grassmann States For Θ, Θ, Θ, Θ each ndependent n-member sets of Grassmann varables, and usng the summaton conventon ΘΘ Θ Θ Θ Θ, prove the dentty e ΘΘ dθ
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Discretization of Generalized Convection-Diffusion
Discretization of Generalized Convection-Diffusion H. Heumann R. Hiptmair Seminar für Angewandte Mathematik ETH Zürich Colloque Numérique Suisse / Schweizer Numerik Kolloquium 8 Generalized Convection-Diffusion
α & β spatial orbitals in
The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΚΛΑ ΕΜΑ ΟΜΑ ΑΣ ΚΑΤΑ ΠΕΡΙΠΤΩΣΗ ΜΕΣΩ ΤΑΞΙΝΟΜΗΣΗΣ ΠΟΛΛΑΠΛΩΝ ΕΤΙΚΕΤΩΝ» (Instance-Based Ensemble
8.323 Relativistic Quantum Field Theory I
MIT OpenCourseWare http://ocwmtedu 8323 Relatvstc Quantum Feld Theory I Sprng 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocwmtedu/terms 1 The Lagrangan: 8323 Lecture
8.324 Relativistic Quantum Field Theory II
Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton
Πεπερασμένες διαφορές για την ελλειπτική εξίσωση στις δύο διαστάσεις
Κεφάλαιο 9 Πεπερασμένες διαφορές για την ελλειπτική εξίσωση στις δύο διαστάσεις Σε αυτό το κεφάλαιο θεωρούμε μια απλή ελλειπτική εξίσωση, στις δύο διαστάσεις. Θα κατασκευάσουμε μεθόδους πεπερασμένων διαφορών
A Lie Symmetry Analysis of the Black-Scholes Merton Finance Model through modified Local one-parameter transformations
A Le Symmetry Analyss of the Black-Scholes Merton Fnance Model through modfed Local one-parameter transformatons by Tshdso Phanuel Masebe Submtted n accordance wth the requrements for the degree of Doctor
Non polynomial spline solutions for special linear tenth-order boundary value problems
ISSN 746-7233 England UK World Journal of Modellng and Smulaton Vol. 7 20 No. pp. 40-5 Non polynomal splne solutons for specal lnear tenth-order boundary value problems J. Rashdna R. Jallan 2 K. Farajeyan
Constant Elasticity of Substitution in Applied General Equilibrium
Constant Elastct of Substtuton n Appled General Equlbru The choce of nput levels that nze the cost of producton for an set of nput prces and a fed level of producton can be epressed as n sty.. f Ltng for
THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey
THE SECOND WEIGHTED MOMENT OF ζ by S. Bettn & J.B. Conrey Abstract. We gve an explct formula for the second weghted moment of ζs) on the crtcal lne talored for fast computatons wth any desred accuracy.
Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik
Affine Weyl Groups Gabriele Nebe Lehrstuhl D für Mathematik Summerschool GRK 1632, September 2015 Crystallographic root systems. Definition A crystallographic root system Φ is a finite set of non zero
8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές
8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ ICA: συναρτήσεις κόστους & εφαρμογές ΚΎΡΤΩΣΗ (KUROSIS) Αθροιστικό (cumulant) 4 ης τάξεως μίας τ.μ. x με μέσο όρο 0: kurt 4 [ x] = E[ x ] 3( E[ y ]) Υποθέτουμε διασπορά=: kurt[ x]
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
Magnetized plasma : About the Braginskii s 1 macroscopic model 2
Magnetzed plasma : About the Bragnsk s 1 macroscopc model 2 B. Nkonga JAD Unv. Nce/INRIA Sopha-Antpols 1 S. I. Bragnsk, n Revews of Plasma Physcs, edted by M. A. Leontovch Consultants Bureau, New York,
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a
Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Some generalization of Cauchy s and Wilson s functional equations on abelian groups
Aequat. Math. 89 (2015), 591 603 c The Author(s) 2013. Ths artcle s publshed wth open access at Sprngerlnk.com 0001-9054/15/030591-13 publshed onlne December 6, 2013 DOI 10.1007/s00010-013-0244-4 Aequatones
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Computing the Gradient
FMIA F. Moukalled L. Mangani M. Darwish An Advanced Introduction with OpenFOAM and Matlab This textbook explores both the theoretical oundation o the Finite Volume Method (FVM) and its applications in
Ed Stanek. c08ed01v6.doc A version of the grant proposal to be submitted for review in 2008.
Relatnhp between tatn ued b ew Grant Applcatn, and Regren Predctr Develpment f Gnzala wth Suggeted Change t Cmmn tatn Baed n Gnzala and Stanek ntrductn Ed Stanek We lt ntatn ued n tw prncpal dcument, wth
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
LECTURE 4 : ARMA PROCESSES
LECTURE 4 : ARMA PROCESSES Movng-Average Processes The MA(q) process, s defned by (53) y(t) =µ ε(t)+µ 1 ε(t 1) + +µ q ε(t q) =µ(l)ε(t), where µ(l) =µ +µ 1 L+ +µ q L q and where ε(t) s whte nose An MA model
Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler
EΘΝΙΚΟ ΜΕΤΣΟΒΕΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler Συντάκτης: ΜΑΡΗΣ
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
2 Lagrangian and Green functions in d dimensions
Renormalzaton of φ scalar feld theory December 6 Pdf fle generated on February 7, 8. TODO Examne ε n the two-pont functon cf Sterman. Lagrangan and Green functons n d dmensons In these notes, we ll use
Computing the Macdonald function for complex orders
Macdonald p. 1/1 Computing the Macdonald function for complex orders Walter Gautschi wxg@cs.purdue.edu Purdue University Macdonald p. 2/1 Integral representation K ν (x) = complex order ν = α + iβ e x
( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model
1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,
Generalized Linear Model [GLM]
Generalzed Lnear Model [GLM]. ก. ก Emal: nkom@kku.ac.th A Lttle Hstory Multple lnear regresson normal dstrbuton & dentty lnk (Legendre, Guass: early 19th century). ANOVA normal dstrbuton & dentty lnk (Fsher:
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
CS348B Lecture 10 Pat Hanrahan, Spring 2002
Page 1 Reflecton Models I Today Types of eflecton models The BRDF and eflectance The eflecton equaton Ideal eflecton and efacton Fesnel effect Ideal dffuse Next lectue Glossy and specula eflecton models
Theory of the Lattice Boltzmann Method
Theory of the Lattce Boltzmann Method Burkhard Dünweg Max Planck Insttute for Polymer Research Ackermannweg 10 55128 Manz B. D. and A. J. C. Ladd, arxv:0803.2826v2, Advances n Polymer Scence 221, 89 (2009)
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Chapter 7 Transformations of Stress and Strain
Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1
P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:
(B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds
Quantum annealing inversion and its implementation
49 2 2006 3 CHINESE JOURNAL OF GEOPHYSICS Vol. 49, No. 2 Mar., 2006,,..,2006,49 (2) :577 583 We C, Zhu P M, Wang J Y. Quantum annealng nverson and ts mplementaton. Chnese J. Geophys. (n Chnese), 2006,49
Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population
Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/
Page: 10 CONTENTS Contents... 10 General Data... 10 Structural Data des... 10 erials... 10 Sections... 10 ents... 11 Supports... 11 Loads General Data... 12 LC 1 - Vollast 120 km/h 0,694 kn/qm... 12 LC,
Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/
Page: 1 CONTENTS Contents... 1 General Data... 1 Structural Data des... 1 erials... 1 Sections... 1 ents... 2 Supports... 2 Loads General Data... 3 LC 1 - Vollast 90 km/h 0,39 kn/qm... 3 LC, LG Results
Forced vibrations of a two-layered shell in the case of viscous resistance
Journal of Physcs: Conference Seres PAPER OPEN ACCESS Forced vbratons of a two-layered shell n the case of vscous resstance To cte ths artcle: L A Aghalovyan and L G Ghulghazaryan 08 J. Phys.: Conf. Ser.
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
MABUCHI AND AUBIN-YAU FUNCTIONALS OVER COMPLEX THREE-FOLDS arxiv: v1 [math.dg] 27 Mar 2010
MABUCHI AND AUBIN-YAU FUNCTIONALS OVER COMPLE THREE-FOLDS arv:1.57v1 [math.dg] 27 Mar 21 YI LI Abstract. In ths paper we construct Mabuch L M ω functonal and Aubn- Yau functonals Iω AY,J AY ω on any compact
Using the Jacobian- free Newton- Krylov method to solve the sea- ice momentum equa<on
Using the Jacobian- free Newton- Krylov method to solve the sea- ice momentum equa
Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago
Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal
THREE-DIMENSIONAL VISCO-ELASTIC ARTIFICIAL BOUNDARIES IN TIME DOMAIN FOR WAVE MOTION PROBLEMS
6 Vol. No.6 005 ENGNEENG MEHANS Dec. 005 000-4750(005)06-0046-06 * (. 00084. 000) O47.4, P5. A THEE-DMENSONAL VSO-ELAST ATFAL BOUNDAES N TME DOMAN FO WAVE MOTON POBLEMS * LU Jng-bo, WANG Zhen-yu, DU Xu-l,
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Dr. D. Dinev, Department of Structural Mechanics, UACEG
Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents
ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations
ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +
Differentiation exercise show differential equation
Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos
Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment
1 2 2 GPS (SOM) Proposal of Termnal Self Locaton Estmaton Method to Consder Wreless Sensor Network Envronment Shohe OHNO, 1 Naotosh ADACHI 2 and Yasuhsa TAKIZAWA 2 Recently, large scale wreless sensor
arxiv: v1 [math.na] 16 Apr 2017
Energy estmates for two-dmensonal space-resz fractonal wave equaton Mnghua Chen, Wenshan Yu arxv:17.716v1 math.na 16 Apr 17 School of Mathematcs and Statstcs, Gansu Key Laboratory of Appled Mathematcs
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΜΕΛΕΤΗ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΙΑΤΑΞΗΣ ΜΕΤΡΗΣΗΣ ΘΕΡΜΟΧΩΡΗΤΙΚΟΤΗΤΑΣ ΣΕ ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ ΓΙΑ ΧΑΡΑΚΤΗΡΙΣΜΟ
2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim
9çB$ø`çü5 (-ç ) Ch.Ch4 b. è. [a] #8ƒb f(x, y) = { x y x 4 +y J (x, y) (, ) J (x, y) = (, ) I ϕ(t) = (t, at), ψ(t) = (t, t ), a ÑL
Επιδέξια Ρομποτικά Χέρια / Στατική Ανάλυση και Έλεγχος
Ε.Μ.Π., ΣΗΜΜΥ, Ακαδημαϊκό Έτος 200-, 8ο Εξάμηνο Μάθημα: Ρομποτική ΙΙ. Διδάσκων: Κ.Τζαφέστας Επιδέξια Ρομποτικά Χέρια / Στατική Ανάλυση και Έλεγχος (Derous Robot Hands Grasp Analyss) Εθνικό Μετσόβιο Πολυτεχνείο,
Εργασία 6: Συνδυασμός Μαθηματικών με γραφικές παραστάσεις. Ομάδα Β: Επεξεργασία πειραματικών δεδομένων
Εργασία 6: Συνδυασμός Μαθηματικών με γραφικές παραστάσεις Ομάδα Β: Επεξεργασία πειραματικών δεδομένων Δημιουργία γραφικής παράστασης συνάρτησης Για να δημιουργήσετε τη γραφική παράσταση από μια συνάρτηση
A research on the influence of dummy activity on float in an AOA network and its amendments
2008 6 6 :100026788 (2008) 0620106209,, (, 102206) : NP2hard,,..,.,,.,.,. :,,,, : TB11411 : A A research on the influence of dummy activity on float in an AOA network and its amendments WANG Qiang, LI
A Class of Orthohomological Triangles
A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt
Local Approximation with Kernels
Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους
Finite difference method for 2-D heat equation
Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
FEM Method 2/5/13. FEM Method. We will explore: 1 D linear & higher order elements 2 D triangular & rectangular elements
/5/ FEM Method We will explore: D linear & higher order elements D triangular & rectangular elements Powerful method developed originally to solve structural mechanics problems (e.g. bridges, buildings,
Stabilization of stock price prediction by cross entropy optimization
,,,,,,,, Stabilization of stock prediction by cross entropy optimization Kazuki Miura, Hideitsu Hino and Noboru Murata Prediction of series data is a long standing important problem Especially, prediction
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Exercises to Statistics of Material Fatigue No. 5
Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can
Calculating the propagation delay of coaxial cable
Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Lecture 34 Bootstrap confidence intervals
Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α
ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΕΥΣΤΑΘΕΙΑΣ ΓΙΑ ΤΗΝ ΕΚΒΟΛΗ ΕΝΟΣ ΙΞΩΔΟΕΛΑΣΤΙΚΟΥ ΡΕΥΣΤΟΥ ΑΠΟ ΕΠΙΠΕΔΟ ΑΓΩΓΟ
9 η Επιστημονική Συνάντηση Πανελλήνιο Συνέδριο για τα Φαινόμενα Μηχανικής Ρευστών Αθήνα,2- Δεκεμβρίου, 204 ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΕΥΣΤΑΘΕΙΑΣ ΓΙΑ ΤΗΝ ΕΚΒΟΛΗ ΕΝΟΣ ΙΞΩΔΟΕΛΑΣΤΙΚΟΥ ΡΕΥΣΤΟΥ ΑΠΟ ΕΠΙΠΕΔΟ ΑΓΩΓΟ Διονύσης
Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.
upplement on Radiation tress and Wave etup/et down Radiation tress oncerned wit te force (or momentum flu) eerted on te rit and side of a plane water on te left and side of te plane. plane z "Radiation
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
Mechanics of Materials Lab
Mechanics of Materials Lab Lecture 9 Strain and lasticity Textbook: Mechanical Behavior of Materials Sec. 6.6, 5.3, 5.4 Jiangyu Li Jiangyu Li, Prof. M.. Tuttle Strain: Fundamental Definitions "Strain"
Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is
Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =
Asymptotically Confirmed Hypotheses Method for the Construction of Micropolar and Classical Theories of Elastic Thin Shells
Advances n Pure Mathematcs 5 5 69-64 Publshed Onlne August 5 n ScRes http://wwwscrporg/ournal/apm http://dxdoorg/46/apm5557 Asymptotcally Confrmed Hypotheses Method for the Constructon of Mcropolar and